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Abstract

The routine prediction of three-dimensional protein structure from sequence remains a challenge in computational
biochemistry. It has been intuited that calculated energies from physics-based scoring functions are able to distinguish
native from nonnative folds based on previous performance with small proteins and that conformational sampling is the
fundamental bottleneck to successful folding. We demonstrate that as protein size increases, errors in the computed
energies become a significant problem. We show, by using error probability density functions, that physics-based scores
contain significant systematic and random errors relative to accurate reference energies. These errors propagate throughout
an entire protein and distort its energy landscape to such an extent that modern scoring functions should have little chance
of success in finding the free energy minima of large proteins. Nonetheless, by understanding errors in physics-based score
functions, they can be reduced in a post-hoc manner, improving accuracy in energy computation and fold discrimination.

Citation: Faver JC, Benson ML, He X, Roberts BP, Wang B, et al. (2011) The Energy Computation Paradox and ab initio Protein Folding. PLoS ONE 6(4): e18868.
doi:10.1371/journal.pone.0018868

Editor: Collin M. Stultz, Massachusetts Institute of Technology, United States of America

Received December 1, 2010; Accepted March 21, 2011; Published April 25, 2011

Copyright: � 2011 Faver et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financed by National Institutes of Health (http://nih.gov/) GM044974 and GM066689; National Science Foundation (http://www.nsf.gov/)
CHE-1011360; and National Center for Computational Sciences at Oak Ridge National Laboratory (http://www.nccs.gov/) contract DE-AC05-00OR22725.
Publication of this article was funded in part by the University of Florida Open-Access Publishing Fund. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: merz@qtp.ufl.edu

Introduction

A widely studied and yet largely unsolved problem in computational

biochemistry is the ab initio protein-folding problem – the prediction of

three-dimensional protein structure from an amino acid sequence

[1,2]. In recent years physics-based methods (those that explicitly

model inter- and intramolecular interactions of a chemical system),

combined with extensive conformational searches and sampling, have

been explored as a general solution to the problem. The basis of any

physics-based method used to study protein folding is the thermody-

namic hypothesis - that the biologically active (native) fold is a free

energy minimum [3]. This is the most widely used paradigm, although

there are a few known exceptions to the rule [4,5]. Molecular dynamics

(MD) simulations are commonly used to analyze the folding kinetics of

a protein using physics-based potentials, however the timescales needed

to fully simulate the folding processes of large proteins can be

prohibitively long [6,7,8,9]. Monte Carlo-based search and minimi-

zation techniques in conjunction with physics-based potentials are also

employed [10]. Unfortunately, these and other physics-based methods

have had difficulty in correctly predicting protein folds of chains longer

than 100 amino acids [11,12].

One proposed explanation for the failure of current methods of

physics-based folding of large proteins is that ‘‘the primary obstacle to de

novo protein structure prediction is conformational sampling’’ [13]. Indeed, the

high number of degrees of freedom makes it difficult to find the free

energy minimum of a large protein. However, based on evidence

from folding kinetics, a protein’s energy landscape may have some

predictable features in its overall shape. Levinthal noted that even

though large proteins have access to vast amounts of conformational

space, they transition from denatured states to folded states

surprisingly quickly, as if the protein only selectively samples the

available conformational space [14]. Based on this, it has been

inferred that a protein’s energy landscape is shaped like a high-

dimensional funnel with very many high-energy states surrounding a

deep global minimum (native state) [15,16]. Depending on the

protein, this funnel can have smooth or jagged slopes with variable

inclination, which determines the folding rate [17]. With this type of

folding landscape, the protein can easily ‘‘fall into’’ (perhaps after

overcoming local minima) the folded state from any of the unfolded

states without having to sample the entire energy surface. If the funnel

concept is an accurate model of protein folding energy landscapes,

then exhaustive conformational sampling should not be necessary,

but adequate sampling remains an important component of a folding

algorithm due to the likely presence of local minima in the energy

surface, especially for slower folding proteins.

While sampling clearly plays a significant role in the ultimate

solution to the ab initio protein folding problem, it is important not

to overlook the role energy functions play. Physics-based ab initio

protein folding attempts to calculate the relative free energies of

protein conformations and energetically separate mis-folded

structures from native ones. The typical foundation of physics-

based potentials used in ab initio folding studies is the classical force

field and its derivatives [18]. These are generally built in a

piecewise manner based on model systems representing interac-
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tions found in proteins and are then extended to full protein

systems. It has been assumed that the ability to accurately

represent small model systems will yield an accurate representation

of a full protein. That is, uncertainties in the energies of the model

systems of 61 kcal/mol are assumed to yield similar errors in the

energy of the much larger protein systems (see Figure 1) [19].

Moreover, it is generally thought that because force fields are

parameterized, they are largely subject to small random errors.

Paradoxically we show that (1) although physics-based score

functions yield small uncertainties for small model systems, these

uncertainties increase dramatically with system size and that (2)

most computational methods, even those that have been

parameterized, contain large systematic and random errors when

applied to macromolecules. Hence, we conclude that current

energy functions introduce such significant uncertainties into

physics-based folding exercises that improving accuracy in energy

computation is just as important as sampling in solving the ab initio

protein folding problem.

This point is clearly illustrated in recent studies of the Pin1 WW

domain carried out by two groups using two force fields of similar

construction, but with different parameter choices. Schulten and

co-workers attempted to fold Pin1 using the CHARMM force field

and long MD simulations (10 ms), but were unsuccessful [20]. This

was later shown to be due to issues with the force field utilized

[21]. However, recent long MD simulations (1 ms) of Shaw and

co-workers succeeded in folding Pin1 using a modified AMBER

force field (ff99sb) [22]. The forms of these two force fields both

trace their roots from the consistent force field of Lifson [18,23,24]

and co-workers and are similar in construction, but are

parameterized differently. This comparison shows the range of

uncertainty present in force fields, which can yield success or

failure, but the origin of this has not been well understood until the

present work.

The impact of our observation affects any method that attempts

to compute the total interaction energies of any macromolecular

process including: protein folding, protein-ligand docking, crystal

isomorph prediction, assembly of nanomaterials, and others. In a

previous study following our initial hypothesis [25], we applied

statistical error analysis to the problem of protein-ligand docking

[26]. In this study, it was observed that systematic and random

errors do indeed quickly accumulate throughout large interacting

chemical systems. For several of the score functions examined, the

overall error estimates in the total interaction energy exceeded the

experimental free energy of ligand binding. In the case of protein

folding, error accumulation is also expected to be significant due to

the high number of chemical interactions involved in a protein fold

[19].

Analysis of Error Propagation in Protein Folds
Errors inherent in a calculation or measurement can be

described as either systematic or random. Systematic errors are

predictable in both sign and magnitude, while random errors are

not predictable in sign or magnitude. Because of this difference,

systematic errors propagate as a simple sum, while random errors

propagate as the square root of sum of squares [27]. Propagated

systematic error is correctable, since it describes an overall

predictable shift in the measured value. Propagated random

errors are not easily correctable, and are measured and reported as

the accumulation of error from all random error sources. Large

random error is a characteristic of a very imprecise method of

measurement. In searching the energy surface of a protein for the

global free energy minimum, total error from all sources should be

minimized.

To illustrate the effects of error propagation on the protein-

folding problem, imagine a protein’s energy surface as a funnel

Figure 1. Example model systems used to build-up interactions in proteins. Accurate interaction energies for the model systems are
assumed to yield accurate global interaction energies for a folded protein.
doi:10.1371/journal.pone.0018868.g001
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surrounding the global minimum structure (folded state). In

general these surfaces are not smooth, but often contain many

local minima outside of the native state. If the folded protein has,

for example, 100 independent chemical contacts (e.g. van der

Waals interactions and hydrogen bonds between residues), and

each is computationally modeled to chemical accuracy (i.e., within

1 kcal/mol random error with respect to an experimental

measurement) [28], then random error propagation yields a total

error of 610 kcal/mol. This would imply that our hypothetical

computational model would have difficulty in distinguishing the

native state from any other state with overlapping error bars

within 10 kcal/mol. Thus our computational model may correctly

find several local minima, but if they differ in energy by less than

the error bar magnitudes, the position of the global minimum

(which is usually the native fold), could not be determined with

much certainty (see Figure 2). Dill realized the issue of error

propagation, leading him to suggest that a target of 0.1 kcal/mol

per amino acid would be an acceptable level of error for a protein of

100 amino acids yielding an overall random error bar of only

61 kcal/mol [19]. Given that each amino acid can have several

intramolecular contacts, each with an associated error, achieving

this level of accuracy is indeed a very challenging endeavor.

In our attempt to estimate and correct for errors in physics-

based energy scores used in protein folding, we have taken an

approach previously described by Merz [25]. Intramolecular

interactions involved in protein folds are broken down into

chemical fragments and associated with reference interaction

energies obtained using converged quantum chemical calculations

or experimental measurements, if available. Energies from more

approximate theories are then compared to the reference

interaction energies to form fragment-based error estimates.

Estimating the error of a series of these fragment-based

interactions contained within a protein fold and then propagating

these errors throughout all fragments in the fold yields an estimate

of the total error associated with a computed total energy for the

protein. The error is broken down into a systematic portion which

can be corrected for and a random portion which cannot, but can

be reported as an error bar.

It is important to remember that the thermodynamic principle

of protein folding applies to the free energy, not the interaction

energy (differences of total electronic energies) that we use here.

The total electronic energy of folding, DEfolding, is just one part of

the folding free energy, DGfolding, obtained using the master

equation for the computation of the folding free energy from a

fully unfolded reference structure [19].

DGfolding~DEfoldingzDHcorrection{TDSfoldingzDDGsolvation ð1Þ

Here DHcorrection represents enthalpic corrections to the electronic

energy, DSfolding is the entropy change of folding and DDGsolvation

is the difference in the solvation free energy of the folded and

unfolded states.

In order to reliably calculate the free energies of native and

nonnative protein folds, the errors associated with each term of

Equation 1 must be minimized. In view of this, our interaction

energy error estimates should be considered ‘‘best-case scenario’’

or lower-limit free energy error estimates because they neglect the

error coming from the enthalpy, entropy, and solvation energy

terms. Nonetheless, if the potential energy surface is not well

modeled this will impact the quality of any estimate of entropy

because a poor quality potential energy surface can have effects on

entropy estimates that can be difficult to predict (e.g., sampling of

non-physical states). To obtain a reliable estimate of the free

energy it is essential that DE be well reproduced to ensure the

quality of the DS estimate. While it is true that systematic errors in

the three remaining terms of Equation 1 may cancel favorably

with systematic errors in DE, this effect has not yet been studied in

detail. Random error estimates, however, will only increase with

the addition of terms with nonzero uncertainties.

Figure 2. Distortions in computed energy landscapes due to error propagation. If each microstate of a protein under study contains a
significant amount of error in its calculated energy (shown here as error bars), computed folding surfaces become distorted with respect to the actual
folding surface. This effect introduces difficulty in distinguishing between local minima on the folding surface and in finding the native folds of
proteins. This effect is magnified for especially large proteins with many intramolecular contacts contributing to their stable protein folds.
doi:10.1371/journal.pone.0018868.g002
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Our method of error analysis assumes that electronic interaction

energies are additive, even though free energies of interacting

fragments are not [19]. This approximation is supported by both

statistical mechanics [29] and isothermal calorimetry experiments

[30] involving protein-ligand interactions, but deviations from

additivity will impact the overall quality of our error estimates.

Nonetheless, it is very instructive to examine error estimates for

the DEfolding term because, within our model, we can compare any

physics-based score function to chemically accurate quantum

chemical methods providing reliable estimates of the magnitudes

of energy errors and their contribution to DGfolding. If the DEfolding

errors are small, their impact on the uncertainty in DGfolding will

be small; otherwise they will have a significant impact on the

accuracy of DGfolding and the ability to predict native protein folds.

Methods

Interacting Fragment Database Generation
In order to generate a reference database of fragment-based

interacting systems involved in protein folds, we examined a native

fold of ubiquitin (PDBID: 1UBQ) [31] in detail. After adding and

optimizing hydrogens in AMBER [32] with the ff99sb force field

[33], the structure was viewed using Chimera [34], which was used

to highlight van der Waals contacts and hydrogen bonds resulting

in a total of 42 of the former and 50 of the latter. Each resulting

fragment interaction was evaluated in terms of gas-phase

interaction energy using a number of different methods. In

generating these fragments, hydrogen ‘‘link atoms’’ were used to

replace the severed bonds with the remainder of the protein.

Energies were evaluated with the ff99sb force field [33], the

Generalized Amber Force Field (GAFF) [35], ff03 [36], AM1 [37],

PM3 [38], PM6 [39], PDDG [40], PM6-DH2 [41], HF, MP2,

B97-D [42], M06, and M06-L [43]. The ff99sb and ff03 force field

methods underwent an atomic charge scaling procedure to

produce correct net charges on the database fragments. This

was necessary because the sum of parameterized force field

charges on one fragment often did not equal the total charge used

when calculating electronic energy with a QM reference method.

Unless the force field charges are scaled properly, additional errors

due to the lack of charge conservation are introduced [44].

The ab initio quantum-based methods employed several basis

sets and included the counterpoise correction for basis set

superposition error. Møller-Plesset perturbation theory through

second order (MP2) with complete basis set extrapolations (CBS)

[45] from the aug-cc-pVTZ and aug-cc-pVQZ basis sets (hereafter

abbreviated as aXZ: X = D,T,Q) were used for most of the

reference values. Based on previous reports [46] and our

experience with error analysis on protein-ligand systems, the

coupled cluster method with single, double, and perturbative triple

excitations (CCSD(T)) CBS energies showed the largest improve-

ment from MP2/CBS for systems containing aromatic groups.

However, the present case contained no aromatic-aromatic

interactions and only eight total aromatic-nonpolar contacts.

Hence, CCSD(T)/CBS reference energies were computed (as

described in our previous work [26]) only for these fragments. The

addition of more protein molecules and specific interaction types

[47] to our reference database would further improve our ability to

estimate errors, but this is a time-consuming endeavor requiring a

large number of high-level quantum mechanical energy calcula-

tions [48].

The ff99sb and GAFF calculations were conducted with the

AMBER 11 suite of programs [32], and the ff03 energies were

calculated with the Schrödinger package [49]. AM1, PM3, PM6,

and PDDG energies were calculated with DivCon [50], and PM6-

DH2 energies were calculated with MOPAC2009 [51]. HF, MP2,

B97-D, M06, and M06-L energies were calculated with Gaussian

09 [52], and the CCSD(T)/CBS corrections used to generate

reference values were calculated with Molpro 2009 [53] and

NWChem 5.1 [54].

Results

A summary of the fragment-based interaction energy deviations

from reference energies is displayed in Table 1. The absolute

deviations from our reference data were fitted to Gaussian error

probability density functions with parameters m (mean error per

interaction) and s (standard deviation of the errors). The resulting

plots are presented in Table S1. The error distribution for B97-D/

TZVP is shown as an example in Figure 3. The fragments were

divided into two classes: nonpolar (van der Waals - blue) and polar

(hydrogen bonding - red) interactions. In the case of B97-D/

TZVP, the mean error, representing the correctable systematic

error, is 20.29 kcal/mol and 0.59 kcal/mol per interaction for

nonpolar and polar interactions, respectively. The variance,

representing random error, is 0.02 (kcal/mol)2 for nonpolar and

0.158 (kcal/mol)2 for polar interactions. Thus this computational

model has a relatively precise description of van der Waals

interactions with only a slight offset, but it has a wider distribution

of errors for polar interactions.

Table 1. Interaction Energy Error Statistics of the 1UBQ
Fragment Database.

Method mAll s2
All mVdW s2

VdW mPolar s2
Polar R-factora

GAFF 0.36 3.26 0.25 0.36 0.46 5.64 0.127

FF99SBb 0.73 4.04 0.12 1.27 1.22 5.83 0.170

FF03b 0.83 6.61 0.18 0.81 1.36 10.86 0.259

AM1 3.15 9.50 1.04 0.70 4.85 10.28 0.373

PM3 2.65 7.89 0.14 0.77 4.67 4.59 0.352

PM6 1.67 2.24 0.84 0.32 2.34 2.82 0.211

PM6-DH2 0.30 1.23 20.09 0.10 0.62 1.95 0.071

PDDG 3.21 16.23 20.62 0.90 6.30 7.48 0.484

HF/6-31G* 1.94 1.32 2.27 1.14 1.68 1.30 0.153

HF/aDZ 2.14 1.22 2.29 1.11 2.02 1.29 0.176

HF/aTZ 2.10 1.17 2.28 1.10 1.95 1.17 0.171

HF/aQZ 2.08 1.16 2.28 1.10 1.93 1.15 0.170

MP2/6-31G* 1.24 0.64 1.12 0.28 1.34 0.91 0.146

MP2/aDZ 0.48 0.16 0.21 0.01 0.69 0.19 0.061

MP2/aTZ 0.16 0.02 0.05 0.00 0.24 0.02 0.023

B97-D/TZVP 0.20 1.06 20.29 0.02 0.60 1.58 0.087

M06/6-31G* 0.75 0.42 0.63 0.12 0.85 0.64 0.104

M06/aTZ 0.73 0.16 0.57 0.08 0.85 0.19 0.090

M06-L/6-31G* 0.71 0.43 0.40 0.10 0.96 0.57 0.103

M06-L/aTZ 0.75 0.14 0.55 0.07 0.91 0.14 0.096

Mean and variance of interaction energy deviations (kcal/mol) from reference
energies (a mix of MP2/CBS and CCSD(T)/CBS) for the interacting fragment
molecules present in ubiquitin. The set of fragments was divided into 42 van
der Waals interactions and 50 polar interactions. The related plots are presented
in Table S1. a) The calculated R-factor serves as an analogy to the residual
minimized in crystallographic structure refinement. A desirable value of R-factor
would be less than 0.1. b) The force field- based atomic charge parameters were
scaled to yield correct net charge on each fragment system.
doi:10.1371/journal.pone.0018868.t001
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Estimation of Errors in Protein Folds
With this database of interaction energy errors in place, lower-

limit estimates of both systematic and random errors can be

obtained for protein fold energies. Along with calculating the

energy of a protein fold, an analysis of its interacting fragment

components can be made. By determining the interaction type, an

estimate for a fragment’s contribution to the overall error can be

retrieved from the database. The overall error is then propagated

as

ErrorSystematic~
X

i

Nimi ð2Þ

ErrorRandom~
X

i

Nis
2
i

 !1
�

2

ð3Þ

where i runs over all interaction types (e.g. polar, nonpolar) stored

in the database, Ni is the number of interactions of type i found in

the analyzed protein fold, and mi and si
2 are the mean error per

interaction and variance about the mean error for interaction type

i. Note that total systematic error depends on the number of each

type of interaction and thus will not exactly cancel when

comparing different protein folds, since the folds may have

different numbers of interaction types. The evaluated total

systematic error should be subtracted from the evaluated energy

and the evaluated total random error can be reported along with

the corrected energy value.

In the case of B97-D/TZVP for ubiquitin (Figure 3), by using

the appropriate error probability density functions we estimate the

total systematic error to be 17.3 kcal/mol and the random error to

be 8.9 kcal/mol. Hence, the estimated systematic error is

comparable to a typical folding free energy of a protein, but this

error can be corrected. Unfortunately, the remaining random

error is still a significant portion of a typical folding free energy.

Any other protein fold with a calculated energy within this

8.9 kcal/mol error bar should be considered indistinguishable

from the native fold by the computational method. The B97-D/

TZVP case represents a favorable example with small mean errors

and relatively tight error distributions (see Table 1 for other

examples), but it would be computationally intractable to use it to

study hundreds or thousands of decoys for a system of the size of

ubiquitin. More approximate and computationally accessible

methods yield higher estimated errors. For example, ff99sb yields

a systematic error of 66.0 kcal/mol and a random error of

18.4 kcal/mol. Such magnitudes of error bars are disturbing, since

any non-native structure lying within the 18.4 kcal/mol range

could not be distinguished from the native structure with ff99sb.

Furthermore, these error bars become even larger as larger

proteins with more molecular contacts are examined.

The magnitudes of these errors lead us to predict that current

physics-based scoring functions used in ab initio protein folding

studies can have total energy errors much larger than the folding

free energies of typical proteins. Hence, we conclude that accurate

energy computation and error reduction represents a major

stumbling block along with sampling in the achievement of an

ultimate solution to the ab initio protein-folding problem. However,

we are now in a position to correct for systematic errors, thereby

improving our computational outcomes.

Discrimination between Native and Decoy folds – the
Rosetta Decoy Set

In order to test our error hypothesis, we performed energy

calculations and error corrections on a portion of the Rosetta

decoy set, which contained 49 protein systems. Each one

comprised a crystal structure from the Protein Databank, 20

versions of the crystal structure that were relaxed with the Rosetta

score function, and 100 low energy decoys produced by Rosetta

[55]. The protein structures ranged from 50 to 146 residues in

chain length, so semiempirical QM calculations (utilizing modern

linear scaling methods) were feasible. Energies of all 5929 protein

Figure 3. Histogram and probability density functions describing errors in B97-D/TZVP absolute electronic interaction energies of
molecular fragments built from the native fold of ubiquitin.
doi:10.1371/journal.pone.0018868.g003
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structures were calculated with ff99sb, PM6, and PM6-DH2. The

ff99sb calculations were performed with the generalized Born

implicit solvent model, and the PM6 and PM6-DH2 calculations

used the COSMO solvent model in MOPAC. Each structure was

then analyzed for the number of nonpolar and polar interactions

and the corresponding energy was corrected according to the

appropriate error probability density functions. To measure

improvement due to energy corrections, three values were

monitored: EGAP, z-score, and EBO. The EGAP (energy gap)

was defined as the difference between the energies of the lowest

energy decoy and the lowest native structure. The z-score is the

ratio of the difference between the lowest native fold energy and

the average energy of all folds to the standard deviation of all fold

energies. EBO (error bar overlap) yields true if the native structure

is found to lie within the lowest energy error bar; otherwise it is

false.

The results for the Rosetta decoy set analysis can be found in

Tables S2, S3, S4, and will only be summarized here. By

measuring EGAP, improvements due to error corrections were

observed in 27, 36, and 31 of the protein datasets for ff99sb, PM6,

and PM6-DH2, respectively. By measuring z-scores, improve-

ments were seen in 38, 41, and 39 of the systems. The native

structures were found within the lowest energy error bar in 45, 49,

and 49 of the systems. Overall, systematic error correction offers

some benefit, but improvement was not uniform. We observed

that, while the magnitudes of energy corrections varied over a set

of decoys, that variation was small. That is, both native and decoy

folds had significant systematic errors, but the changes in relative

energies after error correction were usually small. The decoy set

for PDBID: 1H6Z, for example, had an average energy correction

of 51.365.2 kcal/mol for ff99sb, and the native structure had an

error correction of 56.9 kcal/mol. Although much of the

systematic error canceled when measuring EGAP, the improve-

ments due to error correction can still be significant compared to

folding free energies. This would especially be true if we had

included more non-native decoy folds in our analysis. The decoys

in this set are very native-like and have roughly the same number

of intramolecular contacts, leading to similar magnitudes of error

corrections. The difference in systematic errors between a native

structure and a partially unfolded structure is expected to be much

greater.

While systematic error can be estimated and removed, random

error in energy scores isn’t easily correctable and represents poor

precision in scoring functions. After energy corrections, the native

structure of 1H6Z was not the lowest energy structure with ff99sb,

but its corrected energy was found to lie within the lowest energy

error bar. This result highlights a main disadvantage of using a

method with large random error since the native and decoy folds

could not be distinguished due to overlapping random error bars.

To highlight the dependence of the total random error on system

size, we estimated the total random error of the 5929 protein folds

with the three scoring functions. The relationship is shown in

Figure 4. As we examine larger proteins, their potential energy

surfaces should become increasingly more distorted due to

increased random error in the energy functions, which can have

unpredictable effects on the free energy landscape.

Discussion

Folded proteins are characterized by numerous van der Waals

and hydrogen bonding interactions that need to be accurately

accounted for when using physics-based score functions. Even

small errors in calculated energies between interacting partners

within a protein quickly accumulate to produce large overall

uncertainties in calculated total energies. This effect of error

propagation distorts the calculated potential energy surface of a

protein in a very complicated way, and therefore alters the shape

of the folding funnel in ways that are difficult (if possible) to

predict. One is only able to distinguish protein folds by energy

when energy differences are larger than their individual error bars.

Figure 4. Dependence of random error estimates on chain length. Larger protein folds have more intramolecular interactions and thus larger
propagated random errors in evaluated total energies. This effect is expected to lead to difficulty in predicting the native folds of large proteins since
it leads to unpredictable distortions in the overall energy surface.
doi:10.1371/journal.pone.0018868.g004
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Rather than having few native-like structures at the bottom of the

folding funnel, it now should be extended to include any fold

within the lowest energy error bar at the bottom. The bottom of

the folding funnel may even be populated with non-native states

predicted to be native by the scoring function, with the true native

states higher in calculated energy but perhaps with error bars

overlapping with the incorrectly predicted native states.

Since the free energy difference between a native and denatured

protein fold can be on the order of 10–20 kcal/mol, the errors in

interaction energies of the magnitude predicted herein suggest that

we are a long way from computing energies between native and

decoy folds at a level of accuracy necessary to generally solve the

ab initio protein folding problem, especially as larger proteins are

examined.

We have presented and demonstrated the use of a method to

estimate the magnitude of errors in computed energies of proteins

and shown that these can be corrected for in part, thereby

improving results obtained from physics-based scoring functions.

Systematic error correction can be applied as an endpoint

calculation or it can be computed on the fly, for example, in

interactive protein folding gaming exercises [56]. In addition, the

generation of error probability density functions provides a

straightforward method of analyzing and comparing different

score functions in terms of their ability to accurately model

molecular interactions. The research outlined herein brings a new

level of sophistication to energy computation that has largely been

lacking in computational biology and chemistry, opening the door

for novel ways to compare and improve modern scoring functions

used in studying complex systems with large numbers of inter- and

intramolecular interactions.
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