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Abstract

Aims: The tendency to develop diabetic nephropathy is, in part, genetically determined, however this genetic risk is largely
undefined. In this proof-of-concept study, we tested the hypothesis that combined analysis of multiple genetic variants can
improve prediction.

Methods: Based on previous reports, we selected 27 SNPs in 15 genes from metabolic pathways involved in the
pathogenesis of diabetic nephropathy and genotyped them in 1274 Ashkenazi or Sephardic Jewish patients with Type 1 or
Type 2 diabetes of .10 years duration. A logistic regression model was built using a backward selection algorithm and SNPs
nominally associated with nephropathy in our population. The model was validated by using random ‘‘training’’ (75%) and
‘‘test’’ (25%) subgroups of the original population and by applying the model to an independent dataset of 848 Ashkenazi
patients.

Results: The logistic model based on 5 SNPs in 5 genes (HSPG2, NOS3, ADIPOR2, AGER, and CCL5) and 5 conventional
variables (age, sex, ethnicity, diabetes type and duration), and allowing for all possible two-way interactions, predicted
nephropathy in our initial population (C-statistic = 0.672) better than a model based on conventional variables only
(C = 0.569). In the independent replication dataset, although the C-statistic of the genetic model decreased (0.576), it
remained highly associated with diabetic nephropathy (x2 = 17.79, p,0.0001). In the replication dataset, the model based
on conventional variables only was not associated with nephropathy (x2 = 3.2673, p = 0.07).

Conclusion: In this proof-of-concept study, we developed and validated a genetic model in the Ashkenazi/Sephardic
population predicting nephropathy more effectively than a similarly constructed non-genetic model. Further testing is
required to determine if this modeling approach, using an optimally selected panel of genetic markers, can provide clinically
useful prediction and if generic models can be developed for use across multiple ethnic groups or if population-specific
models are required.
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Introduction

Diabetes Mellitus (DM) is a serious metabolic disorder,

characterized by defects in both insulin secretion and action.

The prevalence of the disease, which is becoming a major world-

wide health problem, is increasing rapidly [1]. As a result of

diabetes-associated metabolic dysregulation, many patients with

type 1 and type 2 diabetes (T1DM and T2DM) develop multi-

organ micro- and macro-vascular complications. These complica-

tions are the primary cause of kidney failure, adult-onset blindness

and non-traumatic leg amputations in the western world [2].

Thus, diabetes and diabetic complications, particularly nephrop-

athy, place an enormous burden on health care systems [3].

Although control of the abnormal metabolic state associated

with both types of diabetes has a major impact on the incidence

and severity of nephropathy, the propensity to develop this

complication is, in part, genetically determined [4,5]. As many as

25% of diabetic individuals will never develop clinical evidence of
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nephropathy regardless of metabolic control [As reviewed by 5].

Ethnicity plays an important role in the risk of developing diabetic

nephropathy as evidenced by some racial and ethnic minorities,

such as Pima Indians, Nauruan, Asian Indians, African-Americans

and Mexican-Americans, having an unusually high burden of the

disease [6,7]. Familial clustering of nephropathy also suggests a

strong genetic component to the risk of disease [8,9,10,11].

Quantitative measures for traits related to diabetic nephropathy

have exhibited moderate to high estimated heritability (h2): 0.30 to

0.44 for albumin-creatinine ratio (ACR) [12,13,14,15,16] and 0.36

to 0.75 for glomerular filtration rate (GFR) [14,17,18]. Further-

more, studies of identical twins suggest a genetic component in the

pathogenesis of nephropathy in T2DM, and less so in T1DM [19].

Over the last 20 years multiple studies have identified linkage

peaks in various regions of the genome or have demonstrated

associations between genetic variants in different genes and diabetic

complications, particularly nephropathy [20,21]. Taken together,

these studies clearly show that there is no single genetic factor that

has a major effect on risk of diabetic complications in the

population. Therefore, for risk prediction to be clinically useful, a

composite model is needed that estimates the combined effect of

‘‘conventional’’ risk factors and genetic variants in multiple genes

coding for proteins acting alone or interacting with each other [22].

The probability of identifying meaningful gene-gene interac-

tions may be enhanced by selecting genes in well-defined

metabolic or functional pathways that are thought to be important

in the pathogenesis of the disease. For this reason, we selected

genes associated with 4 metabolic pathways that are thought to

play an important role in diabetic nephropathy. The methionine

metabolic pathway was selected since, in addition to the potential

direct cellular toxicity of high homocysteine (HCY) levels,

nephrotoxicity can be caused through different mechanisms

activated by this pathway including thrombotic effects and

vascular damage [23]. The adiponectin pathway was selected

since adiponectin levels vary in different diabetic complications

making it and the genes that are responsible for its control,

potentially important in the pathogenesis of nephropathy [24].

The renin-aldosterone pathway was selected since it is responsible

for the blood pressure regulation, which in turn influences renal

damage [25,26,27]. Finally, the AGEs (advanced glycation end

products) pathway was selected since AGEs production and

oxidative stress play an important role in the development of

complications [28]. Cytokines such as CCL5 (chemokine (C-C

motif ligand 5), also known as RANTES, bind to their receptors in

renal tissue and cause macrophage activation [29,30,31].

In this study, we selected a panel of single nucleotide

polymorphisms (SNPs) from these 4 major pathways that were

previously found to be associated with risk of diabetic nephropathy

in multiple populations. After determining which of these SNPs

approach nominal association with disease in our population, we

Table 1. Clinical and demographic characteristics of the subjects meeting all inclusion criteria and having DNA available for
genotyping.

Primary Population Replication Population

Between
Population
p3

Nephropathy1
No
Nephropathy p2 Nephropathy

No
Nephropathy p2

Demographic Characteristics

Total number 556 (38.9%) 873 (61.1%) 296 (32.7%) 610 (67.3%) 0.00234

Male (%) 46.9 46.4 0.8278 52.7 44.8 0.0282 0.7019

Age5 62.6611.2 64.1611.4 0.0147 61.7614.9 58.3617.9 0.0026 ,0.0001

Age at DM Diagnosis5 42.7613.1 43.8612.6 0.1304 40.1617.7 38.7618.9 0.2045 ,0.0001

Ethnic background

Ashkenazi Jews (%) 69.4 71.6 0.4038 100 100 — —

Non-Ashkenazi Jews (%) 30.6 28.4 - -

Clinical characteristics

Years of DM5 19.868.6 20.368.8 0.3498 21.669.8 19.668.9 0.0032 0.5923

HbA1c (%)5 8.061.5 8.161.6 0.4553 8.5261.58 8.1261.45 0.0003 0.003

Hypertension (%) 65.1 63.1 0.6824 67.6 41.5 ,0.0001 ,0.0001

BMI (kg/m2)5 29.164.5 29.9 65.8 0.008 27.064.9 28.565.3 0.0607 ,0.0001

T2DM (%) 91.2 83.4 ,0.0001 75.3 64.4 0.0011 ,0.0001

Complications

Retinopathy (%)6 18.5 18.2 0.7776 58.8 24.6 ,0.0001 ,0.0001

CHD (angina, CABG, PCI or MI) (%)7 30.0 47.5 ,0.0001 37.5 27.5 0.0019 0.0007

1. Nephropathy = microalbinuria or proteinuria or end-stage renal disease (dialysis) due to diabetic nephropathy.
2. p value comparing Nephropathy and No-Nephropathy subsets of same population.
3. p value comparing total primary population to total Replication Population.
4. p value comparing prevalence of nephropathy in the 2 populations.
5. Age, age at DM diagnosis, years of DM, HbA1c, BMI are expressed in mean 6 SD.
6. Retinopathy = For primary population retinopathy defined as proliferative retinopathy or macular edema; For replication population retinopathy defined as
background or proliferative retinopathy or macular edema.
7. CHD = coronary heart disease, CABG = coronary artery bypass graft, PCI = percutaneous coronary intervention, MI = Myocardial infarction.
doi:10.1371/journal.pone.0018743.t001
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created a statistical model that takes into consideration each

variant and conventional risk factor alone and all possible two-way

interactions. This model predicted nephropathy in our initial

population, a finding that was replicated in an independent,

ethnically similar population ascertained in Israel.

Materials and Methods

Patient populations
Ethics Statement. This protocol was approved by the Ethics

Committees on Human Research in Hadassah-Hebrew University

Medical Center, Wolfson Medical Center and Soroka Medical

Center. Written informed consent was obtained from all participants.

Primary study populations. Patients with diabetes were

ascertained by the Israel Diabetes Research Group between 2002

and 2004 from 15 diabetes clinics throughout Israel. Primary

admission criteria were: (1) known diabetes (Type 1 or Type 2) for 10

or more years and (2) ethnic background, as defined by all 4

grandparents being either Ashkenazi or Sephardic-North African

Jewish. Blood samples and clinical data from 1946 patients were

collected. Of these, 534 samples were excluded for not fulfilling

inclusion criteria, insufficient clinical data or for technical reasons

such as insufficient or poor quality DNA. The clinical and

demographic characteristic of the remaining 1412 subjects whose

DNA was submitted for genotyping are shown in Table 1. Briefly,

the overall prevalence of nephropathy was 38.9%. The majority

of the patients had T2DM, which was somewhat more

common in the group with nephropathy (91.2% and 83.4% in the

nephropathy and non-nephropathy subsets respectively, p,0.001).

Most subjects in both groups were of Ashkenazi origin (69.4% and

71.6% respectively, p = 0.40). The patients with nephropathy were

slightly younger and thinner than those without nephropathy,

although duration of diabetes was not significantly different in the 2

groups. Of these patients, 138 were subsequently excluded because

of unsuccessful genotyping at one or more loci, leaving 1274 subjects

whose data were used for model construction.

Table 2. Genes/Pathways/SNPs studied.

Pathway Gene SNP rs_number MAF1
MAF
Cases

MAF
Contr.

Allelic Assoc.2

p = OR (95% CI)3
Logistic
Regress.4 p =

Vascular endothelial
function/damage
pathway

MTHFR 677C/T rs1801133 0.43 0.43 0.44 0.73 0.96 (0.83, 1.12) 0.63

1298A/C rs1801131 0.31 0.30 0.31 0.65 0.99 (0.84, 1.16) 0.87

MTR 2756A/G rs1805087 0.17 0.17 0.16 0.72 1.04 (0.85, 1.27) 0.69

CBS 1080C/T rs1801181 0.35 0.34 0.35 0.59 0.94 (0.79, 1.11) 0.46

1985T/C rs706208 0.40 0.40 0.39 0.87 0.99 (0.85, 1.14) 0.86

C699T rs234706 0.33 0.34 0.32 0.36 1.09 (0.93, 1.29) 0.28

844ins68 rs72058776 0.05 0.05 0.05 0.79 1.12 (0.78, 1.60) 0.54

HSPG25 HSPG2 A/C rs3767140 0.16 0.18 0.14 0.0066 1.31 (1.07, 1.61) 0.0085

NOS35 1917G/T rs1799983 0.23 0.21 0.24 0.0289 0.84 (0.70, 1.00) 0.0541

Adiponectin pathway PPARG Pro12Ala rs1801282 0.05 0.04 0.05 0.32 0.82 (0.56, 1.20) 0.30

ADIPOQ +45 T/G rs2241766 0.20 0.21 0.19 0.20 1.17 (0.97, 1.41) 0.10

+276 G/T rs1501299 0.31 0.32 0.31 0.59 1.02 (0.87, 1.20) 0.77

+712 G/A rs3774261 0.48 0.50 0.48 0.43 1.09 (0.92, 1.30) 0.33

-11391G/A rs17300539 0.11 0.12 0.11 0.36 1.09 (0.85, 1.38) 0.50

-11377 G/C rs266729 0.25 0.25 0.25 0.96 1.02 (0.86, 1.21) 0.84

ADIPOR1 -102 T/G rs2275737 0.47 0.46 0.48 0.44 1.07 (0.92, 1.25) 0.39

+5,843 A/G rs1342387 0.47 0.46 0.47 0.42 0.94 (0.81, 1.10) 0.47

ADIPOR25 +219 A/T rs11061971 0.48 0.51 0.46 0.0176 1.21 (1.04, 1.41) 0.0135

+33,447C/T rs1044471 0.47 0.45 0.48 0.10 0.88 (0.76, 1.03) 0.10

Renin pathway AGT M235T rs699 0.43 0.44 0.43 0.51 0.96 (0.82, 1.12) 0.57

ACE I/D rs4304 0.36 0.36 0.35 0.55 0.96 (0.82, 1.13) 0.61

AGTR1 A116C rs1064536 0.30 0.29 0.31 0.33 0.92 (0.78, 1.09) 0.32

AGER pathway AGER5 1704G/T Y18060 0.23 0.22 0.23 0.29 0.91 (0.75, 1.09) 0.30

G82S rs2070600 0.01 0.01 0.01 0.68 1.18 (0.62, 2.69) 0.69

2184A/G rs3134940 0.13 0.15 0.11 0.0049 1.35 (1.08, 1.69) 0.0079

CCL55 -28C/G rs2280788 0.01 0.02 0.01 0.0645 1.93 (0.99, 3.77) 0.0531

CCR5 -59029G/A rs1799987 0.47 0.45 0.48 0.16 1.11 (0.95, 1.30) 0.18

1. MAF = Minor allele frequency determined in this dataset.
2. p values for unadjusted association with nephropathy.
3. Odds ratios are given for the comparison between the rare and common alleles. CI denotes confidence interval.
4. p value for logistic regression analysis adjusting for age, sex, duration of diabetes and type of diabetes.
5. SNPs included in the model are shown in bold.
doi:10.1371/journal.pone.0018743.t002
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Validation study population. Ashkenazi patients with T1 or

T2DM from the Hebrew University Genetic Resource (HUGR)

collection (http://hugr.huji.ac.il/) were used as a validation dataset. Of

a total of 1639 patients available, only 906 fulfilled our inclusion

criteria, which included at least 10 years known duration of diabetes.

The prevalence of nephropathy in this dataset was somewhat lower

when compared to our initial dataset (32.7% vs 38.9%, p = 0.0023) as

was the prevalence of T2DM. Age at ascertainment, age at diagnosis

and BMI were slightly, albeit significantly lower in this dataset when

compared to the primary population (Table 1). The apparent marked

increased incidence of retinopathy in the validation population is due to

the fact that in this population the definition of retinopathy included

background retinopathy whereas in the initial population background

retinopathy was excluded from this diagnosis. Complete clinical and

genotype data required for analysis was available on 848 of these

patients.

Definition of nephropathy
For both the original and replication populations, nephropathy

was defined as the presence of microalbinuria (0.03-0.3 g/gr

creatinine), proteinuria (.0.3 g/gr creatinine) or dialysis in the

absence of any other unrelated renal disease.

Selection of genetic variants for analysis
The target candidate genes were selected according to

metabolic pathways thought to be important in the pathogenesis

of nephropathy (Table 2). A list of genetic variants within each

gene was generated based on previously reported associations with

nephropathy in other populations. This list was further restricted

using the haplotype structure of the Caucasian population (CEU)

in HapMap version 2 to avoid redundancy and to maximize

coverage of each gene. Thus, for some genes, SNPs previously

shown to be associated with nephropathy were excluded since they

were adequately represented by other SNPs in high LD (r2.0.8).

Genotyping
Twenty-seven variants in 15 different genes in the original

dataset were individually genotyped using either PCR-RFLP or

ABI TaqmanTM assays. The genotyping of the validation dataset

was carried out using the KASPar technology (a competitive

allele specific PCR-based assay) by KBioscience (http://www.

kbioscience.co.uk). Hardy-Weinberg equilibrium was evaluated

using a standard one degree of freedom, two-tail x2 test. The

genotype successful call rate for the whole replication set (cases and

controls) was 98.6% and no deviation from Hardy–Weinberg

equilibrium was observed (at p = 0.05). The concordance between

Taqman and KASPar-based genotyping was previously shown to

be .99.5% with an error rate of ,0.3%.

Statistical analysis and modeling
Between group comparisons. Continuous variables were

compared using the two-tailed t-test and are reported as

average6SD. Discrete variables were compared using the two-

tailed Fisher Exact Test.
Individual genotype association. After demonstrating that all

SNPs were in Hardy-Weinberg equilibrium, each of the 27 SNPs was

tested for association with diabetic nephropathy in an additive model

by multivariable logistic regression analysis adjusting for age, sex,

duration of diabetes and type of diabetes (Table 2). Five variants that

approached nominally significant association with nephropathy in the

primary dataset (uncorrected p value ,0.055) were genotyped in the

validation dataset. Analysis for association with nephropathy in the

validation dataset was performed as for the primary dataset.
Modeling. Before performing the logistic regression modeling,

we recoded the genotype results to avoid loss of information for either

heterozygotes or minor allele homozygotes and at the same time to

distinguish between them. For each SNP we split the genotype result

into two separate variables depending on the genotype result, the first

defined as equal to 1 if the result is heterozygote and equal to 0 in all

other cases (‘‘het’’ in Fig. 1 and Table 3), and the second defined as

equal 1 if the result is homozygous for minor allele and equal 0 in any

other cases (‘‘hom’’ in Fig. 1 and Table 3). The probability of

nephropathy was calculated using the equation:

P~
eazb0x

1zeazb0x

Where P is the probability of nephropathy, a is the intercept

parameter, b is the vector of regression parameters and X is a

matrix of the data.

Figure 1. The multifactorial model: ORs and 95% CI for different SNPs and interactions in the model (expressed in logarithmic
form). For the exact values see estimates in Table 3. All variables, single or interactions, contribute to the model significantly, but in different ways.
doi:10.1371/journal.pone.0018743.g001
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The model included 14 variables, the 5 SNPs recoded as described

above (9 variables, since rs2280788 has MAF = 0.01 to 0.02 and thus

no minor allele homozygotes) and 5 independent ‘‘conventional’’

nephropathy predictors: diabetes type, sex of the patient, age, duration

of diabetes and ethnicity. The model also allowed all possible

interactions of the second degree. The best logistic regression model

was chosen by the backward selection method. The final model

included variables and interactions that were significant on the Wald

Chi-square test as well as all variables included in the interaction terms

even if these did not reach statistical significance on their own [32].

Receiver Operating Characteristic (ROC) curves were generated. To

determine the impact of the genetic information on the final model,

the same procedure was repeated including only the five independent

‘‘conventional’’ variables, allowing for all possible interactions between

them. All statistical analysis was done using SAS version 9.1.

Model validation
The model was validated internally and externally. First, the

primary population was randomly divided into two groups,

consisting of 75% and 25% of the study population. The larger

group was used as a ‘‘training set’’ and the resulting model was

validated on the smaller ‘‘test set’’. Next, the model generated in

the primary population was applied to the independent validation

population of similar ethnic and environmental background.

Results

Association of individual variants with nephropathy
For 5 of the 27 SNPs, each representing one gene, nominal p-

values obtained for association between nephropathy warranted

inclusion in the model (Table 2). Although there were some

Table 3. Model parameters with and without genetic factors.

Parameter1 Analysis of Maximum Likelihood Estimates

Estimate2 Standard Error3 Wald Chi-Square4 Pr . ChiSq5

‘‘Full’’ model

Intercept6 0.4925 0.4222 1.3608 0.2434

ADIPOR2(het) 0.1353 0.2059 0.4317 0.5112

ADIPOR2(hom) 0.1572 0.2742 0.3288 0.5663

Age -0.0137 0.00556 6.0234 0.0141

AGER(het) -0.4843 0.3674 1.7379 0.1874

AGER(hom) 1.4179 0.5109 7.7038 0.0055

CCL5(het) 2.5223 0.6635 14.4493 0.0001

ADIPOR2(het) * CCL5(het) -2.9026 0.8759 10.9815 0.0009

YearsDM -0.00591 0.00980 0.3638 0.5464

AGER(het) * YearsDM 0.0332 0.0166 3.9693 0.0463

NOS3(het) -0.0251 0.1486 0.0286 0.8656

NOS3(het) * ADIPOR2(hom) -0.7647 0.3027 6.3811 0.0115

NOS3(hom) -0.3308 0.4004 0.6826 0.4087

NOS3(hom) * ADIPOR2(het) -1.3251 0.5876 5.0866 0.0241

NOS3(hom) * AGER(het) 1.4467 0.6326 5.2296 0.0222

Gender (fem) -0.6859 0.2393 8.2160 0.0042

ADIPOR2(het) *gender(fem) 0.7274 0.2947 6.0912 0.0136

ADIPOR2(hom) *gender(fem) 1.1368 0.3483 10.6493 0.0011

HSPG2(het) 0.8907 0.3650 5.9547 0.0147

HSPG2(het) * yearsdm -0.0383 0.0179 4.5697 0.0325

HSPG2(hom) 0.9661 0.3443 7.8708 0.0050

Typedm(T1DM) -0.1090 0.3517 0.0960 0.7567

Origin01(Ashk) -0.0615 0.1422 0.1870 0.6655

Typedm(T1DM) * Origin01(Ashk) -0.9075 0.4329 4.3960 0.0360

‘‘Conventional’’ model

Intercept6 0.2865 0.3116 0.8457 0.3578

Age -0.0103 0.00486 4.5265 0.0334

Typedm1 -0.7771 0.1864 17.373 ,.0001

1– The intercept and the predictor variables in the model. – see Statistical Analysis and Modeling section for description of how the variables were coded.
2– Binary logit regression estimates for the parameters in the model. In the logistic regression equation log[p/(1-p)] = a+bx where p is the probability that nephropathy
= 1, the estimate of each variable contributes to b.
3– Standard errors of the individual regression coefficients.
4– Test statistic; the squared ratio of the Estimate to the SE of the respective predictor.
5- The probability that a particular Chi-Square test statistic (1 df) is as extreme as, or more so, than what has been observed under the null hypothesis; the null
hypothesis is that all of the regression coefficients in the model are equal to zero. The numbers in the column are the associated p-values.
6– The logistic regression estimate when all variables in the model are evaluated at zero. In the above equation intercept contributes to the a-coefficient.
doi:10.1371/journal.pone.0018743.t003
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differences in allele frequencies among the different ethnic origins

(Ashkenazi, Sephardic or mixed); there are no differences in

complication incidence among these groups, and the p values for

the 5 SNPs remained essentially unchanged after adjusting for

ethnicity. Thus, these 5 SNPs were used for constructing the model

and for replication studies.

Model
The best-fit model retained 9 two-way interactions, 2 of the 4

‘‘conventional’’ variables (sex and age) and 3 of the 5 SNPs as

significant independent variables. In addition, 9 independent

variables that were included in the interaction terms but were not

independently significant were included in the model (Table 3).

The probability of nephropathy for each patient could be

calculated using the equation:

P neph~1ð Þ~eazb0X=(1zeazb0X ),

where : azb0X~0:4925z0:1353|1(ADIPOR2(het))z

0:1572|1(ADIPOR2(hom)){0:0137|Age{

0:4843|1(AGER(het))z1:4179|1(AGER(hom))z

2:5223|1(CCL5(het)){2:9026|1(ADIPOR2(het))|1(CCL5(het)){

0:00591|YearsDMz0:0332|1(AGER(het))|YearsDM{

0:0251|1(NOS3(het)){0:7647|1(NOS3(het))|1(ADIPOR2(hom)){

0:3308|1(NOS3(hom)){1:3251|1(NOS3(hom))|1(ADIPOR2(het))z

1:4467|1(NOS3(hom))|1(AGER(het)){0:6859|1(Gender(fem))z

0:7274|1(ADIPOR2(het))|1(Gender(fem))z1:1368|1(ADIPOR2(hom))|

1(Gender(fem))z0:8907|1(hspg2(het)){0:0383|1(hspg2(het))|

YearsDMz0:9661|1(hspg2(hom)){0:1090|1(typedm(T1DM)){

0:0615|1 Origin01 Ashkð Þð Þ{0:9075|1(typedm(T1DM))|1 Origin01 Ashkð Þð Þ

The individual contribution of each of the significant single or

interaction terms is shown in Figure 1. The C statistic was 0.672,

indicating this model has reasonably good predictive ability

(Figure. 2A).

To determine the impact of the genetic data on the model, we

repeated the analysis using only the ‘‘conventional’’ variables (age,

duration of diabetes, diabetes type, sex and ethnicity). In this case, the

best model preserved only 2 conventional variables (age and diabetes

type) and no interactions (Table 3). For this model, the C statistic was

considerably lower (C = 0.569) indicating that the genetic data

improved prediction over the conventional model (Figure 2A).

Model Validation
The primary population of 1274 individuals was divided

randomly into 2 unequal groups. The same model was rebuilt

on the larger group consisting of 75% of the population (training

set). The model showed a similar predictive ability when compared

to the original one (C = 0.678) (Figure 2B). The ORs estimates of

each variable in the rebuilt model were similar to and in the same

direction as those in the original model. The model was then tested

on the remaining 25% of the population and demonstrated similar

predictive ability (C = 0.630) (Figure 2B).

A second validation experiment was performed on an indepen-

dent population, also ascertained in Israel, but from a more

restricted ethnic background (Ashkenazi Jews only). Although the

ROC curve in the replication independent dataset was somewhat

lower than that in the original dataset (Figure 3), we further

evaluated the strength of our model, by testing it for association with

nephropathy at two probability cut-offs; one corresponding to the

minimal total type I and type II errors and the other corresponding

to equal errors of both types (Figure 4). The model, which contains

both the genetic and the conventional predictive variables, was

associated with nephropathy in this population when the minimum

error cut-off was used (x2 = 17.79, p,0.0001), whereas the

‘‘conventional model’’ was not (x2 = 3.27, p,0.071; Table 4). The

association of the model with nephropathy using the equal error cut-

off gave similar results (data not shown).

Discussion

In this proof-of-concept study, we demonstrate that incorpora-

tion of multiple genetic variants, conventional risk factors and their

two-way interactions into a logistic model enhances our ability to

predict diabetic nephropathy.

Variants were selected based on previous publications that

demonstrated significant association with diabetic nephropathy, in

most cases in multiple populations of various ethnic groups.

Figure 2. Receiver Operating Characteristic (ROC) curves in the original population. A. Predictive ability of the full and ‘‘conventional’’
models in the original population. ROC Curve and area under the curve (C Statistic) for ‘‘full’’ model (solid line; C = 0.672) and for the ‘‘conventional’’
model (dotted line; C = 0.569). B. Validation of the model on original population. The ROC Curve and area under the curve (C Statistic) for the model
built on 75% of the original population (solid line; C = 0.678) and applied to the remaining 25% of the population (dotted line; C = 0.630). The
diagonal line indicates zero predictive value of model.
doi:10.1371/journal.pone.0018743.g002
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Therefore, although none of these SNPs had been tested in the

Ashkenazi or Sephardic Jewish populations, the prior probability

that at least some would be associated with nephropathy in our

population was high. We observed significant or nearly significant

association with nephropathy for 5 of the 27 SNPs tested. While

none of these survived Bonferroni correction for multiple testing

(alpha,0.002), the probability of at least 5/27 loci being

significant at the 0.05 level by chance is 0.01.

Figure 4. Graph of type I vs type II error. The solid line indicates the false positive rate (FP, error type I), the dashed line the false negative rate
(FN, error type II) and the dotted line represents the sum of false positive and false negative rates at each probability level. The minimal errors sum is
0.7427 with probability of 0.3368.
doi:10.1371/journal.pone.0018743.g004

Figure 3. ROC Curve and area under the curve (C Statistic) for the ‘‘full’’ model in the replication dataset (dotted line; C = 0.576). The
ROC curve and C statistic for the same model in the original population (see Figure 1A) is shown for comparison (solid line).
doi:10.1371/journal.pone.0018743.g003
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Our finding that only 5 of these 27 SNPs replicated in our

population is expected for several reasons. First, our primary

population was modest in size and therefore power (e.g. less than

80% power to detect association with a SNP with an OR ,1.36,

minor allele frequency of 50% and alpha = 0.05). Furthermore,

although most SNP selection was based on studies in European

Caucasians, of which the Jewish populations are considered sub-

groups, significant genetic differences between these populations

have been demonstrated [33,34,35]. Finally, some SNPs were

selected based on studies in Japanese [36], African-American and

Scandinavian (Finnish, Swedish) populations, which are likely to

differ considerably from the populations studied here.

The conventional variables that were used for adjustment to

estimate the main effect of the SNPs were age, sex, ethnicity,

diabetes type and duration. Glycemic control was not included

since HbA1c at time of ascertainment is not expected to accurately

reflect overall glycemic insult to the kidneys and historical data was

not available. We did not include hypertension as an independent

predictor because there is a reciprocal relationship between the

hypertension and nephropathy, so that hypertension increases the

risk of nephropathy, while nephropathy itself can cause hyperten-

sion. Thus, in this cross-sectional study, the presence of

hypertension could be the cause or the effect of nephropathy.

Furthermore, the goal of genetic prediction of disease is to identify

at-risk individuals before they develop co-morbidities such as

hyperglycemia and hypertension.

We then tested our hypothesis that a robust predictive model can

be generated by simultaneously taking into consideration multiple

variables as well as possible interactions between them. Though

variables that have no independent effect could interact together to

produce a significant effect, we elected to use a more conservative

approach and selected for our model only those SNPs that had a

nominally significant or nearly significant independent impact on risk.

There are different ways by which multiple variants, genetic and

‘‘conventional’’, can be combined to obtain a composite risk score.

Several investigators have utilized an allele counting method in

which each individual is ranked according to the number of risk

alleles she/he carries in a particular set of loci, sometimes

including factors that reflect the relative strength of the effect of

each SNP [37,38,39,40,41,42]. However, this method fails to take

Table 4. Model prediction based on minimum Alpha+Beta error.

min(Alpha + beta) (prob. = 0.3368)

Full model including SNPs Original population x2 90.74

p-value ,0.0001

Sensitivity 82.96%

Specificity 42.77%

Kappa 0.2265

75% training subset x2 63.56

p-value ,0.0001

Sensitivity 85.20%

Specificity 38.54%

Kappa 0.2136

25% test subset x2 14.69

p-value 0.0001

Sensitivity 82.18%

Specificity 39.45%

Kappa 0.1660

Replication population x2 17.79

p-value ,0.0001

Sensitivity 64.26%

Specificity 51.14%

Kappa 0.1319

min(Alpha + beta) (prob. = 0.3957)

Conventional model without SNPs Original population x2 16.9304

p-value ,0.0001

Sensitivity 64.55%

Specificity 46.54%

Kappa 0.1018

Replication population x2 3.2673

p-value 0.0707

Sensitivity 36.49%

Specificity 69.51%

Kappa 0.0601

doi:10.1371/journal.pone.0018743.t004
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into consideration any possible interactions. In order to overcome

this shortcoming, we created a logistic model that both takes into

consideration the relative contribution of each factor and allows

for two-way interactions. The resulting model utilized all 5 SNPs,

all ‘‘conventional’’ variables and two-way interactions.

The model that we produced predicted nephropathy with a C-

statistic of 0.672, which although not sufficiently high to be used

clinically, compares favorably with published predictive models for

T2DM and other complex disease [39,40]. In sharp contrast to

what was recently reported for T2DM [38,39], our model relies

heavily on the genetic component, in that removal of these factors

causes the C-statistic to drop markedly. It is highly likely that a

model based on a larger number of genetic variants will provide

much improved prediction of disease, although theoretical studies

suggest that predictive capability that will be of direct clinical

utility may not be possible [43].

To determine the robustness of our model, we performed 2

independent replication analyses. First, we randomly divided our

original population into two groups, a ‘‘training set’’ and a ‘‘test set’’

and showed that the model was robustly replicated in both subsets

without loss of power or sensitivity (Table 4). Our second method of

replication involved an independent, albeit ethnically related,

population ascertained in Israel. This population differed from our

initial population in that it contained only Ashkenazi Jews, as opposed

to 67.7% Ashkenazi in the original population. Furthermore, a larger

percentage of the replication population had T1DM and the patients

with T2DM were significantly younger. Although the sensitivity and

the C-statistic decreased, which is expected in a replication population

that this not identical to the original population, significant association

with nephropathy was still observed (x2 = 17.79, p,0.0001), providing

further support for the model. As expected, the ‘‘conventional’’ model,

lacking genetic factors, was not significantly associated with

nephropathy in the replication population.

Although we selected our candidate genes based on their

involvement in known metabolic pathways thought to be important

for the pathogenesis of nephropathy, thus hoping to enhance the

probability of finding significant interactions, the rest of the

modeling was performed without any intervention, with interactions

selected on the basis of statistical and not physiologic criteria.

Somewhat surprisingly, although our model did identify several

statistically significant two-way interactions, none of these was

expected based on a known physiological relationship. Interactions

that were identified by the model could point to the existence of

heretofore unknown functional relationships. In our model, the

strongest interaction appears to involve the ADIPOR2 and CCL5

variants. The CCL5 SNP natural log odds ratio estimate was 2.52

(Table 3), whereas ADIPOR2 did not show any contribution in the

model as an independent factor. However, in the framework of the

model, the effect of CCL5 SNP is entirely cancelled and even

reversed by the presence of the ADIPOR2 variant (-2.90). If this

statistical interaction does reflect a physiologic relationship between

these 2 genes, the mechanism is not evident. Thus, further studies

are needed to determine if this interaction represents a true

functional relationship and if so, how this impacts our understand-

ing of the pathophysiology of diabetic nephropathy.

In conclusion, by studying the association between a limited

panel of genetic variants and nephropathy risk, we developed a

robust multifactorial logistic regression model to predict nephrop-

athy in our study populations. This approach is unique since

conventional factors were included in the model and not used only

for adjustment, the impact of genetic and conventional factors was

weighted according to their effect and all possible two-way

interactions were allowed (genetic x genetic, genetic x conven-

tional, conventional x conventional). Increasing the number and

spectrum of variants tested would likely improve the predictive

strength of the model. Use of such multifactorial models, including

interactions, may pave the way to prediction of diabetic

nephropathy and other complex genetic diseases in other

populations. Our data in the replication population suggests that

some factors in the model may be ethnicity, age or disease type

dependent, indicating that the development of robust, highly

predictive models may require specific adaptation of the models to

different ethnic groups. They also suggest, however, that once a

model is developed for a specific ethnic group, it is likely that it can

be validly applied to individuals in other subsets of the same or a

closely related ethnic group, further suggesting that if a highly

predictive model could be developed it would be clinical useful.

The ability to accurately predict the risk of nephropathy could

impact the treatment approach on a patient-specific basis, thus

reducing costs and increasing efficacy of individual therapeutic or

preventive interventions. Furthermore, these findings may help

develop a better understanding of the pathophysiology of

nephropathy, thus leading to novel treatment approaches.
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