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Abstract

Background: Large scale and individual genetic studies have suggested numerous susceptible genes for depression in the
past decade without conclusive results. There is a strong need to review and integrate multi-dimensional data for follow up
validation. The present study aimed to apply prioritization procedures to build-up an evidence-based candidate genes
dataset for depression.

Methods: Depression candidate genes were collected in human and animal studies across various data resources. Each
gene was scored according to its magnitude of evidence related to depression and was multiplied by a source-specific
weight to form a combined score measure. All genes were evaluated through a prioritization system to obtain an optimal
weight matrix to rank their relative importance with depression using the combined scores. The resulting candidate gene
list for depression (DEPgenes) was further evaluated by a genome-wide association (GWA) dataset and microarray gene
expression in human tissues.

Results: A total of 5,055 candidate genes (4,850 genes from human and 387 genes from animal studies with 182 being
overlapped) were included from seven data sources. Through the prioritization procedures, we identified 169 DEPgenes,
which exhibited high chance to be associated with depression in GWA dataset (Wilcoxon rank-sum test, p = 0.00005).
Additionally, the DEPgenes had a higher percentage to express in human brain or nerve related tissues than non-DEPgenes,
supporting the neurotransmitter and neuroplasticity theories in depression.

Conclusions: With comprehensive data collection and curation and an application of integrative approach, we successfully
generated DEPgenes through an effective gene prioritization system. The prioritized DEPgenes are promising for future
biological experiments or replication efforts to discoverthe underlying molecular mechanisms for depression.
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Introduction

Major depressive disorder (MDD) is a complex disorder with

high prevalence and is the fourth leading cause of disease burden

worldwide [1]. The lifetime prevalence of depression ranges from

9.2 to19.6% worldwide [2–4], and heritability is estimated at

approximately 37–43% [5]. Over the last decade, many studies

have been devoted to dissecting the genetic influences of

depression using a variety of experimental designs and technolog-

ical approaches, including genomic-wide linkage scans, genetic

association studies, and microarray gene expression [6–12].

Several hypotheses have been proposed for the biological

mechanisms of developing depression based on prior evidence

[13–16], including monoamine-deficiency hypothesis, hypothalamic-pitui-

tary-cortisol hypothesis and other possible pathophysiological mech-

anisms (e.g. neurogenesis, abnormal circadian rhythms). Most

recently, genome-wide association (GWA) studies have been

applied to search for common susceptible variants and genes in

several thousands of samples, in turn generating new hypotheses

for the biological mechanisms of depression [7,9,10,17]. Massive

amounts of genetic data from numerous studies and sources have

been accumulated rapidly. Moreover, combining genetic infor-

mation in the regulatory pathway takes advantage of additional

biological knowledge that is not directly available from traditional

genetic studies. Results from each study are influenced by different

study designs, analytic strategies, ethnic populations, and sample

sizes. Thus, integrating depression genetic data and information

from individual studies, literature review, and biological pathways

in multiple resources may provide us list of evidence-based

candidate genes for future experimental validation. Such effort has

recently been shown in the study of other complex diseases but has

not been applied to depression yet.
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One common statistical method to combine results in several

studies is meta-analysis, which usually requires data generated by

the same design. Findings from various study designs and data

sources made it impractical to combine data directly using

rigorous statistical testing. Therefore, an alternative powerful

integration strategy is needed to combine genetic data from

different study settings and across species. Specifically, in

neuropsychiatric genetics, several approaches have been devel-

oped and applied to integrate genetic data for schizophrenia and

Alzheimer’s disease. Ma et al. [18] prioritized genes by combining

gene expression and protein-protein interaction data for Alzhei-

mer’s disease. Sun et al. [19] integrated multi-source genetic data

for schizophrenia by a data integration and weighting framework

in which the strength of evidence in different data categories is

considered and combined by appropriate weights. This approach

can be applied to other complex diseases where multi-dimensional

data is available. For some complex traits, efforts have been made

to integrate and organize data for better utilizing prior research

findings, such as a comprehensive and regularly updated

Schizophrenia Gene database (Schizophrenia Research Forum,

http://www.szgene.org/), an Ethanol Related Gene Resource

(ERGR) [20], and a review on the Human Obesity Gene Map for

diabetes [21]. In comparison, the progress of identifying biological

mechanisms, drug development, and strategies for effective

prevention and intervention in response to depression has been

relatively slow [22,23].

Similar to other psychiatric traits, very few significant variants

were found from GWA studies due to small effect size [24] in

depression, while many more candidate genes were examined in

individual genetic studies with inconclusive results. Additional

important genetic findings for depression were also derived from

mouse models. In the present study, we applied and modified the

approach of Sun et al. [19] to effectively integrate multi-

dimensional resources of genetic data in both human and mouse

studies. We aimed to build up an evidence-based candidate gene

framework for depression and used a gene prioritization system to

select a final set of depression genes (DEPgenes). We then

evaluated the performance of prioritization of DEPgenes by

examining the enrichment of small p-values in DEPgenes using a

depression GWA dataset and gene expression pattern in human

tissues. Our evaluation suggests that our evidence-based DEPgenes

might serve as a useful and promising gene source for investigators

to further explore the underlying pathophysiology and biological

mechanisms for depression.

Materials and Methods

2.1 Candidate genes collection and scoring system
Genetic data was collected from five data sources in human

studies and two in animal studies, including association studies,

linkage scans, gene expression (both human and animal studies),

literature search (both human and animal studies), and biological

regulatory pathways. We described the procedures below.

Candidate genes in association studies were searched via

published articles of individual studies and meta-analysis. López-

León et al. [25] conducted a meta-analysis for MDD and reviewed

183 genetic association studies prior to June 2007, which reported

125 susceptible genes for depression. Among them, 20 genes had

polymorphisms in at least three studies. We searched genetic

association studies for depression (including binary MDD

diagnosis published after June 2007, and measures of depressive

mood by validated scales) from NCBI PubMed database. We then

manually reviewed them and obtained information on positive or

negative associations. Six depression keywords were used. Other

than ‘depressive disorder’ for binary diagnosis, we included five

quantitative measures: ‘depression symptoms’, ‘Beck depression

inventory’, ‘Hamilton depression rating scale’, ‘center for

epidemiologic studies depression scale’, and ‘neuroticism’. As a

result, we found 141 publications covering 62 genes, all of which

were included in the above 125 susceptible genes list. We noticed

that there might have publication bias in collecting association

data (e.g. 32.8% genes with positive association results only). To

reduce possible impacts of publication bias in the study, we did not

use original significance level for genes in association studies;

instead, we defined a scoring system ranging from 0–4 in an

attempt to account for the lower chance of publishing negative

findings. We applied two criteria to assign a score for each gene:

the total number of studies conducted for a gene and the

proportion of positive results among those studies. It is more likely

to have an extreme proportion of positive results when the total

number of studies related to the gene is small (an extreme

example: only one study conducted for a gene and results showing

positive association, resulting in a proportion of positive results

equaling 1). Hence, we considered both criteria for scoring so the

proportion of positive results would not be largely inflated by non-

published negative findings. Each gene was given a score (noted as

Si) based on a cut-off for the combinations of the two criteria (see

Supplement Table S1 for scoring). A higher score was assigned to

a gene if the total number of studies for that gene was large and the

proportion of positive results was high. As a result, we had 125

genes with the assigned scores ranging from 0 to 4.

Recently, Harvey et al. [1] reviewed published linkage studies

from years 1995 to 2006 regarding mood disorders, and reported

26 genomic regions that showed strong linkage signals to MDD. In

addition, we searched individual genome-wide linkage studies in

the NCBI PubMed database that were published before 2010 and

were not included in Harvey et al. [1] for traits related to affection,

including ‘depressive disorder’, ‘bipolar disorder’ and ‘neuroticism’

to obtain extra linkage regions. Three articles [6,8,12] were found.

Because the resolution in linkage studies was usually low, and it is

not easy to define a confidence interval for each linkage peak

across many linkage studies, to identify candidate genes (using

Ensembl Build 56) in every linkage peak, we arbitrarily defined the

boundaries of each selected region by the position of the markers

giving the highest logarithm of odds (LOD) scores and extending

10 megabases in both directions. This resulted in a total of 3,628

genes in 33 chromosomal regions. These genes were assigned a

score of 1 if their corresponding LOD score ranged between 1 and

2, and the score increased by 1 with an increment of 1 LOD score

unit. A score 0 was assigned if the corresponding LOD score was

less than 1. Some studies only reported p-values; their 2log10p

values were used in such cases. If both LOD and p-values were

reported, scores for genes were decided based on the maximum of

LOD and 2log10p. In this data platform, the assigned scores for

candidate genes ranged from 0 to 4.6.

To collect gene expression data, we used the Stanley Medical

Research Institute online genomics database (SMRIDB). This

database collected 12 individual studies using postmortem human

brain tissues in 988 array-based expression analyses for depression,

schizophrenia and bipolar disorder (https://www.stanleygenomics.

org/, November, 2007) [26]. We downloaded the data from the

SMRIDB for depression and extracted genes whose p-values were

less than 0.05; this resulted in 301 genes scored from 0 to 4.6. Scores

of these genes were assigned by 2log10p. To extend the collection of

expression data, we additionally searched animal studies of gene

expression that examined depression-like behaviors in mice [11].

For these mouse genes, their human homologs were identified by

NCBI HomoloGene database (http://www.ncbi.nlm.nih.gov/

Prioritized Candidate Genes Set for Depression
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homologene). Similarly, scores of each gene obtained from animal

expression array were assigned by 2log10p. As a result, we had 252

genes scored from 0 to 5.6.

We also conducted literature searches to identify the relationship

between depression and genes, which may not be seen in other data

sources described above. It is also possible that genes identified by

literature search overlapped with previously identified candidate

genes, particularly in data sources of association and microarray

studies. Literature searches were conducted using the NCBI

PubMed database for the co-occurrence of two entries: a gene

name and a depression related keyword to identify their

relationship. Since some gene names are identical to meaningful

vocabularies (e.g. LARGE, CAT, CLOCK), we used the file

‘‘gene2pubmed’’ downloaded from NCBI-GENE ftp site (ftp://ftp.

ncbi.nlm.nih.gov/gene, June, 2010) to identify gene symbols. Six

terms (depression, depressive disorder, unipolar disorder, dysthy-

mia, major depression and major depressive disorder) were selected

as depression related keywords in human studies. We extracted the

unique identifier for a citation (PubMed identifiers, PMIDs) from

PubMed. If a gene and a keyword co-occurred in the same reference

citation, a hit was identified. Hence, a gene could be scored from 0

(no any hit with depression keywords) to 6 (with all six keywords). In

total, 473 genes were scored in human studies. Using the same

procedure, literature searches were conducted for mouse studies as

well. Six terms related to depressive behaviors in animal models

were selected, including forced swim test, tail suspension test, elevate

plus maze, novelty induced hypophagia, olfactory bulbectomy and

open field test (http://www.natureprotocols.com/2007/12/13/

animal_models_for_depressionli.php) according to a review article

of Hunsberger et al [27]. Similarly, the human homologs of the

mouse genes were identified. As a result, we had 306 genes scored

ranging from 0 to 4.

The collection of genes involved in depression-related pathways

was more subjective. Based on recent review articles [14,23,28]

that summarized regulatory pathways in relation to depression

using evidence from biological, molecular, and cellular mecha-

nisms, we identified genes that correspond to aforementioned

mechanisms, including monoamine-deficiency hypothesis (three

pathways), hypothalamic pituitary adrenal axis (four pathways),

and other possible pathophysiological mechanisms (five pathways);

details please see Supplementary Table S2. Candidate genes were

extracted for the 12 pathways via gene-pathway mapping on

KEGG (the Kyoto Encyclopedia of Genes and Genomes) database

[29,30]. We assigned a score of 3 to genes that are in the pathways

corresponding to the monoamine-deficiency mechanism, a score

of 2 for hypothalamic-pituitary-adrenal axis, and a score of 1 for

other possible mechanisms. If a gene belongs to more than one

mechanism, the greater score was chosen for this gene. We had a

total of 827 genes with scores ranging from 1 to 3.

2.2 Core genes and GWA dataset
In the candidate genes collection step, we obtained 5,055 genes

in total (see Supplementary Table S3). To prioritize these genes

according to existing evidence, we used two datasets—a core gene

set and a depression GWA dataset—to search for the optimal

weights for the seven data sources. Fourteen genes were selected

for the core gene set. Six genes (APOE, DRD4, GNB3, MTHFR,

SLC6A3 and SLC6A4) were based on a meta-analysis for MDD

[25], and 8 genes (BDNF, CREB1, GRM7, HTR1A, HTR1B,

HTR2A, MAOA and TPH1) were selected from other review

articles for MDD [13,22,23]. The GWA data for depression was

downloaded through the Genetic Association Information Net-

work (GAIN) (http://www.ncbi.nlm.nih.gov/sites/entrez?db=

gap). This MDD GWA data included 1,738 depression cases

and 1,802 controls in the Netherlands; a detailed description of

this GWA study was provided in Sullivan et al. [10]. A SNP (single

nucleotide polymorphism) was assigned to a gene if its location was

within the gene or 20kb upstream or downstream of the gene. The

smallest p-value among the SNPs mapped in a gene was chosen to

represent the association signal of the gene. This SNP-gene

mapping process resulted in 217,637 SNPs mapped to 15,735

protein-coding genes.

2.3 Gene prioritization and evaluation
A gene prioritization framework modified in Sun et al. [19] was

applied. A pre-weighting scheme, preWeight (0.5 to 1.5), to the

seven data sources was originally used to adjust for varying score

ranges across data sources (Supplement Table S1). A higher

preWeight for a platform represents the stronger evidence we

subjectively assigned. To check the robustness of the values given

in preWeight, a second set of preWeight (1 for every platform) was also

tested. We objectively defined the weighting scheme for data

sources (noted as Wi) to weigh their relative magnitude of

evidence. Hence, the prioritization system was applied to search

for the optimal weight matrix. Briefly, we generated a candidate

weight matrix pool consisting of dN = 87 weight vectors, where N

represents the number of data sources and d = N+1 represents

possible different weights (i.e. 1 to 8), respectively. The elements in

the weight matrix stand for association, linkage, human gene

expression, human literature search, regulatory pathway, animal

gene expression, and animal literature search, respectively. Each

element in a weight vector represents the strength of information/

evidence for a platform or data source. Then, a combined score

(summation of preWeight6Si6Wi) for each gene could be calculated

by summing over the products of the scores and corresponding

weights from seven data sources. If a gene shows evidence from

multiple data sources, the combined score for such gene would

expect to be higher than a gene only with weak evidence in one or

two data sources given the optimal Wi has been decided.

In the weight matrix selection step, for each weight matrix, all

the 5,055 candidate genes and the core genes were sorted together

by their combined scores. Two parameters, Q (proportion of core

genes) and g (proportion of candidate genes), were introduced to

select weight matrices. Matrices that fulfilled these threshold

criteria were retained (see Text S1) for the next evaluation step.

The depression GWA data was utilized to evaluate the

performance of each retained weight matrix. For each weight

matrix, the p-values distribution of the top j genes (denoted as the

prioritized set) and the randomly selected gene set from the GWA

data with size j (denoted as the random set) were compared using

the Wilcoxon rank-sum test. A significant p-value (p,0.05)

represents that the p-values distribution in the prioritized set is

more significant than in the random set. We generated 1000

random sets in this step for comparisons, and this procedure was

repeated 10 times to obtain standard deviation. For every weight

matrix, a combined score for each gene could be computed based

on the top j ranked prioritized gene set. A cutoff value to choose

DEPgenes was determined by a clear separation of combined

scores distribution between the core genes and the remaining

candidate genes. During these prioritization and evaluation steps,

a number of weight matrices passed our selection criteria as

candidates for the optimal weight matrix.

We applied three approaches to test the robustness of choosing a

specific weight matrix as the optimal one to select for DEPgenes

(Text S2). First, we selected ten weight matrices that passed

selection criteria to evaluate their performance using the GWA

dataset. Second, to investigate whether the rank of prioritized

genes obtained from each weight matrix was similar, pair-wise

Prioritized Candidate Genes Set for Depression
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comparisons for the ranks of prioritized genes among ten matrices

were calculated using Spearman’s correlation coefficients. A high

correlation on average in these comparisons would demonstrate

the effectiveness and robustness of this prioritization approach.

Third, we investigated the best matrices obtained from our core

gene sets with other two alternative core gene sets for the

robustness of our DEPgenes selection: core gene sets based on best

expression genes and candidate pathway genes. Finally, we

evaluated patterns of gene expression of the DEPgenes and non-

disease genes in human tissues. Non-disease genes were used as the

reference to compare with the DEPgenes. We retrieved human

protein-coding genes and 5,139 disease genes from the GeneCards

database (http://www.genecards.org/) and obtained a total of

15,874 non-disease genes. We then compared the gene expression

patterns between the DEPgenes and non-disease genes in 49

human tissues that were extracted from the WebGestalt Tissue

Expression (http://bioinfo.vanderbilt.edu/webgestalt/) [31] using

Wilcoxon signed-rank test. The proportion of the DEPgenes vs.

non-disease genes expressed in each tissue was computed.

Results

A total of 5,055 depression-related candidate genes were

obtained from seven data sources, including 4,850 genes in

human and 387 genes in animal studies, with only 182 genes

(3.6% = 182/5055) overlapping in both species. The percentage of

overlapping genes across data sources was low or moderate; it was

in a range from 0.3 to 24.8% (Supplementary Table S3), which

echoes the challenges we faced to dissect the genetic influences for

depression with commonly seen situations of non-replication and

inconclusive results. Not surprisingly, there were 12.7% (N = 60)

overlapping genes between search by human literature (473 genes

identified) and association studies (125 genes identified), indicating

a low redundancy between the two data sources (see Table S3).

In the prioritization procedures, too many weight matrices were

obtained in the nine sets of parameters (Q = 0.8, 0.85, 0.9, and g = 3,

4, 5%), and we listed only those that met our selection criteria in

Table 1. None of weight matrices passed our selection criteria when

Q equals to 0.8 and 0.85. Thirteen weight matrices were reported for

Q = 0.9 (one for g = 3% and thirteen for g = 4 or 5%) in Table 1.

Among them, four matrices, marked in bold, showed better

performance than all others with mean $950; they also had smaller

position j and l, and they were hence considered as candidates for

the optimal weight matrix (definition of j and l is provided in Text

S1). The weight matrix [2,1,1,8,1,1,7] had the highest mean value

of 963.9 (i.e. among 1000 comparisons, there were on average 964

times the selected prioritized gene sets had smaller p-value

distribution than randomly selected gene sets from GWA data). In

addition, the prioritized gene sets obtained by this matrix had high

proportion to exhibit small p-values (,0.05) in the GWA dataset

(Supplementary Figure S1). Thus, we selected matrix [2,1,1,8,1,1,7]

as our final weight matrix for the seven data sources to calculate

combined score for each candidate gene, which equals to (3, 1, 1.5,

4, 1, 1, 3.5) when multiplied the best matrix by preWeight. Notably,

the weights of three data sources (association studies and literature

searches for both human and animal studies) were high, indicating

the evidence from association studies and text-mining was more

informative than that of the other sources.

To examine the robustness of optimal weight matrix selection, nine

other weight matrices were selected with slightly different weight

combinations (also fit criteria of position j #200, position l #2500 and

mean $900). All ten matrices showed a very similar pattern in terms

of their p-values distribution of derived prioritized gene sets (see

Supplementary Figure S1). In addition, ranking of prioritized gene

sets generated by the ten matrices were highly correlated with each

other (mean correlation coefficients was 0.92), suggesting that the

DEPgenes selected for depression by the current gene prioritization

system are effective (see Supplementary Table S4). On the contrary,

without the procedure of selecting optimal weight matrix (i.e. use

[1,1,1,1,1,1,1] matrix), the resulting prioritized gene set had poor

performance with low proportion of small p-values (i.e. p,0.05) in

GWA dataset, indicating our weighting scheme for different data

sources is strongly recommended. Alternatively, we tested the optimal

weight matrices using the best expression and pathway genes as core

gene sets to find alternative sets of optimal weight matrices (see Text

S3). No any matrix passed our matrix selection criteria using

expression core gene set. For pathway core gene set, matrix

[6,2,1,8,7,1,8] was identified as the optimal matrix. Information

extracted from literature search and association studies is high that

was similar to results from original core gene set. There were 85 genes

overlapped between the DEPgenes and pathway-DEPgenes; 29 out

of 114 pathway-DEPgenes were not included in the original

DEPgenes and the average combined score of these 29 genes (9.39)

was much lower than the cutoff value of 15. These results revealed

comparable findings from different matrices used and our selection of

DEPgenes is robust.

The distributions of combined scores of the 14 core genes and the

5,055 candidate genes differed (see Supplementary Figure S2), and a

cutoff value of 15 for combined score was chosen to obtain good

discriminability in separating a core gene set from the total candidate

genes to select final DEPgenes. A total of 169 genes whose combined

scores greater than 15 were selected as DEPgenes (see Table 2). The

p-values distribution using the GWA dataset for the 169 DEPgenes

compared with the 5,055 candidate genes is displayed in Figure 1.

The DEPgenes had significantly higher probability (36.4%) to have p-

values less than 0.05 than the remaining candidate genes (26.5%)

using Wilcoxon rank-sum test (p = 0.00005).

The proportion of genes expressed in 49 human tissues for 169

DEPgenes compared with 15,874 non-disease genes is shown in

Supplementary Figure S3. Ten tissues exhibited expression

differences greater than 4%. Among them, seven tissues were

related to brain or nerve systems, including nervous (13.2%), brain

(11.1%), peripheral nervous system (10.8%), cerebrum (9.2%),

cerebellum (6.6%), eye (6%), and head and neck (4.2%), with the

direction that the DEPgenes tended to express more in brain or

nerve related tissues than non-disease genes.

Discussion

A wealth of genetic data accumulated in the past decade

regarding depression forms a special opportunity to uncover the

biological functions and molecular mechanisms underlying

depression through systematic data collection and integration.

Our approach to prioritize genes according to their evidence in

depression and using combined score to rank candidate genes for

depression not only creates a value-added gene database for

depression, but it also provides a list of candidates for future

exploration of biological functions among these DEPgenes. A few

existing databases have information on susceptible genes for

depression by literature mining or by review of prior publications,

such as HuGE navigator, to serve as a convenient searching

engine. However, without a proper weighting scheme for the

strength of evidence provided from different studies and data

sources, these databases are less informative for follow-up studies.

For instance, in HuGE Navigator (8 Feb 2011 version; http://

www.hugenavigator.net/HuGENavigator/home.do), we searched

gene information for depression and found 690 depression

candidate genes with scores ranged between 0 and 1.5. Using a

Prioritized Candidate Genes Set for Depression
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loose cutoff value of 0.01, we obtained 104 depression genes with

their scores.0.01. There are 45 out of 104 HuGE depression

genes not in our DEPgenes, with calculated mean combined score

of 6.6 below our cutoff of 15. Some well-known depression

candidate genes that do not have scores greater than 0.01 in the

HuGE genes are included in our DEPgenes, such as DBH,

CHRNA7, and GABRA3, which were all ranked in the top list of

DEPgenes. Without proper evaluation of weighting scheme, using

other search engines may result in omitting important information

for follow-up studies.

The list of the prioritized DEPgenes can be used for individual

replication and to further explore the biological roles of them in

depression using basic science approaches. The top seven

DEPgenes are DBH, BDNF, SLC6A4, NGFR, TNF, GSK3B, and

CHRNA7. The roles of these high-ranking DEPgenes in depression

were supported by review articles and empirical studies. For

instance, increased dopaminergic activity may play a primary role

in depression. Dopamine beta -hydroxylase (DBH) catalyses the

key step in biosynthesis of the neurotransmitter noradrenaline

from dopamine, and low DBH activity from a variety of brain

regions is a possible risk factor for developing depression [32,33].

Serotonin transporter (SLC6A4) and serotonin receptor (HTR1A,

the 13rd) genes are among the strongest candidates underlying the

etiology of depression [22,34]. A commonly prescribed medication

for treating depression is selective serotonin reuptake inhibitors

(SSRIs) (paroxetine, fluoxetine, sertraline), which acts to keep the

balance in the serotonin neurotransmitter system in the brain [35].

Brain-derived neurotrophic factor (BDNF) is a neuroprotective

Table 1. Selection of the optimal weight matrix by core genes and evaluation by the genome-wide association (GWA) p-values.

Parameter seta
Total number of
weight matrices

Number of weight
matrices met
criteriab Selection by core genes

Selection by GWA p-
valuesf

Q (%) g (%) Weight matrixc Position j d Positionl
e Mean sd

90 3 4,663 1 [2,1,1,8,1,1,7] 150 1053 966.6 5.4

4 11,916 13 [2,1,1,8,1,1,7] 150 1053 963.9 4.1

[2,1,1,8,1,1,8] 153 738 933.8 5.5

[3,1,1,8,1,1,7] 153 1054 952.6 7.2

[3,1,1,8,1,1,8] 155 738 930.2 9.4

[4,1,1,8,1,1,7] 157 1054 948.2 7.2

` [4,1,1,8,1,1,8] 159 739 922.2 9.3

[5,1,1,8,1,1,7] 157 1054 944.2 4.5

[5,1,1,8,1,1,8] 159 739 928.7 6.5

[6,1,1,8,1,1,7] 159 1054 949.4 8.1

[7,1,1,8,1,1,7] 159 1054 952.4 7.1

[8,1,1,8,1,1,7] 159 1054 955.3 7.5

[7,1,1,6,1,3,7] 159 1159 922.3 12.7

[8,1,1,6,1,3,7] 159 1159 927.4 6.2

5 20,285 13 [2,1,1,8,1,1,7] 150 1053 963.0 5.4

[2,1,1,8,1,1,8] 153 738 931.9 10.5

[3,1,1,8,1,1,7] 153 1054 955.2 8.4

[3,1,1,8,1,1,8] 155 738 931.1 6.5

[4,1,1,8,1,1,7] 157 1054 942.9 9.6

[4,1,1,8,1,1,8] 159 739 925.3 7.4

[5,1,1,8,1,1,7] 157 1054 945.2 9.6

[5,1,1,8,1,1,8] 159 739 925.0 10.6

[6,1,1,8,1,1,7] 159 1054 948.9 4.1

[7,1,1,8,1,1,7] 159 1054 956.0 5.8

[8,1,1,8,1,1,7] 159 1054 951.2 7.9

[7,1,1,6,1,3,7] 159 1159 922.2 8.9

[8,1,1,6,1,3,7] 159 1159 921.7 17.6

Note:
aQ and g denote threshold proportion in the core gene set and the candidate gene set.
bSelection criteria: position j#160, position l#1200 and mean$900. Definition of j and l is shown in footnote d and e below. The weight matrices with mean §950

marked in bold.
cWeight matrix is ordered by vassociation, vlinkage, vexpression_human, vliterature_human, vkegg, vexpression_rat, vliterature_animal.
dPosition j represents the position of the Q-th core gene locates in the g-th top ranked candidate genes.
ePosition l represents the position of the last core gene locates in the ranked candidate genes.
fMean: total number of random subsets having significant different p-value distribution from the top ranked candidate genes (Wilcoxon rank-sum test, p,0.05); sd:
standard deviation.

doi:10.1371/journal.pone.0018696.t001
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protein which alters the balance of neurotoxic and neuroprotective

responses to stress by preventing hippocampal cells from damage

and is suggested to be associated with depression [23,36]. The

nerve growth factor receptor (NGFR) encodes the affinity and

modulates the activity of tyrosine kinases for neurotrophin family,

and plays a potential role in ligand binding and signaling. The

NGFR was reported to have protective effect against the

development of depressive disorder [37]. The tumor necrosis

factor (TNF) plays roles in altering neural-immune interactions,

including levels of proinflammatory cytokines, increased pain

sensitivity and elevated inflammatory activity [38]. Prior evidence

supports that the development of depression is related to the levels

of proinflammatory cytokines TNF-a and to interleukin-6 (IL6, the

33rd) in the brain [38–40]. Glycogen synthase kinase 3 beta

(GSK3B) is an enzyme involved in energy metabolism and

neuronal cell development, which are processes related to

depression [36]. The GSK3B plays an important role in the action

of mood stabilizer [41]. Lastly, the a7 neuronal nicotinic

acetylcholine receptor subunit gene (CHRNA7) is a cholinergic

receptor, which has been reported to be associated with a sensory

deficit in common mental illness [42] and neurochemical changes

in depression-like behavior [43]. Comparison of gene expression

patterns of the DEPgenes with non-disease genes in human tissues

exhibited high expression proportion among the DEPgenes in

human brain or nerve related tissues. This is in accordance to the

neurotransmitter action, which refers to the chemical message to

influence intellectual functioning and behavior, and theories of

neuroplasticity, which refers to the ability of learning to change

through experience in human brain. Both expressions have been

suggested to underlie the risk for depression [44].

Table 2. The 169 DEPgenes with combined score$15.

Gene
Combined
score Gene

Combined
score Gene

Combined
score Gene

Combined
score Gene

Combined
score

DBH 47.74 TPH2 28.50 NOS1 21.94 ANXA2 18.07 TSNAX 16.41

BDNF 46.52 CRH 28.03 PRKACA 21.93 GNB3 18.04 TFCP2 16.39

SLC6A4 46.29 ACCN2 27.79 GFAP 21.87 ADRB1 18.03 CYP2C19 16.39

NGFR 46.04 ESR1 27.67 IL1B 21.86 POMC 18.01 GRIA1 16.36

TNF 43.61 ACSL4 27.58 HTR2C 21.72 NOS3 18.00 FMR1 16.35

GSK3B 40.25 SLC6A3 27.20 TH 21.42 D2S2944 18.00 SLC5A4 16.32

CHRNA7 40.24 SLC6A2 26.99 CYP1A1 21.33 DXS7 18.00 CC2D1A 16.32

GABRA3 37.55 ADRA2A 26.87 HTR5A 21.00 GABRA5 18.00 GLI2 16.30

CYP2C9 37.33 CNR1 26.64 SMPD1 20.97 LBP 18.00 CAT 16.29

NTRK3 37.17 NQO1 26.41 APAF1 20.79 M6PR 18.00 L1CAM 16.28

ADCY7 36.13 AVPR1B 26.30 TSPO 20.57 MAMDC1 18.00 CDH17 16.27

PDLIM5 35.99 TACR1 26.16 GNAL 20.48 MCP1 18.00 DNAJB1 16.27

HTR1A 35.50 GAD2 26.12 GMIP 20.29 PDE11A 18.00 CD3E 16.22

P2RX7 35.39 TAAR6 26.00 TOR1A 20.23 SLC5A7 18.00 MTHFR 16.19

HTR2A 35.29 TPH1 25.81 CCKAR 20.10 VMAT2 18.00 VEGFA 16.18

CCL2 35.24 HTR3A 25.77 CTLA4 20.00 ABCB1 17.89 DNMT3B 16.15

PDE9A 34.90 GABRA1 25.67 ADCYAP1 20.00 PDYN 17.71 AKT1 16.14

DAOA 34.00 ESR2 25.61 CYP1A2 19.89 SAT1 17.35 SERPINE1 16.13

NPY 33.68 COMT 25.55 GNAS 19.88 S100B 17.34 HSPA12A 16.13

GRIN1 33.44 PLA2G2A 25.53 FKBP5 19.61 CD63 17.14 S100A10 16.11

CHRM2 33.25 GAD1 25.51 GDNF 19.50 GABRA6 17.12 CYP2D6 16.07

NR3C1 32.95 DTNBP1 25.00 PLA2G4A 19.42 ALDH1A1 17.03 GABRA2 16.03

DRD4 32.77 ACE 24.14 ADRA1A 19.17 RELN 17.00 PTX3 16.00

CREB1 32.54 XBP1 23.41 SLC1A4 18.88 ATP6V1B2 16.87 C5orf20 16.00

DRD3 32.31 MAOB 23.36 HSPA1A 18.83 CAMK2A 16.68 GHRL 16.00

CRHR2 31.97 P2RX4 23.35 CACNA1C 18.52 BCR 16.58 IVNS1ABP 16.00

CRHR1 31.36 APOE 23.11 GRIK3 18.45 HTT 16.56 PDSS1 16.00

AR 30.79 WFS1 23.03 AGTR1 18.27 CLOCK 16.56 GAL 15.86

DRD1 30.63 IL10 22.88 PDE1A 18.24 GRIN2B 16.56 AGT 15.78

PLXNA2 30.09 DRD2 22.63 CHRNA5 18.20 PCLO 16.53 TAC1 15.75

MAOA 29.57 DISC1 22.59 CPLX2 18.20 NRG1 16.50 NTRK2 15.68

OPRM1 29.30 PDE4B 22.59 HTR6 18.15 QKI 16.47 SLC6A1 15.56

IL6 29.06 CRHBP 22.19 CCK 18.12 GRIN2A 16.42 CTNNB1 15.18

HTR1B 28.99 PDE5A 22.00 ARRB2 18.10 DIO2 16.42

doi:10.1371/journal.pone.0018696.t002
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Through comprehensive data collection, almost one-fourth of

human genes were identified as susceptible genes for depression in

one or several data sources. The candidate genes for depression

across data sources had low overlap. This is partly reflected by

poor replications across study designs and species in prior

individual genetic studies. Several reasons may explain such

observation, including heterogeneity of the depression phenotype,

different study designs, lack of power in some studies, interaction

of genetic and environmental factors, publication bias, and false-

positive findings in most of the candidate gene studies [45].

The idea of using preWeight is to adjust for prior information/

evidence imbalance across multidimensional data sources. If our

results of genes ranking are robust, the list of DEPgenes should be

similar with or without preWeight adjustment, and this is indeed

what we observed. If preWeight was not applied, weight matrix

[6,1,4,8,4,2,8] had the best performance and the corresponding

prioritized genes set was very similar to those obtained using

preWeight (data not shown). It is also worth noting that the weights

for human and animal literature search were high regardless of

using preWeight or not. This implicated that text-mining with

efficient algorithm may exhibit a useful strategy to quickly discover

the relationship between diseases and genes with less bias [19,46].

The optimal weight matrix selection was based on two datasets

in the current framework: a set of core genes through expert

review and an independent GWA depression dataset. Previously

suggested candidate genes from meta-analysis or review articles

are still few, thus limiting the number of genes to be included in

the core gene set. Having a representative core gene set of

depression is essential to the final gene selection, as the numbers of

weight matrices that satisfied the selection criteria were correlated

with setting threshold of Q (proportion of core genes). Setting

larger Q may assist to better identify an optimal weight matrix. It is

possible that with an increasing number of core genes, we can

allow the threshold to be lower. For the GWA dataset, although

there were a few published GWA studies for depression

[7,9,10,17], only the GAIN dataset was deposited in a public

repository and is freely available through an application process. If

other GWA datasets could be acquired, the prioritization process

can be cross validated by different GWA data to increase the

precision and predictability in the current study, such that one

GWA dataset can be used in random set comparison process and

another GWA dataset can be used in p-value evaluation process,

and so on. In sum, our selection of DEPgenes not only adopted

proper weighting from multiple data sources, but also incorporat-

ed information from biological pathways. More exploratory and

advanced pathway/network analyses can be conducted to further

provide useful information from the created DEPgenes list. Similar

data prioritization and evaluation procedures were used in other

neuropsychiatric disorders, such as schizophrenia [19]. Sun et al.,

identified a list of schizophrenia candidate genes and successfully

constructed pathways and networks among those genes [47].

Pathways overrepresented in their selected schizophrenia candi-

date genes were related to neurodevelopment and immune system.

This is encouraging to conduct future work using system biological

approach in the DEPgenes.

This study has some limitations. First, the choice of core genes

was knowledge-based and subjective, which may influence the

optimal weight matrix selection and the resulting DEPgenes.

Nevertheless, our evaluations using different qualified weight

matrices and alternative core gene sets found very similar list of

DEPgenes with high correlation across weight matrices and

comparable results from alternative pathway core gene set.

Second, one may concern that larger genes were easier to be

picked up by DEPgenes due to the bias of significant p-values

towards gene length. In the GWA GAIN-MDD data, we observed

a positive relationship between smaller p-values and larger genes

among all human genes. However, there is no difference between

the proportion of larger gene size (say .10000 kb) in the

Figure 1. Comparisons of p-values distribution using the GAIN GWA-depression data for the 169 prioritized DEPgenes and the
remaining candidate genes (N = 4886).
doi:10.1371/journal.pone.0018696.g001
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DEPgenes compared with other human genes (OR = 0.86, p-

value = 0.47) and resulting random selected gene sets, which

indicated that our selection of DEPgenes is unlikely impacted by

the bias toward long gene length. Third, some of the candidate

genes might be falsely reported in the literature as significant

markers for depression and falsely collected as candidates,

potentially providing incorrect evidence in our study. Similarly,

while the phenotype of interest is depression, different studies may

apply different measures and construct regarding ‘‘depression’’,

which may cause unavoidable noise in the evaluation process.

Lastly, only human and available mouse data were considered in

the current study. With increased data and knowledge accumu-

lation in the near future, an updated and more precise DEPgenes

list can be provided.

To our knowledge, this is the first comprehensive evidence-

based candidate gene resource for depression. We expect the

identification of potential susceptibility genes for depression will

facilitate etiology and mechanism-related research. Through a

systems biology view, new data generated by high-throughput

genomics, proteomics or other relevant data sources could be

utilized to extend the current dimensions of data collection,

providing researchers an opportunity to implement pathway- or

network-based analysis to explore the underlying functional

correlation among susceptible genes of depression in the near

future.
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