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Abstract

Genetic variants at the 15q25 CHRNA5-CHRNA3 locus have been shown to influence lung cancer risk however there is
controversy as to whether variants have a direct carcinogenic effect on lung cancer risk or impact indirectly through smoking
behavior. We have performed a detailed analysis of the 15q25 risk variants rs12914385 and rs8042374 with smoking behavior
and lung cancer risk in 4,343 lung cancer cases and 1,479 controls from the Genetic Lung Cancer Predisposition Study
(GELCAPS). A strong association between rs12914385 and rs8042374, and lung cancer risk was shown, odds ratios (OR) were
1.44, (95% confidence interval (CI): 1.29–1.62, P = 3.69610210) and 1.35 (95% CI: 1.18–1.55, P = 9.9961026) respectively. Each
copy of risk alleles at rs12914385 and rs8042374 was associated with increased cigarette consumption of 1.0 and 0.9 cigarettes
per day (CPD) (P = 5.1861025 and P = 5.6561023). These genetically determined modest differences in smoking behavior can
be shown to be sufficient to account for the 15q25 association with lung cancer risk. To further verify the indirect effect of
15q25 on the risk, we restricted our analysis of lung cancer risk to never-smokers and conducted a meta-analysis of previously
published studies of lung cancer risk in never-smokers. Never-smoker studies published in English were ascertained from
PubMed stipulating - lung cancer, risk, genome-wide association, candidate genes. Our study and five previously published
studies provided data on 2,405 never-smoker lung cancer cases and 7,622 controls. In the pooled analysis no association has
been found between the 15q25 variation and lung cancer risk (OR = 1.09, 95% CI: 0.94–1.28). This study affirms the 15q25
association with smoking and is consistent with an indirect link between genotype and lung cancer risk.
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Introduction

An association between common variants in the CHRNA5-

CHRNA3-CHRNB4 nicotinic acetylcholine receptor subunit gene

cluster on chromosome 15q25 and lung cancer risk has recently

been reported [1,2,3]; notably with the single nucleotide

polymorphism (SNP) rs1051730 and highly correlated SNPs

(including rs12914385). This association was first identified

directly through genome-wide association (GWA) studies of lung

cancer conducted by Amos et al [1] and Hung et al [2].

Concurrently with publication of these two studies Thorgeirsson

et al [3] reported a statistically significant association with the

same 15q25 variants and metrics of nicotine dependence,

concluding that this explained the elevated risk of lung cancer

they also observed. Prior to these studies the 15q25 SNP

rs16969968 which is correlated with rs1051730 was identified

through candidate gene studies as a determinant of nicotine

dependence [4]. The association between the 15q25 locus tagged

by rs16969968/rs1051730 and other correlated SNPs has been

robustly replicated for smoking related traits including, cigarettes

per day (CPD) and heavy smoking, in both candidate gene studies

[5] and recent large meta-analyses of GWA data [6,7,8].

While the lung cancer risk associated with 15q25 variants

reported in the various studies are comparable, relative risk ,1.3,

researchers differ as to whether the association is direct or simply

reflective of propensity to smoke and hence increased exposure to

tobacco carcinogens. It has been argued that the association with

CPD is not sufficient to explain the association between 15q25

variation and lung cancer risk [9], suggesting a direct role for

15q25 in lung cancer development. This possibility is supported by

the finding of an increased risk of lung cancer in both ever- and

never-smokers associated with 15q25 risk variants reported by

Hung et al [2]. The observation of higher lung cancer risks in

lower smoking-exposed strata and in individuals with a family

history of the disease has also been interpreted to implicate 15q25

variants in both smoking behaviour and directly in lung cancer

[10]. Support for this assertion comes from the finding that lung

cancer risks associated with 15q25 variants have been reported to

be essentially unchanged after adjusting for CPD [9]. Other

studies have, however failed to demonstrate a lung cancer

association in never-smokers raising doubt about a direct effect

of the 15q25 locus on disease risk [1,10,11].

Extensive genotyping of the 15q25 region has recently

provided evidence for multiple association signals defining
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nicotine dependence within this chromosome region; specifically

a second probable disease locus independent of rs1051730–

rs16969968, which is annotated by the highly correlated SNPs

rs8042374, rs6495309 and rs578776 [5,6,12].

To further explore the relationship between 15q25 variation

and lung cancer risk, specifically evidence for an indirect effect, we

have conducted a detailed analysis of the relationship between the

two 15q25 risk loci with smoking phenotype quantifying impact of

variants on lung cancer. To provide increased power to

demonstrate a relationship between 15q25 genotype and lung

cancer risk in never-smokers, we conducted a meta-analysis,

pooling our study findings with previously published data.

Materials and Methods

The flow diagram for this study and supporting PRISMA

checklist are available as supporting information; see Checklist S1

and Diagram S1.

Ethics Statement
Collection of samples and clinico-pathological information was

undertaken with informed and written consent and in accordance

with the tenets of the Declaration of Helsinki. Ethical review board

approval was obtained from the Royal Marsden NHS Hospitals

Trust and the UK Multicentre Ethics Committee.

Study participants and SNP genotyping
To evaluate 15q25 variation on the risk of lung cancer we

derived rs12914385 and rs8042374 genotypes from our previously

reported GWA study of lung cancer which annotated the two

independent loci at 15q25 [12,13]. rs12914385 is highly correlated

with both rs16969968 and rs1051730 (D’ = 1.0, r2 = 0.81, and

D’ = 1.0, r2 = 0.83, respectively based on HapMap CEU) thus

annotating the same locus. Comprehensive details of our GWA

study have been previously reported [12,13]. Briefly, a series of

4,343 lung cancer cases (2,782 male; mean age at diagnosis 66

years) were ascertained through the Genetic Lung Cancer

Predisposition Study (GELCAPS) [14]. All of the cases had

pathologically confirmed lung cancer. For controls we genotyped

1,479 healthy subjects (461 male; mean age at sampling 63 years)

ascertained from GELCAPS. Detailed smoking quantity data was

available on 4,019 cases and 907 controls. We defined smokers in

both cases and controls on the basis of having had a lifetime

exposure of more than 100 cigarettes. Family history of lung

cancer in cases was based on the definition of having at least one

first-degree relative affected with lung cancer. Both cases and

controls were British residents and self-reported to be of European

Ancestry. Genotyping was conducted using Illumina Human550

BeadChips and Illumina Infinium arrays according to the

manufacturer’s protocols as previously described [12,13]. To

ensure quality of genotyping, a series of duplicate samples were

included and cases and controls were genotyped in the same

batches. We have previously confirmed an absence of systematic

genetic differences between cases and controls and shown no

evidence of population stratification in these sample sets [12,13].

Statistical analysis
The risk of lung cancer associated with SNP genotype was

assessed by ORs and P-values derived from Cochran-Armitage test

using logistic regression. Deviation of the genotype frequencies in

the controls from those expected under Hardy-Weinberg Equilib-

rium (HWE) was assessed by the x2 test. To examine the impact of

genotype on smoking behaviour, we tested trend in cigarette

consumption which has been assessed by log transformed CPD,

smoking initiation, cessation and duration using Cochran-

Armitage test. To explore the possibility that genotype influences

the age of onset of lung cancer we conducted Cochran-Armitage

test on average age of diagnosis across genotype strata in both

smokers and never-smokers. Age, sex and smoking were adjusted

in all the tests when appropriate. When adjusted for, smoking

quantity and duration were introduced using the optimal

transformation derived by Box-Cox method.

The population attributable risk (PAR), which quantifies the

proportion of the total risk of lung cancer which is due to the

genetic effect of that locus was estimated using the formulae:

PARi~
P

iPi| ORi{1ð Þ=
P

iPi| ORi{1ð Þz1ð Þ, where Pi is

the prevalence in controls of the lung cancer risk allele at the ith

locus, and ORi is the OR of the risk allele at the ith locus.

We estimated the familial relative risk of lung cancer

attributable to the smoking behaviour using previously published

methodology [15].

All the statistical analyses were undertaken in R (v2.8) software.

In all statistical analyses we considered a two-sided P-value of 0.05

or less to be statistically significant.

Meta-analysis
Study identification. To identify previously published

studies reporting the relationship between 15q25 variation and

lung cancer risk in never-smokers we interrogated the electronic

database PubMed (from January 1996 up to the end of July 2010).

The search strategy included the keywords ‘‘lung cancer, risk,

genome-wide association, candidate genes’’. We searched for any

additional studies in the bibliographies of identified publications,

including previous review articles.

Selection criteria. Studies were eligible if they were based on

unrelated individuals and examined the association between lung

cancer and polymorphic genotype at 15q25 in never smokers.

Only studies published as full-length articles or letters in peer-

reviewed journals in English were included in the analysis.

Data extraction. Data for analyses, including study design,

sample size, ethnicity, as well as allele and genotype frequencies, were

extracted from the published articles and summarized in a consistent

manner to aid comparison. When a study reported results on different

sub-populations according to ethnicity, we considered each sub-

population as a separate study in the meta-analysis.

Statistical analysis. Raw data of genotype frequencies of

15q25 variant rs16969968 and its proxies, were used for

calculation of the study-specific estimates of OR and CI. Meta-

analysis was performed under both fixed and random effects

models, estimating Cochran’s Q statistic to test for heterogeneity

and the I2 statistic to quantify the proportion of the total variation

between studies [16,17]. To address between-study heterogeneity

we derived a pooled odds ratio under a random effects model [16].

An estimate of the potential publication bias was conducted by

examination of funnel plots. An asymmetric plot is reflective of

publication bias. The funnel plot symmetry was assessed by

Egger’s test based on inverse-variance weighted regression of the

standardized effect size (OR/standard error (SE) of OR) on their

precision (1/SE) to test whether the intercept deviates significantly

from zero. The significance of the pooled OR was determined by

the Z-test and P,0.05 was considered as statistically significant.

Results

The characteristics of lung cancer patients and control series

studied are detailed in Table 1. In keeping with the established

relationship between smoking and lung cancer risk, the lung

cancer cases reported statistically significantly higher rates of CPD

15q25 Variation and Lung Cancer Risk
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and pack years (P = 2.55610223 and P = 2.00610213, respective-

ly). Furthermore, there was however a strong trend in CPD across

age groups; cases in the uppermost quantile having a cigarette

consumption of 3.2 CPD less than those in the lowest age quantile

(P = 3.01610221).

Genotypes were obtained for .95% of cases and controls for

rs12914385 and rs8042374 (Table 2). There was no evidence of

any systematic bias in genotyping and there was a complete

concordance of SNP genotypes between duplicate samples. The

allele frequency of each SNP in controls was similar to previously

published data on the Northern European population (HapMap,

CEU population). Furthermore, there was no evidence of

population stratification as the genotype distribution in both

control series for each of the SNPs satisfied HWE.

Impact of 15q25 genotype on smoking and lung cancer
in smokers

Both SNPs showed a statistically significant association with

lung cancer risk in a strong dose-dependent fashion in smokers

(OR = 1.43 and 1.32 respectively; Table 2). These associations

remained statistically significant after adjustment for age, sex and

categorized CPD (Table 2). On the basis of the risk associated with

each of the variants ,30% of the PAR of lung cancer is

underscored by the 15q25 variation in smokers.

There was a significant 1.2-fold over-representation of

rs12914385 and rs8042374 risk alleles amongst lung cancer cases

which had reported a family history of lung cancer (Table 2; P-

values for case-only analysis, 0.004 and 0.03 respectively).

We examined the relationship between genotype and smoking

behavior firstly considering CPD as a quantitative trait (Table 3).

A strong correlation between cigarette consumption and risk

genotype at both 15q25 loci was observed in cases (Table 3). While

a similar relationship between smoking and genotype was shown

in controls it was not statistically significant (Table 3). This is likely

to simply reflect small sample size and hence limited power to

demonstrate a relationship, as while we had .90% power to

demonstrate a relationship between 15q25 genotype and CPD (1

CPD per risk allele) in cases, for controls power was only ,50%

stipulating a P-value of 0.05. In cases those homozygous for

rs12914385 and rs8042374 risk alleles smoked on average 2.0–2.3

CPD more than individuals homozygous for non-risk alleles

(Table 3); the corresponding impact of rs12914385 and rs8042374

genotype on CPD in the cases was 0.9–1.0 per allele (Data not

shown). Secondly, we examined the relationship between genotype

and heavy smoking, defined as .20 CPD. In the lung cancer cases

a strong relationship between SNP risk genotype and heavy

cigarette consumption was shown (Table 4).

We determined if smoking initiation or cessation was modified

by 15q25 genotype, among ever-smokers. We observed no

statistically significant association between genotype at either

locus with smoking initiation in cases alone or controls alone or in

combined subjects among ever-smokers. Similarly we found no

evidence that genotype modified age of cessation among former-

smokers (data not shown).

We then examined the possibility that genotype might

influence age of onset of lung cancer. Armitage trend test was

used to detect trend in mean age of onset across genotype groups.

For rs12914385 risk genotype, homozygous carriers had a mean

age of diagnosis of 64.7 years compared with 65.7 and 66.4 years

in heterozygote and wild-type genotype carriers respectively

(P = 0.0001). Corresponding mean ages at diagnosis by rs8042374

genotype were 65.5, 66.4 and 66.8 years, respectively (P = 0.003).

These differences remained statistically significant after correc-

tion for sex and CPD and duration of smoking using linear

modeling. The median smoking duration for carriers of risk

alleles at rs12914385 or rs8042374 was 1 year higher than that of

non-carriers (44 vs 43 years and 43 vs 42 years, respectively),

albeit non-significant.

Impact of 15q25 genotype on lung cancer in never-
smokers

In never-smokers comparison of genotype frequencies in cases

and controls provided no evidence that lung cancer risk is

influenced by either rs12914385 or rs8042374 genotype (Table 2).

We examined the possibility that 15q25 genotype might influence

age of onset of lung cancer in never-smokers. For rs12914385 risk

genotype, homozygous carriers had a mean age of diagnosis of

65.8 years compared with 65.6 and 66.0 years in heterozygote and

wild-type genotype carriers respectively (P = 0.99). Corresponding

mean ages at diagnosis by rs8042374 genotype were 66.8, 64.1

and 66.2 years, respectively (P = 0.31).

To maximize the possibility of identifying an association

between 15q25 genotype and lung cancer in never-smokers we

conducted a meta-analysis pooling our study with previously

published case-control studies. We retrieved 95 studies using our

search criteria (Figure 1). Five of these 95 studies met our pre-

determined criteria for inclusion; two were based on Caucasians

[10,11], one on the Japanese population [18], and two reported

case-control studies from multiple countries [2,19]. The data

presented by Amos et al [1] is superseded by the current study and

was therefore not analysed. The SNPs rs16969968 and rs1051730

were each genotyped in five of the published studies and

rs8034191 in one. As rs12914385, rs1051730 and rs8034191 are

highly correlated with rs16969968 (D’ = 0.98–1.00 and r2 = 0.81–

0.98, based on HapMap CEU) each SNP can be considered as

proxies for another. While the minor allele frequencies of

rs1051730 and rs16969968 are lower in Japanese (0.013, 0.013)

than in Caucasians (0.35, 0.35), the haplotype defined by the risk

SNP alleles is associates with lung cancer risk in the Japanese

population [18]. Given the strong correlations between SNP

Table 1. Details of the lung cancer patients and healthy
controls from GELCAPS.

Cases Control subjects

Number (Male; %) 4,343 (2,782, 64%) 1,479 (461, 31%)

Mean age (SD) years 65.4 (9.8) 63.0 (10.0)

Family history of lung cancer* 598 (14%) -

Lung cancer histology

NSCLC 3312 (76%) -

SCLC 1027 (24%) -

Other 2 (,1%) -

Smoking status

Never 241 (6%) 553 (37%)

Former 2883 (66%) 585 (40%)

Current 1219 (28%) 341 (23%)

Mean CPD (SD) 23 (19) 18 (11)

Mean pack years (SD) 45 (31) 19 (23)

*defined as having at least one first-degree relative affected with lung cancer.
NSCLC, non-small cell lung cancer;
SCLC, small cell lung cancer.
CPD, cigarettes per day.
RAF, risk allele frequency.
doi:10.1371/journal.pone.0019085.t001
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genotypes we therefore considered rs8034191, rs1051730,

rs16969968 and rs12914385 as defining a single genetic locus

and conducted a meta-analysis of the six studies on this basis.

Collectively these five studies and our study provided data on a

total of 2,405 never-smoker lung cancer cases and 7,622 controls.

Meta-analysis of these six studies provided no evidence for a

statistically significant association between 15q25 genotype and

lung cancer risk in never-smokers; OR = 1.06 (95% CI: 0.99–

1.15, P = 0.12) (Figure 2). There was, however between-study

heterogeneity (Phet = 0.008, I2 = 68%), and the pooled OR under

a random effects model was 1.09 (95% CI: 0.94–1.28, P = 0.26).

Between-study heterogeneity was largely attributable to inclusion

of the Japanese study. Omitting this study from the analysis

between-study heterogeneity was non-significant but the associ-

ation remained non-significant with a pooled OR of 1.05 (95%

CI: 0.97–1.13, P = 0.20; Phet = 0.06, I2 = 56%). No publication

bias was found by examining either the funnel plot or formal

Egger’s test (P = 0.34).

Discussion

While an association between 15q25 variation and lung cancer

risk is now well established there is currently no consensus on the

relative impact of variants on propensity to smoke versus a direct

carcinogenic effect. In this study we have conducted a detailed

analysis of 15q25 variants, smoking behaviour and lung cancer risk

Table 2. Risk estimates for rs12914385 and rs8042374 stratified by selected variables.

Lung cancer
cases Control subjects Crude OR (95% CI) P-value Adjusted OR (95% CI) P-value

rs12914385 n (%) n (%)

Smokers1

CC 1230 (30.6) 373 (41.1) 1.00 (Ref)

TC 1973 (49.1) 413 (45.5) 1.45 (1.24–1.70) 3.74610206 1.47 (1.25–1.73) 4.08610206

TT{ 815 (20.3) 121 (13.3) 2.04 (1.63–2.55) 3.67610210 2.00 (1.59–2.52) 3.99610209

RAF, per allele OR 0.45 0.36 1.43 (1.29–1.59) 2.10610211 1.43 (1.28–1.59) 1.79610210

Familial cases¥

CC 154 (26.3) 373 (41.1) 1.00 (Ref)

TC 292 (49.9) 413 (45.5) 1.71 (1.35–2.18) 1.14610205 1.71 (1.33–2.19) 2.30610205

TT{ 139 (23.8) 121 (13.3) 2.78 (2.05–3.78) 7.03610211 2.81 (2.04–3.87) 2.76610210

RAF, per allele OR 0.49 0.36 1.67 (1.44–1.95) 2.37610211 1.68 (1.44–1.96) 9.41610211

Never-smokers

CC 100 (41.8) 217(39.2) 1.00 (Ref) 1.00 (Ref)

TC 109 (45.6) 260 (47.0) 0.91 (0.66–1.26) 0.57 0.90 (0.64–1.27) 0.56

TT{ 30 (12.6) 76 (13.7) 0.86 (0.53–1.39) 0.53 0.81 (0.49–1.34) 0.41

RAF, per allele OR 0.35 0.37 1.09 (0.87–1.36) 0.47 1.10 (0.87–1.39) 0.43

rs8042374

Smokers1

AA{ 2668 (66.5) 541 (59.6) 1.00 (Ref)

AG 1207 (30.1) 314 (34.6) 0.78 (0.67–0.91) 1.60610203 0.78 (0.66–0.92) 2.51610203

GG 136 (3.4) 52 (5.7) 0.53 (0.38–0.74) 1.86610204 0.52 (0.37–0.73) 2.01610204

RAF, per allele OR 0.82 0.77 1.32 (1.17–1.50) 8.19610206 1.33 (1.17–1.51) 1.44610205

Familial cases¥

AA{ 413 (70.7) 541 (59.6) 1.00 (Ref)

AG 155 (26.5) 314 (34.6) 0.65 (0.51–0.81) 2.18610204 0.63 (0.50–0.80) 1.84610204

GG 16 (2.7) 52 (5.7) 0.40 (0.23–0.72) 1.95610203 0.41 (0.23–0.74) 3.05610203

RAF, per allele OR 0.84 0.77 1.56 (1.29–1.88) 5.05610206 1.57 (1.29–1.92) 7.21610206

Never-smokers

AA{ 135 (56.5) 314 (56.8) 1.00 (Ref) 1.00 (Ref)

AG 86 (35.98) 206 (37.3) 0.97 (0.70–1.34) 0.86 1.01 (0.73–1.41) 0.94

GG 18 (7.5) 33 (6.0) 1.27 (0.69–2.33) 0.44 1.37 (0.73–2.59) 0.33

RAF, per allele OR 0.75 0.75 1.05 (0.82–1.34) 0.7 1.10 (0.85–1.42) 0.47

RAF, risk allele frequency.
RAF of rs12914385 and rs8042374 in the 1958 Birth Cohort 0.39 and 0.76 respectively.
1Current and former smokers combined.
{Risk genotype.
¥excludes 6 of the never-smoker cases which reported a family history of lung cancer.
Adjusted for age, sex and categorized smoking quantity CPD (0–10; 11–20; 21–30; 31+).
doi:10.1371/journal.pone.0019085.t002
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in a population-based series of lung cancer cases to gain insight

into the underlying basis of this cancer association.

We confirm previous observations of a strong relationship

between the two 15q25 loci annotated by rs12914385 and

rs8042374 with both smoking behaviour and risk of lung cancer.

We found that for each locus smokers carrying two copies of the

risk allele smoked on average two more CPD than those

homozygous for non-risk alleles.

Much of the assertion that 15q25 variation has a direct effect on

lung cancer risk rather than solely being a proxy for smoking

comes from the observation that the lung cancer association is not

accounted for by the relationship with smoking quantity. Applying

the Doll and Peto model [20] of the dose-response relationship

between smoking and lung cancer for those aged 16–25 smoking

,40 CPD, Brennan and co-workers estimated that a 1.2

difference in CPD between rs16969968 homozygotes only results

in a 9% increase in lung cancer risk [9]. This is substantially lower

than the observed association between rs16969968 and lung

cancer risk. While we found that adjustment for CPD had little

effect on the estimation of lung cancer risk associated with 15q25

variants, it has consistently been shown that for both men and

women the number of years of cigarette smoking is far more

important than CPD in predicting lung cancer risk [20,21]. In the

Peto and Doll model the risk of lung cancer for men aged 40–79

years is proportional to (CPD+6)2.(age-22.5)4.5 [20]. Under this

model even a 1.0 CPD difference will account for the observed

difference in lung cancer risk if genotype influences the duration of

smoking by 1 year over a 30 year period. It has been previously

shown that CHRNA3-CHRNA5 variants influence early tobacco

addiction [22] and recent studies have demonstrated that 15q25

genotype influences the ability to stop smoking [23]. Hence it is

likely that carriers of 15q25 risk genotypes will smoke more

consistently over a longer period and have more sustained smoking

behaviour. Although we found no strong relationship between

duration of smoking and genotype in lung cancer cases our study

findings are concordant with this hypothesis.

An over-representation of 15q25 risk alleles in familial lung

cancer cases and association with early-onset disease has been

suggested to provide evidence for a direct effect of variants on lung

cancer risk. It is, however well established that smoking behaviour

has a high heritability (0.5–0.7) [24]. Since the relative risk of lung

cancer associated with smoking is ,30 [25] the familial lung

cancer risk directly attributable to inherited propensity to smoke is

,1.4 if 10%–25% of the population consistently smoke. As with

the 15q25 locus any over-representation of variants in familial or

early-onset lung cancer can readily be accounted for through an

indirect mechanism. It is noteworthy in this respect that while

15q25 risk variants were associated with early-onset disease in

smokers no such association was seen in never-smoker lung cancer

cases. Moreover given that the familial relative risk of lung cancer

is ,1.7 [26], genetically determined smoking behaviour is likely to

contribute significantly to the observed clustering of lung cancer.

The design of our study is very similar to the other case-control

studies which have previously investigated the relationship

between polymorphic variation and lung cancer risk. While data

on lung cancer diagnoses are derived from histological records,

details on smoking behaviour was obtained through self-admin-

istered questionnaires; thus there is a qualitative difference in the

robustness of these two endpoints used in our analysis. Self-

reported data about smoking behaviours several decades ago is

inherently problematic. Cigarette use has been shown to be

commonly under-reported by smokers in studies which have

correlated self-reported cigarette use with cotinine levels [27]. If

underreporting smoking habit or cigarette consumption differs

between cases and controls this is a potential source of significant

bias in establishing a direct association between the 15q25 locus

and lung cancer risk. This is especially of concern as 15q25

genotype influences smoking behaviour. Beside these issues it has

been shown that carriers of risk variants extract a greater

carcinogenic nitrosamine per cigarette dose [28]. While self-

reported CPD has enabled an association between 15q25 and

smoking to be demonstrated, even if accurately assessed CPD does

not adequately take into account carcinogenic load. In view of this,

simple adjustments using self-reported CPD metrics is likely to be

suboptimal for teasing out direct effects on lung cancer risk and it

is perhaps not surprising that effect sizes for many 15q25 lung

cancer associations appear relatively unchanged when simple

adjustments are made. Future epidemiological studies seeking to

demonstrate a direct effect of 15q25 on lung cancer risk should

take into consideration the significant potential issue of confound-

ing in study design.

The strongest epidemiological data supporting a direct role of

genetic variation at 15q25 as a risk factor for lung cancer would be

provided by demonstration of an association in never-smokers.

While our own study of never-smokers was relatively small it had

,80% power to demonstrate a lung cancer association assuming

Table 3. Smoking intensity and dependence by 15q25
genotype.

Lung cancer cases Control subjects

Genotype n Mean CPD P-value* n Mean CPD P-value*

rs12914385

CC 1230 21.6 373 18.1

TC 1973 22.2 413 18.5

TT{ 815 23.9 121 18.5

4.76610205 0.38

rs8042374

AA{ 2668 22.7 541 18.6

AG 1207 21.8 314 18.0

GG 136 20.7 52 17.9

7.55610203 0.48

*From Kruskal-Wallis test.
{Risk genotype.
doi:10.1371/journal.pone.0019085.t003

Table 4. Prevalence of rs12914385 and rs8042374 risk alleles
in light and heavy smoking lung cancer cases and controls.

Lung cancer cases Control subjects

Genotype CPD n RAF P-value* n RAF P-value*

rs12914385

1–20 2611 0.43 688 0.36

21+ 1407 0.47 5.65610204 219 0.37 0.58

rs8042374

1–20 2606 0.81 688 0.76

21+ 1405 0.83 3.72610203 219 0.79 0.37

*P values calculated using the Cochran-Armitage test.
RAF, risk allele frequency.
doi:10.1371/journal.pone.0019085.t004
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an OR of 1.3. While this effect size is comparable to that seen for

the lung cancer association in smokers it can be asserted that any

direct association may be more modest. However, the meta-

analysis we conducted failed to demonstrate a significant

relationship despite having in excess of 80% power to show a

relative risk of 1.1. Hence if there is a direct effect of 15q25 on

lung cancer risk it is likely to be overshadowed by the indirect

effect.

Although our data thus favours an indirect effect of 15q25

variation on lung cancer risk we cannot entirely exclude the

possibility of direct effect. The acid test proving a direct effect is

likely to be reliant on biological assays. Evidence that nicotine is

either carcinogenic or co-carcinogenic or functions as a tumour

promoter for lung cancer would support the plausibility of a direct

relationship between the 15q25 locus and lung cancer risk. There

is evidence that variants in the region are associated with

decreased expression of CHRNA5 in the lungs and that CHRNA5

expression is higher in lung cancers favouring a direct role [29].

While the SNP rs16969968 is a non-synonymous SNP causing the

D398N substitution in CHRNA5 and while 398N causes decreased

response to a nicotine agonist [30], a direct role of this variant in

lung cancer biology has thus far not been shown. Moreover to date

data on the direct effect of nicotine on lung cancer biology is

sparse and inconsistent (reviewed in [31]).

In conclusion the results of our analyses reaffirm the strong

relationship between the 15q25 locus and both smoking and lung

cancer risk. However, our findings do not provide evidence for

direct effect of 15q25 on lung cancer risk and it is possible to

explain this association in smokers through the influence on

smoking behaviour. Assertion of a direct effect of variants on lung

cancer risk is currently weak and this should not detract from

concerted efforts to reduce lung cancer burden through public

Figure 1. Inclusion and exclusion criteria for studies.
doi:10.1371/journal.pone.0019085.g001
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health initiatives to reduce smoking. Given that 15q25 variation

influences smoking behaviour it is possible that assaying 15q25

genotype may have healthcare utility in helping the tailoring of

smoking cessation strategies.

URLs
The R suite can be found at http://www.r-project.org/

HAPMAP: http://www.hapmap.org/

Supporting Information

Checklist S1 PRISMA checklist.
(DOC)

Diagram S1 PRISMA flow diagram.

(DOC)

Acknowledgments

We would like to thank all individuals that participated in this study and

the clinicians who took part in the GELCAPS consortium.

Author Contributions

Conceived and designed the experiments: RSH TE AM. Performed the

experiments: PB. Analyzed the data: YW. Wrote the paper: RSH.

References

1. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, et al. (2008) Genome-wide

association scan of tag SNPs identifies a susceptibility locus for lung cancer at
15q25.1. Nat Genet 40: 616–622.

2. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, et al. (2008) A
susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor

subunit genes on 15q25. Nature 452: 633–637.

3. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, et al. (2008) A variant

associated with nicotine dependence, lung cancer and peripheral arterial disease.
Nature 452: 638–642.

4. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, et al. (2007)

Cholinergic nicotinic receptor genes implicated in a nicotine dependence

association study targeting 348 candidate genes with 3713 SNPs. Hum Mol
Genet 16: 36–49.

5. Saccone NL, Culverhouse RC, Schwantes-An TH, Cannon DS, Chen X, et al.

Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a

meta-analysis and comparison with lung cancer and COPD. PLoS Genet 6.

6. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, et al. Meta-analysis and
imputation refines the association of 15q25 with smoking quantity. Nat Genet

42: 436–440.

7. Genome-wide meta-analyses identify multiple loci associated with smoking

behavior. Nat Genet 42: 441–447.

8. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, et al.

Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking
behavior. Nat Genet 42: 448–453.

9. Lips EH, Gaborieau V, McKay JD, Chabrier A, Hung RJ, et al. Association

between a 15q25 gene variant, smoking quantity and tobacco-related cancers

among 17 000 individuals. Int J Epidemiol 39: 563–577.

10. Spitz MR, Amos CI, Dong Q, Lin J, Wu X (2008) The CHRNA5-A3 region on

chromosome 15q24–25.1 is a risk factor both for nicotine dependence and for
lung cancer. J Natl Cancer Inst 100: 1552–1556.

11. Falvella FS, Galvan A, Frullanti E, Spinola M, Calabro E, et al. (2009)
Transcription deregulation at the 15q25 locus in association with lung

adenocarcinoma risk. Clin Cancer Res 15: 1837–1842.

12. Broderick P, Wang Y, Vijayakrishnan J, Matakidou A, Spitz MR, et al. (2009)

Deciphering the impact of common genetic variation on lung cancer risk: a
genome-wide association study. Cancer Res 69: 6633–6641.

13. Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, et al. (2008) Common

5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet 40:

1407–1409.

14. Eisen T, Matakidou A, Houlston R (2008) Identification of low penetrance
alleles for lung cancer: the GEnetic Lung CAncer Predisposition Study

(GELCAPS). BMC Cancer 8: 244.

15. Lorenzo Bermejo J, Hemminki K (2005) Familial lung cancer and

aggregation of smoking habits: a simulation of the effect of shared
environmental factors on the familial risk of cancer. Cancer Epidemiol

Biomarkers Prev 14: 1738–1740.

16. Pettiti D (1994) Meta-analysis Decision Analysis and Cost effectiveness Analysis.

Oxford University Press, Oxford, New York.

17. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis.

Stat Med 21: 1539–1558.

18. Shiraishi K, Kohno T, Kunitoh H, Watanabe S, Goto K, et al. (2009)
Contribution of nicotine acetylcholine receptor polymorphisms to lung cancer

risk in a smoking-independent manner in the Japanese. Carcinogenesis 30:

65–70.

Figure 2. Forest plots of odds ratios for lung cancer in never-smokers associated with the 15q25 locus. Boxes represent OR point
estimates, their areas being proportional to the inverse variance weight of the estimate. Horizontal lines represent 95% confidence intervals.
Diamond (and broken line) represents the summary OR computed under a fixed effects model, with 95% confidence interval given by its width. The
unbroken vertical line is at the null value (OR = 1.0).
doi:10.1371/journal.pone.0019085.g002

15q25 Variation and Lung Cancer Risk

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e19085



19. Truong T, Hung RJ, Amos CI, Wu X, Bickeboller H, et al. Replication of lung

cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled
analysis from the International Lung Cancer Consortium. J Natl Cancer Inst

102: 959–971.

20. Doll R, Peto R (1978) Cigarette smoking and bronchial carcinoma: dose and
time relationships among regular smokers and lifelong non-smokers. J Epidemiol

Community Health 32: 303–313.
21. Flanders WD, Lally CA, Zhu BP, Henley SJ, Thun MJ (2003) Lung cancer

mortality in relation to age, duration of smoking, and daily cigarette

consumption: results from Cancer Prevention Study II. Cancer Res 63:
6556–6562.

22. Weiss RB, Baker TB, Cannon DS, von Niederhausern A, Dunn DM, et al.
(2008) A candidate gene approach identifies the CHRNA5-A3-B4 region as a

risk factor for age-dependent nicotine addiction. PLoS Genet 4: e1000125.
23. Freathy RM, Ring SM, Shields B, Galobardes B, Knight B, et al. (2009) A

common genetic variant in the 15q24 nicotinic acetylcholine receptor gene

cluster (CHRNA5-CHRNA3-CHRNB4) is associated with a reduced ability of
women to quit smoking in pregnancy. Hum Mol Genet 18: 2922–2927.

24. Broms U, Silventoinen K, Madden PA, Heath AC, Kaprio J (2006) Genetic
architecture of smoking behavior: a study of Finnish adult twins. Twin Res Hum

Genet 9: 64–72.

25. Peto R, Darby S, Deo H, Silcocks P, Whitley E, et al. (2000) Smoking, smoking

cessation, and lung cancer in the UK since 1950: combination of national
statistics with two case-control studies. BMJ 321: 323–329.

26. Li X, Hemminki K (2005) Familial multiple primary lung cancers: a population-

based analysis from Sweden. Lung Cancer 47: 301–307.
27. Gorber SC, Schofield-Hurwitz S, Hardt J, Levasseur G, Tremblay M (2009)

The accuracy of self-reported smoking: a systematic review of the relationship
between self-reported and cotinine-assessed smoking status. Nicotine Tob Res

11: 12–24.

28. Le Marchand L, Derby KS, Murphy SE, Hecht SS, Hatsukami D, et al. (2008)
Smokers with the CHRNA lung cancer-associated variants are exposed to higher

levels of nicotine equivalents and a carcinogenic tobacco-specific nitrosamine.
Cancer Res 68: 9137–9140.

29. Falvella FS, Galvan A, Colombo F, Frullanti E, Pastorino U, et al. Promoter
polymorphisms and transcript levels of nicotinic receptor CHRNA5. J Natl

Cancer Inst 102: 1366–1370.

30. Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, et al. (2008) Variants
in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:

1163–1171.
31. Galvan A, Dragani TA () Nicotine dependence may link the 15q25 locus to lung

cancer risk. Carcinogenesis 31: 331–333.

15q25 Variation and Lung Cancer Risk

PLoS ONE | www.plosone.org 8 April 2011 | Volume 6 | Issue 4 | e19085


