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Abstract

Aims: Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase of the focal adhesion kinase (FAK) family, is up-
regulated in more than 60% of the tumors of hepatocellular carcinoma (HCC) patients. Forced overexpression of Pyk2 can
promote the proliferation and invasion of HCC cells. In this study, we aimed to explore the underlying molecular mechanism
of Pyk2-mediated cell migration of HCC cells.

Methodology/Principal Findings: We demonstrated that Pyk2 transformed the epithelial HCC cell line Hep3B into a
mesenchymal phenotype via the induction of epithelial to mesenchymal transition (EMT), signified by the up-regulation of
membrane ruffle formation, activation of Rac/Rho GTPases, down-regulation of epithelial genes E-cadherin and cytokeratin
as well as promotion of cell motility in presence of lysophosphatidic acid (LPA). Suppression of Pyk2 by overexpression of
dominant negative PRNK domain in the metastatic HCC cell line MHCC97L transformed its fibroblastoid phenotype to an
epithelial phenotype with up-regulation of epithelial genes, down-regulation of mesenchymal genes N-cadherin and
STAT5b, and reduction of LPA-induced membrane ruffle formation and cell motility. Moreover, overexpression of Pyk2 in
Hep3B cells promoted the phosphorylation and localization of mesenchymal gene Hic-5 onto cell membrane while
suppression of Pyk2 in MHCC97L cells attenuated its phosphorylation and localization.

Conclusion: These data provided new evidence of the underlying mechanism of Pyk2 in controlling cell motility of HCC cells
through regulation of genes associated with EMT.
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Introduction

Hepatocellular carcinoma (HCC) is the primary malignancy of

the liver. It is fifth in popularity and third in cancer-related deaths

worldwide [1]. Prognosis and treatment of HCC remains

unsatisfactory due to tumor recurrence, metastasis of the primary

tumor and poor therapeutic response to chemotherapy and

radiotherapy [2,3]. Metastasis is not only a complex process but

also the major cause of cancer-related deaths [4]. Transformation

of cells to a fibroblastic phenotype is important for the cancer cells

to successfully metastasize [5]. Several lines of evidences suggested

that the induction of epithelial to mesenchymal transition (EMT)

plays an important role in cancer cell transformation [6,7]. It

contributes significantly to metazoan embryogenesis and patho-

genesis such as tissue fibrosis and cancer progression [8]. On the

other hand, the process of mesenchymal to epithelial transition

(MET) may promote the growth of the metastatic cancer cells in

secondary sites [9]. The critical hallmarks of EMT include the

down-regulation of E-cadherin which is considered to be a tumor

suppressor gene [10], activation of Rho small GTPases such as

Rac1/RhoA which may increase cell motility by up-regulating

actin turnover and formation of focal adhesion [11], cytoskeletal

rearrangement and nuclear translocation of several transcription

factors such as Snail and Twist [12,13]. Understanding the

mechanism of HCC cell migration and metastasis may have great

value to develop effective diagnostic and therapeutic strategies for

treatment of HCC patients.

Proline-rich tyrosine kinase 2 (Pyk2) is a non-receptor tyrosine

kinase of the focal adhesion kinase (FAK) family. Our previous

study had shown that up-regulation of Pyk2 in tumor tissues of

HCC patients is significantly associated to poor prognosis [14].

Moreover, forced overexpression of Pyk2 in HCC cells promotes

cell proliferation, invasion and migration via the activation of the

c-Src and ERK/MAPK pathways which can be attenuated by

forced overexpression of its C-terminal non-kinase region

(PRNK)[15]. Furthermore, Pyk2 up-regulates the formation of
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lamellipodia and actin stress fiber polymerization of HCC cells

[15]. However, the underlying mechanism of Pyk2 on regulation

of cell transformation and motility of HCC cells is poorly

understood. Recently, some of the signaling molecules associated

with Pyk2 (Hic-5 and STAT5b) have been reported to promote

EMT [16,17]. Therefore, it is valuable to investigate the effect of

Pyk2 on regulating these molecular in the process of cell

transformation of HCC cells.

Hydrogen peroxide inducible clone-5 (Hic-5) is a 55 kDa

protein that serves as an adaptor protein in focal adhesion and

possesses the ability to translocate to the nucleus, where it acts as a

transcription factor [18]. It maintains the general structure of

paxillin with 4 N-terminal LD motifs and 4 C-terminal LIM

domains [19,20]. The LIM domain of Hic-5 is able to bind with

DNA fragments in a zinc-finger-dependent manner in vitro,

suggesting its possible role as a transcription factor [21]. Pyk2

can physically interact with Hic-5 and subsequently phosphorylate

Hic-5 [22]. It has been reported that activated Pyk2 phosphor-

ylates Hic-5 at tyrosine residue 60 resulting in up-regulation of

LPA-mediated cell migration and the induction of EMT through a

RhoA/ROCK-dependent pathway [17,23,24]. So far the inter-

action between Pyk2 and Hic-5 in HCC is still unknown.

STAT5b belongs to the Signal Transducers and Activators of

Transcription (STAT) family which are activated by cytokines and

transcription factors via its dimerization and nuclear translocation.

They are involved in a variety of cell processes including cell

proliferation, cells survival and differentiation [25,26,27]. STAT5b

has been reported to promote EMT in HCC by the transforma-

tion of HCC cells into an aggressive phenotype. It has been shown

that the activation of STAT5b is closely associated with the X

protein of the Hepatitis B virus [16].

In this study, we hypothesize that Pyk2 transformed HCC cells

to a fibroblastoid phenotype through regulation of genes

associated with EMT. To validate the hypothesis, Hep3B cells

were stably overexpressed with full length Pyk2 and MHCC97L

cells were stably transfected with PRNK to suppress the Pyk2

activation. The gene expression profiles associated with EMT

(Hic-5, STAT5b, E-cadherin, Twist, N-cadherin, fibronectin and

Rho GTP-binding proteins) were investigated.

Materials and Methods

Reagents, plasmids and antibodies
Platelet derived growth factor-BB (PDGF-BB) was purchased

from Calbiochem (Darmstadt, Germany). Lysophosphatidic acid

(LPA) was purchased from Sigma (St. Louis, MO, USA). Plasmids

pCDNA3-Pyk2 and pCDNA3-PRNK were gifts from Dr. Joseph

Loftus, Mayo Clinic Scottsdale, USA. pCDNA 3.1 (+) vector was

purchased from Invitrogen (Carlsbad, CA). Anti-E-cadherin, anti-

N-cadherin, anti-Twist and Anti-phosphotyrosine monoclonal

antibodies were purchased from Cell Signaling (Danvers, MA,

USA). Monoclonal antibodies against cytokeratin (AE1/AE3) was

purchased from DAKO (Glostrup, Denmark). Anti-STAT5b and

anti-fibronectin antibodies were purchased from Santa Cruz

(Santa Cruz, CA, USA). Anti-Hic-5 and anti-Pyk2 monoclonal

antibodies were purchased from BD Transduction Laboratory

(San Jose, CA, USA). Alexa fluor 488 goat anti-rabbit IgG and

goat anti-mouse IgG were purchased from Molecular Probes

(Carlsbad, CA, USA).

Cell culture, transfection and stable cell lines
Human HCC cell line Hep3B was purchased from the

American Type Culture Collection (Manassas, VA, USA) and

grown in DMEM medium containing 10% FBS, 2 mM L-

glutamine, and 100 units/ml streptomycin (Life technologies,

Carlsbad, CA, USA). Human metastatic HCC cell line

MHCC97L was a gift from Prof. Z.Y. Tang, Fudan University,

Shanghai, China. Stable transfectants MHCC97L-vector and

MHCC97L-PRNK has been reported previously. Hep3B cells

were stably transfected with full length Pyk2 or PCDNA 3.1 (+)

empty vector and maintained in DMEM medium supplemented

with 300 mg/ml G418 as described previously [15]. The

expressions of Pyk2 in the stable clones were confirmed by

Western blotting. One clone with the highest expression of Pyk2

was selected for further study.

Scanning electron microscopy (SEM)
Cells were seeded in 13-mm glass dishes and maintained in

serum-free DMEM medium supplemented with 10% FBS and

antibiotics G 418 (0.6 mg/ml for Hep3B cells and 0.2 mg/ml

for MHCC97L cells). To study the effects of Rho small GTPases

activation on cell transformation, the cells were further treated

with PDGF-BB (10 ng/ml) or LPA (1 mg/ml) for 10 minutes

before cell fixation. Cells were fixed with 2.5% glutaraldehyde

in 0.1 M sodium cacodylate-HCL buffer, pH 7.4, quenched

with 0.1 M sucrose/cacodylate solution and washed in caco-

dylate buffer. The samples were then post-fixed with 1% OsO4

in cacodylate buffer. After a cacodylate buffer wash, samples

were dehydrated through a graded series of ethanol washes,

followed by critical point drying using a Bal-Tec CPD 030 (Bal-

Tec AG, Liechtenstein). The samples were sputter-coated with a

thin layer of gold (Bal-Tec SCD005 Sputter Coater) and

visualized using a Leica Cambridge Stereoscan 440 SEM at an

accelerating voltage of 12 kV. Each experiment was repeated

for 3 times.

Activation assays for Rac1 and RhoA
Rac and RhoA activation assays were purchased from

Cytoskeleton (Denver, CO, USA). Hep3B transfectants were

serum-starved overnight prior to experiment. Cells were treated

with PDGF-BB (10 ng/ml) or LPA (1 mg/ml) for 5 minutes and

were then lysed with lysis buffer. Rac1 and RhoA pull-down assays

were performed according to manufacturer’s protocol.

Migration assay
Cells were trypsinized, counted and resuspended in serum free

DMEM medium. Around 50,000 cells were seeded on the upper

side of the migration chamber (BD, San Jose, CA, USA) with the

lower chamber supplemented with serum free DMEM medium or

with LPA (1 mg/ml). After 36 hrs cells that had penetrated

through the chamber were fixed and counted.

Immunofluorescence staining
The protocol for immunofluorescent staining has been reported

previously [15]. Briefly, cells were fixed and stained with anti-E-

cadherin, anti-Hic-5 and anti-STAT5b antibodies. The cells were

then labeled with alexa fluor 488 goat anti-rabbit IgG or goat anti-

mouse IgG and counter-stained with DAPI at 37oC.

Immunoprecipitation and Western blotting
Immunoprecipitation was performed on whole-cell lysates using

antibodies against Hic-5 and phosphotyrosine. The cells were

serum starved for 24 hours before stimulation with LPA for 20

minutes. Cell lysates were then incubated with anti-Hic-5 antibody

for 4 hours at 4oC. Immunoprecipitates were washed twice in ice-

cold lysis buffer. Immunoblotting was carried out as previously

reported [15].
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Statistics and data analyses
All data were expressed as mean 6 SD. Difference between

groups were calculated by one-way ANOVA analysis. A p,0.05

was considered statistically significant. Unless stated, all experi-

ments were repeated three times. Calculations were performed by

using the SPSS computer software version 12 (SPSS, Chicago, IL).

Results

Pyk2 promoted formation of membrane ruffles
Forced overexpression of Pyk2 in the non-metastatic HCC cell

line Hep3B (Hep3B-Pyk2 cells) enhanced the formation of

lamellipodia and membrane ruffles upon stimulation by PDGF-

BB or LPA compared to control Hep3B-vector cells (Fig. 1A).

Suppression of Pyk2, by overexpression of PRNK domain, in the

metastatic MHCC97L cells (MHCC97L-PRNK cells) reduced the

formation of membrane ruffles, as compared to the MHCC97L-

vector control (Fig. 1B) in presence of PDGF-BB or LPA.

Migration assay demonstrated that Hep3B-Pyk2 exhibited a

significant increase of LPA-induced migration than Hep3B-vector

(p,0.05, Fig. 1C). Suppression of Pyk2 activation by PRNK

significantly down-regulated the cell migration in MHCC97L-

PRNK cells as compared to the vector control (p,0.05, Fig. 1C).

To elucidate the contributing mechanisms to the increase of

membrane ruffles formation in Hep3B-Pyk2 cells, Rac1 and RhoA

pull-down assays were performed to study the effects of Pyk2 on

LPA-induced activation of Rac1 and RhoA. Significant up-

regulation of activated forms and baseline levels of Rac1 and

RhoA were found in Hep3B-Pyk2 cells compared to Hep3B-

vector cells (Fig. 1D). For MHCC97L cells, no activated Rac1 and

RhoA was detected in their cell lysates due to low baseline levels of

Rac1 and RhoA (data not shown).

Pyk2 down-regulated the expression of E-cadherin and
cytokeratin

The effects of overexpression of Pyk2 on the regulation of

epithelial genes E-cadherin and cytokeratin were investigated.

Result from immunofluorescent staining showed that Hep3B-Pyk2

cells had lower level of E-cadherin expression and localization on

the cell membrane as compared to the Hep3B-vector cells

(Fig. 2A). Weak positive staining (green) was present in the

Figure 1. Pyk2 promoted cell motility of HCC cells. (A) Overexpression of Pyk2 in Hep3B cells enhanced the formation of membrane ruffles
while (B) suppression of Pyk2 in MHCC97L cells reduced the formation of membrane ruffles under the stimulation of PDGF and LPA. White arrows
indicate the presence of membrane ruffles. (C) Effects of Pyk2 on cell migration of Hep3B and MHCC97L cells in presence of LPA. *, P,0.05. (D) The
effect of over-expression of Pyk2 on the activation of Rac1 and RhoA in Hep3B cells by Rac1 and RhoA pull-down assays. Total Rac1 and RhoA were
used as loading controls.
doi:10.1371/journal.pone.0018878.g001
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cytoplasm of Hep3B-Pyk2 cells, indicating the deactivation of E-

cadherin. Western blot analysis showed that the expression levels

of E-cadherin and cytokeratin were lower in Hep3B-Pyk2 cells

compared with that in Hep3B-vector cells (Fig. 2B). In

MHCC97L-vector cells with high baseline level of Pyk2, E-

cadherin expression was almost absent in the cytoplasm of the cells

(Fig. 2C). Transfection of PRNK in MHCC97L cells significantly

restored the expression of E-cadherin at cytoplasm and on cell

membranes (green, Fig. 2C). Western blot analysis showed that

suppression of Pyk2 activation by PRNK restored the expression

of E-cadherin and cytokeratin (Fig. 2D) in MHCC97L-PRNK

cells. These results confirmed the role of Pyk2 on down-regulation

of epithelial genes E-cadherin and cytokeratin.

Pyk2 activated Hic-5 and its focal adhesion localization
Inmmunofluorescent staining demonstrated that Hic-5 was

predominantly present in the cytoplasm and the cell membrane of

the Hep3B-vector cells in a dispersed pattern (Fig. 3A). Overex-

pression of Pyk2 promoted the membrane localization of Hic-5 in

Hep3B-Pyk2 cells. Interestingly, more positive Hic-5 signals were

present on the membrane and the peri-nuclear region in the

Hep3B-Pyk2 cells (Fig. 3A). To further confirm the up-regulation

of phosphorylated Hic-5 by Pyk2 overexpression, immunoprecip-

itation was performed to determine the presence of phosphory-

lated Hic-5 in cultured cells. The level of phosphorylated Hic-5

was up-regulated in Hep3B-Pyk2 cells, as compared to the Hep3B-

vector control (Fig. 3B). In MHCC97L cells, Hic-5 was frequently

localized on the membrane region as shown by the strong green

positive staining by IF (Fig. 3C). Suppression of Pyk2 activation in

MHCC97L-PRNK cells significantly down-regulated the mem-

brane localization of Hic-5 (Fig. 3C). Moreover, Western blot

result showed that suppression of Pyk2 resulted in the down-

regulation of phosphorylated Hic-5 in MHCC97L-PRNK cells

(Fig. 3D). These results confirmed the positive correlation between

the expression of Pyk2 and the degree of phosphorylation and

membrane localization of mesenchymal gene Hic-5 inside the cell.

PRNK down-regulated the expression and activation of
STAT5b

In Hep3B-vector cells with low endogenous expression of Pyk2,

green positive immunofluorescent staining of STAT5b was

localized in the nuclear region of the cells, indicating its activation.

Overexpression of Pyk2 did not significantly enhance the

activation of STAT5b because of its intrinsic activation in the

vector control (Fig. 4A). Western blot analysis showed that

overexpression of Pyk2 in Hep3B did not up-regulate the

expression of mesenchymal genes including STAT5b and Twist

(Fig. 4B). For MHCC97L-vector cells, STAT5b was predomi-

nantly localized at the nucleus. Activated dimerized STAT5b, was

present in the nucleus (green; Fig. 4C). Suppression of Pyk2 in

MHCC97L-PRNK cells resulted in a loss of nuclear staining of

STAT5b. Positive staining of STAT5b was observed in the peri-

nuclear region and the cytoplasm, but not in the nucleus (Fig. 4C).

Western blot analysis confirmed the down-regulation of STAT5b

Figure 2. Effects of Pyk2 on epithelial genes cytokeratin and E-cadherin. (A) Effects of Pyk2 over-expression on the localization of E-cadherin
in Hep3B cells. Positive staining of E-cadherin (green, white arrow) was present in the cytoplasm of the transfectants. (B) Over-expression of Pyk2
down-regulated the expression of cytokeratin and E-cadherin in Hep3B cells as shown by Western Blotting. (C) Forced expression of PRNK in
MHCC97L cells restored the expression of E-cadherin (green, white arrow) on the cell membrane and cytoplasm. (D) The expression of E-cadherin and
cytokeratin was increased upon suppression of Pyk2 in MHCC97L cells.
doi:10.1371/journal.pone.0018878.g002
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expression in MHCC97L-PRNK cells compared to that in

MHCC97L-vector cells (Fig. 4D). In MHCC97L cells, suppression

of Pyk2 activation by PRNK resulted in down-regulation of other

mesenchymal genes such as Twist, N-cadherin and fibronectin

(Fig. 4D).

Discussion

We previously demonstrated that the focal adhesion localization

is a major determinant for Pyk2 to carry out its function in HCC

cells [15]. In this study, the role and underlying molecular

mechanism of Pyk2 on transformation of HCC cells to undergo

EMT were investigated. Forced overexpression of Pyk2 in Hep3B

cells transformed the cells from an epithelial phenotype to a

migratory phenotype which is commonly acquired by cancer cells

to induce EMT leading to the increase of metastatic potential [28].

Enhanced formation of membrane ruffles and migration ability in

Pyk2-overexpressing Hep3B cells suggested the promoting effect of

Pyk2 on cell motility of HCC cells. Increased activation of Rac1/

RhoA in Hep3B-Pyk2 cells indicated that Pyk2 might promote cell

motility of HCC cells via regulation of Rac1/RhoA activity.

Suppression of Pyk2 in a metastatic HCC cell line MHCC97L

showing a repression of EMT and cell migratory ability of the cells

also indicated the importance of Pyk2 in regulation of cell motility

of HCC cells.

The constitutive expression of E-cadherin in both normal and

cancer cells may help to maintain adherence junctions and

subsequently decrease the cell’s capacity to invade or migrate

through the extracellular matrix [29,30]. E-cadherin is frequently

down-regulated during tumor progression. Loss of E-cadherin is

associated with increased tumorigenecity and metastasis of cancer

cells, providing a close correlation between metastasis and EMT

[31]. Down-regulation of E-cadherin is usually coupled with an

up-regulation of N-cadherin [32]. In this study, overexpression of

Pyk2 in Hep3B cells resulted in a down-regulation of E-cadherin

expression while suppression of Pyk2 by PRNK in MHCC97L

cells significantly up-regulated the expression of E-cadherin,

suggesting the important mechanism of Pyk2 on the regulation

of adhesiveness of HCC cell via regulation of E-cadherin

expression.

The transcription factor, Hic-5, plays important roles in

tumorigenesis and metastasis of human cancers including prostate

cancer [33] and breast cancer [34]. Hic-5 is also a crucial EMT

regulator of cancer cells [20,24]. Our results demonstrated that

overexpression of Pyk2 in Hep3B cells up-regulated the activation

of Hic-5 and its focal adhesion localization. Moreover, suppression

of Pyk2 activation in MHCC97L cells down-regulated the

membrane localization of Hic-5. Hic-5 is a Pyk2-binding protein

which is phosphorylated by Pyk2 at tyrosine residue 60 upon

physical interaction [22,23]. Given the role of Hic-5 on cell

Figure 3. Effects of Pyk2 on the phosphorylation and activation of Hic-5. (A) Pyk2 over-expression promoted the membrane localization of
Hic-5. Positive staining of Hic-5 (green, white arrow) was up-regulated in Pyk2 transfected Hep3B cells. (B) Effect of Pyk2 over-expression on the
phosphorylation of Hic-5 in Hep3B cells. (C) Suppression of Pyk2 by PRNK down-regulated the localization of Hic-5 (green, white arrow) on cell
membrane and (D) level of activated Hic-5 in MHCC97L cells.
doi:10.1371/journal.pone.0018878.g003
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transformation as reported by other investigators [17,24], it may

be one of contributing factors to the Pyk2-mediated cell

transformation in HCC. STAT5b and Twist have been reported

to promote aggressiveness and EMT of cancer cells in HCC

[16,35]. In this study, we demonstrated that Pyk2 also regulated

the expression of STAT5b and Twist in HCC cells, suggesting a

multiple regulatory roles of Pyk2 on EMT associated genes.

In this study, forced overexpression of Pyk2 in epithelial cancer

cell line Hep3B up-regulated the mesenchymal gene expression.

However, some of the mesenchymal genes were not up-regulated

in this study. This may be explained by the partial mesenchymal

characteristics of the Hep3B cells, which resulted in an

incomplete induction of EMT by Pyk2. In contrast, suppression

of Pyk2 activation in MHCC97L cells resulted in the down-

regulation of the expression a series of mesenchymal genes

including STAT5b, Twist, N-cadherin and fibroectin. These

results showed that Pyk2 regulated the expression of mesenchy-

mal genes and promoted the migratory characteristics of HCC

cells which can be attenuated by the forced expression of PRNK

to suppress Pyk2 activation. For cells with a mesenchymal

phenotype (MHCC97L cells), transfection of PRNK successfully

transformed the cells to an epithelial phenotype, with the down-

regulation of mesenchymal gene expression and up-regulation of

epithelial gene expression. E-cadherin was up-regulated with the

down-regulation of N-cadherin. The results showed that

suppression of Pyk2 by PRNK transformed the cells from a

mesenchymal phenotype, to an epithelial phenotype, by under-

going mesenchymal to epithelial transition (MET). These results

confirmed the involvement of Pyk2 in the regulation of EMT of

HCC cells.

Both EMT and MET are important processes in cancer

progression. The induction of EMT in cancer cells may enhance

their cell motility and invasiveness so that to facilitate the

development of metastasis [13,36]. Subsequently, circulating

tumor cells must undergo MET to initiate growth in a secondary

site [37]. Failure of MET induction in bladder cancer cells resulted

in micrometastasis, instead of secondary tumors, as shown by

experimental models [9]. Novel therapeutic strategies targeting the

MET process could be made to inhibit the development of cancer

metastasis by preventing secondary tumor formation. In this study,

we had shown that the process of both EMT and MET are

regulated by the alternation of Pyk2 activation. Overexpression of

Pyk2 in Hep3B cells resulted in the induction of EMT. On the

other hand, transfection of PRNK in MHCC97L cells resulted in

the induction of MET, suggesting that prevention of focal

adhesion by targeting of Pyk2 may transform HCC cells from a

mesenchymal phenotype to an epithelial phenotype. However, its

underlying mechanism is still unclear and thus considered to be

worthwhile for further study. Our previous study also demon-

strated that the suppression of Pyk2 by PRNK domain in

MHCC97L cells can suppress in vivo intrahepatic tumor growth

and venous invasion as well as extrahepatic lung metastasis [15].

Together, our data suggested the possible role of Pyk2 in the

regulation of EMT, MET and metastasis in HCC cells.

Our study demonstrated the important role of Pyk2 on

controlling cell motility of HCC cells through regulation of genes

Figure 4. Effects of Pyk2 on the activation of STAT5b. (A) Pyk2 over-expression did not increase activation of STAT5b in Hep3B cells (green,
white arrow). (B) Western blot analyses of protein level of phosphorylated STAT5b and Twist between Hep3B-vector and Hep3B-Pyk2 cells. (C)
Suppression of Pyk2 down-regulated the nuclear localization of STAT5b (green, white arrow) in MHCC97L cells. (D) Suppression of Pyk2 down-
regulated the phosphorylated STAT5b and other mesenchymal genes including Twist, N-cadherin and fibronectin analyzed by Western blot.
doi:10.1371/journal.pone.0018878.g004
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associated with both mesenchymal and epithelial transformations.

Targeting of Pyk2 should be a promising therapeutic strategy to

reduce HCC metastasis.
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