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Abstract

Nm23/NDP kinases are multifunctional enzymes involved in the general homeostasis of triphosphate nucleosides.
Numerous studies have shown that NDPKs also serve as regulatory factors of various cell activities, not always connected to
nucleotide phosphorylation. In particular, the nme-1 gene, encoding the NM23-1/NDPKA protein, has been reported as a
metastasis suppressor gene. This activity was validated in hepatocellular tumors induced in nm23-1 deficient mice. Yet, data
describing the primary physiological functions of nm23-1/NDPKA is still scarce. We have characterized in depth the
phenotype of nm23-1 deletion in the mammary gland in mice carrying whole body nm23-M1 invalidation. We also asked
why the nm23-M12/2 mutant females displayed severe nursing disability. We found that the growth retardation of mutant
virgin glands was due to reduced proliferation and apoptosis of the epithelial cells within the terminal end buds. The
balance of pro/anti-apoptotic factors was impaired in comparison with wild type glands. In the lactating glands, the
reduced proliferation rate persisted, but the apoptotic factors were unchanged. However, those defects did not seem to
affect the gland maturation since the glands lacking nm23-1/NDPKA appeared morphologically normal. Thorough
examination of all the functional aspects of the mammary glands revealed that lack of nm23-1/NDPKA does not impact the
production or the ejection of milk in the lumen of lobuloalveolae. Interestingly, an epithelial plug was found to obstruct the
extremity of the unique lactiferous duct delivering the milk out of the nipple. These cells, normally disappearing after
lactation takes place, persisted in the mutant nipples. This work provides a rare instance of nm23-1/NDPKA physiological
functions in the mammary glands and reveals its implication as a modulator factor of proliferation and apoptosis in this
tissue.
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Introduction

Nucleoside diphosphate kinases (NDPKs) are ubiquitous

enzymes synthesizing nucleoside triphosphates. They are encoded

by 9 genes in humans, forming the family of the non metastatic

#23 (nm23) genes or nme genes. They can be split into two groups

according to their levels of homology with the historical isoforms

nm23-1/NDPKA and 2/NDPKB [1]. They have first been

considered as housekeeping enzymes until the gene nm23-1/nme1

was found involved into the mammary gland metastatic process

[2]. Since then, nm23/nme genes have been implied into various

and critical cell functions, mainly linked to tumor transformation,

progression and dissemination [3,4].

During the early stages of tumor formation, nm23-1 and -2

genes are overexpressed, then the loss of the nm23 signal is

correlated with higher tumor aggressiveness such as in mammary

carcinomas or in melanomas [4]. Importantly, the anti-metastatic

activity of nm23-1 has been validated in hepatic tumor models in

the mouse [5]. Several explanations have been raised to explain

nm23 implication as a tumor suppressor. Among them, it seems

that nm23 genes products interact with cytoskeleton elements

leading to modulation of cell/cell and cell/extracellular matrix

bonds and they indirectly regulate small G protein activity such as

Rac1 or Rho [6,7,8] leading to motility inhibition. It has also been

demonstrated that nm23-1/nme1 regulates the cell surface

expression of integrin receptors and matrix metallo-proteases,

and thus directly controls the cell adhesion machinery [9].

Null mutation in the awd gene, the unique NDPK coding gene

in Drosophila Melanogaster causes lethality in larvae [10].

Bacteria and yeasts lacking NDPK encoding genes live normally

[11,12], although the E. Coli model shows a high genomic

mutations incidence [13].

NDPK A and B mouse proteins shares .98% identity with their

human counterparts thereby rendering the mouse as a valuable

model to explore the nm23 genes functions. Nm23-M1 invalida-

tion has been carried out to study its physiological functions [14].

Lack of NDPKA does not result in major deficiency; the animals

develop normally and are fertile. However, they display reduced

body weights. More importantly, newborns’ survival is highly

compromised when the mother lacks both nm23-M1 valid alleles

as shown by cross-fostering experiments. The invalidation of

nm23-M2 gene has not been reported. However, the double knock

out of nm23-M1 and nm23-M2 genes (encoding the mouse

NDPKA and NDPKB, respectively) was facilitated by the

localization of both genes on the same chromosome about 5000

base pairs apart [15]. The double mutants die perinatally with
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severe hematologic disorders such as anemia, defective erythroid

cell terminal maturation and abnormal iron metabolism [16]. To

date, no phenotype in the mammary glands was explored in this

model.

Numerous studies, most of them from Pat Steeg’s group

[17,18,19] suggested that nm23-1 expression was linked to the

control of the mammary gland development. Nm23-M1 was

detected in the mouse embryo at 12.5 dpc in mammary gland

buds and later during development, in the epithelial tree as well as

in the terminal end buds (TEBs) [14]. In addition, mammary

gland growth retardation was evidenced in the absence of nm23-

M1, in virgin females aged between 5 and 15 weeks old. However,

gross morphological differences were abolished during gestation

and later during lactation. Whole mount analyses showed that the

growth retardation observed in virgin females is not anymore

visible during pregnancy and after birth [14].

Thus, besides its well-known implication in breast cancer

metastasis formation, the nm23-1 gene seems to impact the

mammary gland development. However, the molecular routes

involved have not been explored yet. This study was aimed to

provide a more detailed analysis of nm23-M1 invalidation in the

mammary gland. We present data related to the effect of the lack

of nm23-M1 on mammary gland cell proliferation and apoptosis

in the virgin females and we propose an explanation for the high

mortality rate of pups born from homozygous mutant mothers.

Materials and Methods

Generation and maintenance of transgenic mice
All animal studies adhered to protocols approved by the

University of Bordeaux 2 animal care and use committee and the

commission de genie genetique (Direction Generale de la

Recherche et de l’Innovation). The generation of the nm23-M1

KO mice (nm23-M12/2) was already described [14]. Mice were

maintained at the University Bordeaux 2 animal facility according

to the rules enforced by the Institutional Animal Care and Use

Committee, in EOPS conditions. Mice used in this study are from

the C57BL/6J genetic background. Noteworthy, the nm23-M12/2

mice exist in the 129/SV genetic background. We did not perform

experiments on this background. However, it is likely that similar

observations could be done, keeping in mind that the penetrancy of

the phenotype is slightly lower in the 129/SV background as

compared to the C57BL/6J.

Mammary gland processing and staining
Mouse mammary glands were retrieved and processed accord-

ing to the following protocol: the thoracic glands were used for

RNA extraction and the abdominal glands were used for histology,

immunodetection and protein extraction. The cervical and

inguinal glands were not used in our study.

For histology procedures, glands were fixed in 10% NBF,

embedded in paraffin and processed by routine histology

procedures. Beta-galactosidase was detected as already described

[14]. For immunohistochemistry, the following primary antibodies

were used: mouse anti-alpha actin (1/500, Sigma), mouse anti-

BrDU (1/1000, Dako), rabbit anti-oxytocin receptor (1/200,

Abcam). Appropriate anti-rabbit or anti-mouse biotinylated

secondary antibodies in DAKO EnVision kits (DAKO) were used

to detect the presence antibody staining. For immunofluorescence

staining, anti-mouse–FITC (Vector Laboratories) was used.

Apoptosis was detected by using an In Situ Cell Death Detection

kit (Roche). Bromodeoxyuridine (BrdU, Sigma) labeling was

initiated by intraperitoneal injection (100 ug/g body weight) the

day before the sacrificing of the treated animals. For morphomet-

ric analyses 10 sections were scored on at least five fields from the

WT group (n = 3) and nm23-M12/2 group (n = 4). Results are

expressed as mean of positive BrdU/total nuclei of epithelial cells

6 SD.

Nipples collection and processing
Nipples from WT, heterozygous and mutant females were

retrieved either in 6 weeks old and 12 weeks old virgin females or 3

days after delivery and fixed in 10% NBF. Transversal or

longitudinal serial sections were carried out and stained with

Hematoxilin and Eosin or Masson stain that reveals connective

tissue in green. They were also processed for immunohistochem-

istry as described above and stained with mouse anti-PCNA

antibody (Cell Signaling), rabbit anti-betagalactosidase antibody

(Invitrogen), mouse anti-cytokeratin 2E (Acris antibodies), mouse

anti-keratin 10 and mouse anti-keratin 14 (both from San Cruz

Biotechnologies).

Western-blotting and PCRs
Mammary glands were washed with PBS, homogenized and

sonicated in a RIPA buffer and processed for western blotting.

Membranes were incubated with rabbit anti-phospho AKT, anti-

BAX, anti-BCL-XL, anti-phospho STAT3, anti-phospho

STAT5 (all from Cell Signaling Technologies) and anti-oxytocin

receptor (Abcam). Rabbit anti-actin antibody (Cell Signaling

Technologies) was used to assess equal loading of the samples.

Primary antibodies were detected with specific anti-rabbit- or

anti-mouse-IgG-HRP (Cell Signaling Technologies). Proteins

were visualized using the ECL detection system (Amersham

Pharmacia Biotech).

Total RNAs were extracted from mammary glands in TRIZOL

solution (Invitrogen). Reverse transcription was carried out on 1 ug of

total RNAs using the Superscript III-RT kit according to the

manufacturer recommendations (Invitrogen). PCRs were performed

with the PCR Master Mix (Promega) on 1/10th of the RT. Primers

were designed as follows: beta-casein sens : 59CTTGCTAATCTG-

CACCTTCC39, Beta casein antisense 59AGAGTCCATGGGTC-

GAATTC -39, Lactoferrin sens : 59GCTGTAGCAGCAGTTA-

GAAG39, Lactoferrin antisense : 59ACTGAACCTGTTGGT-

CAAGC39, OTR sens : 59CAGGTGCACATTTTCTCGCT39,

OTR antisense : 59GAGCATGTAGATCCATGGGT39.

Statistical analyses
Statistical significance was determined using unpaired Student’s

t-test. Results presented as mean+/-SD were considered significant

when p#0.05.

Results

Nm23-M1 is expressed in the luminal cells of the
mammary gland epithelium

When we first described nm23-M1 invalidation in the mouse,

we observed mammary gland growth retardation in both ductal

elongation and branching, in the virgin females [14]. We also

mentioned that nm23-M1 was present in the epithelium, at the

macroscopic level. Nm23-M1 invalidation was carried out so

that a reporter gene (LACZ) was introduced in place of the

disrupted gene. Consequently, the bacterial beta-galactosidase is

expressed under the control of nm23-M1 promoter. To identify

the cells expressing nm23-M1, we now performed beta-

galactosidase detection in mammary gland sections in nm23-

M1+/2 mice. Beta-galactosidase was evidenced in the luminal

epithelium of the mammary ducts from 6 week old virgin

females, whereas the surrounding myoepithelial cells appeared

Lack of nm23-M1 in the Mammary Glands
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negative. The adipose tissue showed no signal (figure S1a). This

result was further confirmed when sections from lactating

mammary glands were analyzed at day 1 after the birth, which

will be further mentioned as L1 (figure S1b). Beta-galactosidase

was evidenced in the epithelial compartment of the lobuloalveo-

lar structures.

Lack of nm23-M1 results in diminished proliferation and
apoptosis

As already mentioned above, nm23-M12/2 virgin females

showed delayed mammary gland growth. Indeed, mammary

ducts of the nm23-M12/2 mice failed to extend throughout the

mammary fat pad [14]. In the mouse, the mammary gland

development is under the control of structures located at the end

of the branches of the mammary tree. These transient structures,

called Terminal End buds (TEBs), appear at 3 weeks of age and

undergo important cell proliferation. They later become terminal

ductal structures with low mitotic activity and intensive apoptosis

leading to the formation of the lumen of the ducts [20]. To assess

whether the growth retardation observed in nm23-M12/2 mice

was due to impaired proliferation or apoptosis, microscopic

examinations were carried out. The observation of the mammary

tree of 3 weeks old virgin mice revealed substantial alteration in

the aspect of nm23-M12/2 TEBs (Figure 1a, and 1b). WT

structures seemed to undergo terminal changes including the

lumen formation of the future lobuloalveolar structures. Nm23-

M12/2 TEBs on the contrary appeared smaller and the lumen

was not detectable. Consequently, histometric analysis was

performed on 6 weeks old females, where lumen was easily

evidenced in each group of mammary glands (Figure 1c to 1f). At

that stage, TEBs seemed to be morphologically normal in nm23-

M12/2 mice. However, the number of BrdU positive cells was

decreased by about 2-fold in the nm23-M12/2 mice as compared

to the WT mice (Figure 1i n = 3 in each group and p,0.01). As

already mentioned, mammary growth retardation seemed to be

rescued during pregnancy and in nursing females. Sections from

L1 lactating mammary gland showed less BrdU incorporation in

WT glands as compared to the 6 weeks old WT virgin glands

(Figure 1g and 1h). The diminished proliferation observed in the

nm23-M12/2 virgin glands persists in the L1 gland (Figure 1j)

with the same fold difference (n = 3, p,0.05). This defect though,

is not sufficient to disrupt the growth of the gland, since the

morphology of the epithelium appeared normal in the nm23-

M12/2 glands (see below).

In the virgin glands, ductal morphogenesis is controlled by

apoptosis undergoing in TEBs. This process involves the activity of

Bcl2 family members such as Bcl-XL and Bax [21] and PKB/

AKT [20] for example. In 6 weeks old nm23-M12/2 glands,

apoptosis tended to be diminished when sections were observed,

although it was difficult to quantify this phenomenon, whereas in

L1 lactating glands, no obvious differences in the density of

apoptotic bodies could be evidenced (data not shown). Therefore,

we performed western-blot analyses testing for the above cited

factors. We found that anti-apoptotic factors were increased in

nm23-M12/2 virgin glands protein extracts as compared to WT,

whereas proapoptotic factors were diminished (Figure 2A).

However, when L1 glands were examined for the same factors,

no difference was seen (Figure 2B).

Thus, the mammary glands from nm23-M12/2 virgin females

display delayed growth, which can be accounted for reduced

proliferation and apoptosis. However, in the lactating glands, the

differences observed in the virgin glands are not enhanced

(proliferation) or are absent (apoptosis).

Lack of nm23-M1 results in severe nursing deficiency
As already mentioned above, the growth retardation observed

in nm23-M12/2 virgin females seemed to be rescued in the

pregnant females, or right after birth since whole mount glands did

not show striking morphological differences [14]. We looked at

lactating glands removed at day 1 after the birth of the pups (L1)

since feeding did not take place. Indeed, newborn from nm23-

M12/2 mothers failed to accumulate milk in their stomach (Figure

S2). Conversely, this phenomenon is easily observable in pups fed

by WT mothers. Over 13 litters obtained from mutant mothers for

this study, 11 litters died within the first 2–3days (85%) where only

5 of 14 of the WT litters died (35%). The weight of the mutant

Figure 1. Lack of nm23-M1 results in impaired proliferation.
Whole mounts of WT (a) and nm23-M12/2 (b) mammary glands show a
delayed growth of the TEBs in the mutant glands (original magnifica-
tion X5). BrdU incorporation (brown nuclei) was evidenced in sections
from mammary glands from 6 weeks old WT (c,e) or nm23-M12/2 (d,f)
virgin females and L1 WT (g) or L1 nm23-M1-/- (h) lactating females
(original magnification X400). Quantifications in virgin glands (i) and
lactating glands (j) revealed a drop in BrdU incorporation in the
epithelial cells of the mutant glands. KO: nm23-M12/2.
doi:10.1371/journal.pone.0018645.g001

Lack of nm23-M1 in the Mammary Glands
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pups was in average significantly lower as compared to the WT

pups at L1 (1.34g60.12 for mutant and 1.68g60.16 for WT,

p = 0.02), likely because they were not fed.

Further examination of sections from L1 glands did not reveal

obvious differences in the morphology of the mammary epithe-

lium, but we often observed distended lobuloalveolar structures

with accumulation of secretion in the lumen (Figure 3a and b). As

nm23-M1 seemed to be involved in apoptosis, we sought to

determine whether mammary gland involution was affected in the

nm23-M12/2 females. The morphological examination of L3

glands showed intense reduction of the number of lobuloalveolar

structures in the mutant glands as compared to feeding L3 WT

glands (Figure 3d and e). This was accompanied by a significant

drop of the mammary gland weight in mutant mice as compared

to WT (0.11960.04 mg and 0,24860.05 mg, respectively, n = 8,

p,0.001). However, we looked at glands from WT females which

had not been feeding because their pups had been taken away and

we didn’t see any morphological difference with the mutant glands

and the weights were similar in both groups (Figure 3c and

0.11360.02 mg, p.0.05). Furthermore, at the molecular level, we

looked at the activation of STAT3, a major actor of the mammary

gland involution [20]. We also looked at the levels of caspase 3. No

difference was seen in the mutant glands, compared to the non

feeding WT glands at L1 or L3 (data not shown). Together with

the fact that we did not see any difference in the balance of Bcl2

family members in post-birth glands (not shown), this shows that

early involution of the gland cannot explain the fact that the

majority of nm23-M12/2 females do not feed their pups.

The severe feeding deficiency is not related to a
functional defect in the mutant gland

Milk secretion is under the control of a major hormonal actor:

the prolactin [22]. We looked at the activation of STAT5, which is

directly under the control of the prolactin receptor activation.

Phospho-STAT5 was detected in L1 gland protein extracts by

western-blotting (Figure 4A). Again, densitometric analysis failed

to demonstrate a deficient STAT5 activation in the mutant glands.

Furthermore, we confirmed that milk was produced in the mutant

glands by detecting RNAs encoding milk proteins in both WT and

nm23-M12/2 glands, at similar levels (n = 4 in the WT group and

n = 5 in the mutant group, Figure 4B and C).

The milk ejection reflex is dependent upon the release of

pituitary oxytocin and its interaction with a specific receptor

(Oxytocin receptor, OTR) within the mammary gland [23]. The

ejection is also mediated by the contraction of myoepithelial cells

surrounding the ductal/glandular epithelium. We first attempted

to inject oxytocin in post-partum females. This failed to rescue

normal feeding of the pups, suggesting that lack of oxytocin was

not the cause of the deficient feeding. When OTR expression was

examined by immunohistochemistry, no abnormality was seen in

the distribution of the receptor in the mammary gland of mutant

mice (Figure S3a to d). In the same way, myoepithelial cells were

easily evidenced using anti-alpha actin antibody, with normal

position and density in mutant glands as compared to WT

(Figure 3f and g).

Thus, nm23-M12/2 mammary glands produce milk and

display the hallmark of normal milk secretion and ejection.

Lack of nm23-M1 results in abnormal maturation of the
mammary glands terminal lactiferous ducts

Nm23-M12/2 mutant glands displayed delayed but normal

development and apparently normal function until L1. Despite

that the females were unable to nurse their pups, which died from

dehydration early after birth. Nipples were present and apparently

suckled by the pups. Therefore, we hypothesized that the milk was

not ejected from the gland itself. Indeed, as already mentioned,

RNAs encoding milk proteins were evidenced and we could see

the milk itself in the lumen of the lobuloalveolar structures (see

Figure 3b). In particular in several instances, we observed

distortions of the alveolae in the mutant glands (see Figure 3d).

This suggests that the milk was accumulating in the ducts. In the

mouse, there is only one lactiferous sinus exiting the gland through

the nipple [24]. During pregnancy, the nipples undergo changes in

size and in the architecture of subjacent connective tissue. The

dermis gets looser with extensive remodeling of collagen bundles

and elastic fibers and the epidermis wrinkles, showing thickened

stratum corneum. Macroscopic comparison of mutant and WT

nipples showed that the size of the nipples, in particular their width

and length appeared normal in the nm23-M12/2 females (data

not shown). In addition, for early post-partum females, the nipples

seemed to be suckled by the newborns before they died. When

nipple sections were observed, the general structure of the nipples

was similar in mutant and WT mice (Figure 5a and b). In

particular, the connective tissue maturation of the nipples seemed

unaffected. However, as mentioned before, we observed accumu-

lation of the milk in the lactiferous duct of the mutant nipples

(Figure 5b). Thus, we performed longitudinal serial sections of the

nipples in order to examine the opening at the very extremity of

the lactiferous sinus. The epithelium of the lactiferous sinus

appeared thinner in mutants as compared to WT nipples. More

interestingly, we observed a stenosis in the nm23-M12/2 nipples

(n = 4 for the mutant nipples and n = 3 for the WT, Figure 5c and

Figure 2. Lack of nm23-M1 results in diminished apoptosis
markers in the virgin but not the lactating mutant glands. A:
protein extracts from 6 weeks old virgin WT and nm23-M12/2 (KO)
glands were processed for western-blotting. Images were analyzed by
densitometry to measure intensity differences between the two groups.
Results are indicated on the right hand side. B: protein extracts from L1
lactating WT and nm23-M12/2 (KO) glands were processed for western-
blotting. No difference in band intensity was evidenced between the
two groups.
doi:10.1371/journal.pone.0018645.g002

Lack of nm23-M1 in the Mammary Glands
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d), obstructing the terminal end of the lactiferous duct. To further

explore the structure of the lactiferous sinus at the tip of the nipple,

we performed immune-staining of longitudinal serial sections of

nipples with antibodies directed against the Proliferating Cell

Nuclear Antigen (PCNA) to assess cell proliferation, against the

beta-galactosidase, present only in the nuclei of the nm23-M12/2

cells, and the keratine 2e (K2e), a specific marker of the nipple

epidermis [25]. As we could not evidence any apoptotic figures,

possibly because of the very transient existence of apoptic bodies,

we did not quantify apoptosis by apoptosis-specific labeling. We

also checked the expression of both basal and suprabasal layers

markers of the epidermis, namely the keratin 14 (K14) and 10

(K10). Expression of K2e appeared similar in the nm23-M12/2

nipples as compared to wild type, regardless of the feeding status of

the females (Figure 6 last column). Similarly, the expression and

location of the epidermis markers K10 and K14 seemed

unchanged (Figure 7). Interestingly, these markers clearly showed

that the cell plug derived from the lactiferous sinus extremity but

not from the epidermis (Figure 7). Counting of PCNA-positive

cells within the lactiferous sinus directly below the final opening

revealed that nipples from WT feeding females displayed active

proliferation of cells along the duct, phenomenon which was

greatly attenuated in nipples from nm23-M12/2 females failing to

feed their pups (Figure 6, Table 1). Remarkably, the proliferating

cells were arranged along the duct in the cell layer opposite to the

lumen (Figure 6). Very interestingly, nipples from WT females

which were not feeding at L3 (because their pups had been

removed at L1) showed staining and structure very similar to that

of mutant females. Indeed, cell proliferation was about 2-fold

lower as compared to WT females (Figure 6, Table 1), the stenosis

was present and the milk was accumulating in the duct (Figure 6).

Conversely, the nipples from nm23-M12/2 females which were

able to feed their babies (about 15% of the nm23-M12/2 females,

as already mentioned) showed structure and staining very similar

to that of WT females (no stenosis, and about 30% of PCNA-

positive cells, Figure 6, Table 1). Finally, we analyzed nuclear

beta-galactosidase signal, which is only present in the nm23-M1-

expressing cells. The majority of the cells within the epithelial plug

that blocked the lactiferous duct were positive for beta-galactosi-

dase signal, suggesting that nm23-M1-positive cells persisted in the

defective nipples (Figure 6).

Thus, the defect of nursing ability of the nm23-M12/2 females

seems to be caused by a deficient terminal maturation of the

lactiferous duct, resulting in milk accumulation in the duct and

failure in final milk ejection.

To gain insight into the maturation of the lactiferous sinus and

the relationship with nm23-M1, we performed PCNA and beta-

galactosidase staining of longitudinal serial sections from 6 week-

Figure 3. The morphology of lactating L1 and L3 glands seems normal in mutant females. Sections from lactating L1 WT (a) and nm23-
M12/2 (b) mammary glands do not reveal any abnormality. L3 nm23-M12/2 glands (d) show signs of involution as evidenced by the diminished
density of lobuloalveolar structures, not seen in L3 WT lactating gland (e). However, L3 glands from WT females from which the litters have been
removed (c) do not appear different from nm23-M12/2 L3 gland (Original magnification X200). Sections have been stained with anti-alpha actin to
reveal normal pattern of myoepithelial cells in WT (f) and mutant (g) L1 lactating glands (Original magnification X400).
doi:10.1371/journal.pone.0018645.g003

Lack of nm23-M1 in the Mammary Glands
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old and 12-week-old nm23-M1+/2 heterozygous virgin females.

Nipples from younger females were too underdeveloped to gather

reliable information. Strikingly, nipples from virgin females

displayed very few PCNA-positive cells and the stenosis was easily

evidenced at both ages (Figure 8). In the region of the epithelial

plug, numerous beta-galactosidase-positive cells could be detected,

along with apoptotic figures, especially at 6 weeks old (Figure 8).

The same experiments were carried out on nipples from m23-

M1+/2 heterozygous feeding females at L1. As expected, no

stenosis was observed and PCNA-positive cells were detected

along the lactiferous ducts, although less numerous than at L3. In

addition, very few beta-galactosidase-positive nuclei were present.

Thus, these results are consistent with the observation made at L3

in nipples from non feeding females.

Discussion

The generation of nm23-M1 deficient mice was first designed to

explore the role of the gene as a suppressor of metastasis. We did

not expect that a lethal phenotype would affect the mutant

newborns. The present study sought to better understand this

mortality. Our main findings are: (1) lack of nm23-M1 leads to

reversible mammary gland growth retardation in virgin mutant

females and (2) although displaying a normal mammary gland

function, nm23-M12/2 females are not able to feed their babies

because the terminal end of the lactiferous duct is obstructed in the

nipple. We provide evidence showing that the growth retardation

of the virgin gland is connected to abnormal proliferation and

apoptosis in the terminal end buds, and we discuss some of our

hypothesis to explain the deficient final maturation of the

lactiferous duct in the mutant nipples.

It is noteworthy to mention here that despite the well-accepted

implication of nm23-1 gene in the control of breast cancer

metastasis, mutant females kept in our animal facility for up to 18

months (virgin or not) did not display a higher rate of mammary

gland tumors than their WT counterparts.

As expected, nm23-M1 gene expression was evidenced in the

epithelial compartment of the mammary gland. Nm23 genes were

early observed in epithelial cells developed from mammary gland

tumors [2]. This pattern has been confirmed in many studies ever

Figure 5. Nipples from nm23-M12/2 mammary glands are obstructed. Sections from WT (a, c) and nm23-M12/2 (b, d) nipples were
sectioned and stained by hematoxylin and eosin (a, b) or trichrom Masson (c, d). The general architecture of dermis and epidermis of the mutant
nipple doesn’t seem overly changed. However, close examination revealed that the final opening of the lactiferous canal is obstructed by epithelial
cells in the mutant glands (arrow). M: milk. Original magnification X200 (a, b) X400 (c,d).
doi:10.1371/journal.pone.0018645.g005

Figure 4. Mutant mammary glands do not present functional
defects. Western-blots have been carried out to detect the level of
phospho-STAT5. Actin was detected to check on sample loading. (A) RT-
PCRs have been performed and quantified by densitometry. RNA levels
related to GAPDH signal are reported (C).
doi:10.1371/journal.pone.0018645.g004
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since. So if any defects were related to lack of nm23-M1 in the

mammary gland, they would more likely manifest in the

mammary ducts morphology or function.

The growth retardation observed in nm23-M12/2 virgin

females was associated to reduced proliferation and apoptosis in

the TEBs. The nm23-1 gene displays a confusing multifaceted role

in the control of cell proliferation and apoptosis. For example, a

recent study showed that nm23-H1, encoding the human NDPKA

isoform, positively regulated the proliferation of the K562 cell line

by keeping the cells cycling [26]). Conversely in another B cell line,

nm23-H1 had the reverse effect [27]. Most of the studies have

been initially carried out in vitro on transformed cell lines.

Typically, forced expression of the nm23-1 gene did not affect

tumorigenicity and cell proliferation but instead cell motility and

tumor invasiveness capacities [28], especially in the pathological

mammary glands. Moreover, nm23 genes studies were first

focused on the correlation between nm23 genes expression and

cancer initiation and progression [29]. We report for the first time

an effect of the lack of nm23-1 gene in physiological conditions.

Our work shows that in mammary glands, when present, nm23-1

gene controls positively the proliferation. This could be directly

linked, as in cancer, to nucleotides metabolism. However, this

effect seems minor since the tissue overcomes the growth

retardation and produces a functional mammary gland in mutant

females. Thus, since our main goal was to establish the reason why

the mothers were unable to nurse, we did not pursue molecular

exploration of proliferation in the mutant virgin glands. Further-

more, it would be of great interest to assess cell proliferation in

other tissues and in normal conditions in the mutant mice. In that

matter, we have explored the distribution of cells in hematopoietic

compartments and found no difference in nm23-M12/2 mice as

compared to wild type mice (S. Dabernat and Z. Ivanovic,

personal communication). Thus, it seems clear that the diverse

effects carried by the nm23-1 gene are highly dependent on the

cell type and the physiological status of the model. The same

assessment can be drawn when apoptosis is explored in relation

with nm23 genes activity. Interestingly, nm23-H1 is a granzyme

A-induced DNase involved in the positive control of apoptotic

response to cytotoxic T lymphocyte activation [30]. In addition,

nm23-H1 is a negative regulator of the Macrophage Induced

Factor (MIF), a cytokine with anti-apoptotic properties, in

particular in breast cancer cells [31,32]. Besides, nm23-H1

positively regulated the p53-induced apoptosis pathway with

STRAP (serine-threonine kinase receptor-associated protein) [33].

Collectively with the data presented here, these observations

suggest a pro-apoptotic effect of the nm23-1 gene in the

developing mammary gland. We found that the balance of

members of the BCL2-like family was in favor of cell survival in

Figure 6. Proliferation and elimination of the epithelial plug does not occur in the lactiferous sinus of nipples from females which
are not nursing. Serial sections of nipples were stained with anti-PCNA (a, d, g and j), anti-beta-galactosidase (b, e, h and k) and anti-K2e (c, f, i and l).
Sections from mutant (a, b and c) and WT (d, e and f) nipples from nursing females are fully opened at the edge and show numerous PCNA-positive cells
within the wall of the lactiferous sinus. Sections from mutant (g, h and i) and WT (j, k and l) nipples from non nursing females show a persisting epithelial
plug with numerous beta-galactosidase-positive cells (h), accumulation of milk in the lactiferous sinus and only a few PCNA-positive cells. Note the
intense beta-galactosidase staining in the keratinocytes. Original magnification X75 (a, b, d, e, g, h, j and k) X150 (c, f, I and l).
doi:10.1371/journal.pone.0018645.g006

Lack of nm23-M1 in the Mammary Glands

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e18645



the mutant glands. This was further confirmed with an elevation of

the expression of AKT and of NFkB (not shown). It seems likely

that the mechanism of apoptosis regulation by nm23-M1 might

impact several pathways.

The most striking phenotypical trait of the nm23-M12/2 mice

was the high mortality rate of newborn pups from homozygous

mutant females. The mutant mothers exhibited normal nursing

behavior, such as nesting and pup retrieval but they did not feed

the pups and no pups survived for more than 24–36 hours in the

majority of the mutant litters (85% of the litters). As we observed

growth retardation of the mammary gland of virgin females, we

expected to find underdeveloped glands during gestation and at

the onset of lactation. However, no gross morphological

abnormality was evidenced in whole mount mammary gland

preparation. Lactation defects can be very picky and tedious to

analyze. We explored most of the aspects of lactation as

recommended by experts [34]. Our attempt to identify deficient

functions of the mutant glands failed and we clearly evidenced

milk, RNAs encoding milk protein and milk proteins themselves.

The signaling pathway controlled by the main milking hormone,

the prolactin, was active, oxytocin did not rescue the mutant

mother feeding capacities and oxytocin receptor and myoepithelial

cells, responsible of milk ejection were easily evidenced. It was

difficult to characterize the function of the mutant mammary

gland as compared to the WT because the pups from the nm23-

M12/2 females died unfed within the first 2 days after birth and

the mammary glands started the process of involution. However,

we made clear that the involution process was not to be accounted

for the nursing defect. Indeed, WT glands, prevented from

feeding, underwent similar morphological and molecular changes

as those observed in the mutant glands.

Since we evidenced milk in the lumen of the lobuloalveolae, we

hypothesized that the final ejection of the milk, through the nipple

and outside of the body did not occur. Very few studies report a

phenotype similar to that of nm23-M12/2 mice, where dysfunction

of the nipples is evidenced, and is the cause of feeding defects. In the

rodents, nipples undergo histological changes during the reproduc-

tive cycle [24]. In relaxin or relaxin receptor (LGR7) mutants,

nipples are underdeveloped and the characteristic histological shift

is impaired [35,36]. Similar observations were made in mice lacking

the PTH/PTRH (parathyroid hormone/parathyroid hormone-

related protein receptor) pathway [37]. The nm23-M12/2 mutant

nipples appeared histologically normal when observed in transversal

sections (not shown), in particular, the histological hallmark of

nipple maturation was present and appeared normal. The only

option left was to perform serial longitudinal sections of the very

final end of the lactiferous duct at the very extremity of the nipple.

There is only one lactiferous duct at the extremity of the rodents

nipples [38]. We found that an epithelial cell plug was blocking the

final opening of the duct preventing the milk from flowing out. We

also noticed that the thickening of the lactiferous epithelium, which

is a phenomenon described in rodents [38] was decreased in the

mutant nipple as compared to the feeding WT. Besides, the

epidermis layers seemed normal in the mutant nipples. When we

analyzed nipples from WT females that were not nursing, we found

that they shared the same morphology as the mutant ones.

Similarly, the few mutant nipples analyzed from feeding females

appeared undistinguishable from the WT ones. To our knowledge,

very little information is available on the maturation of the

lactiferous ducts. In the mouse nipples, proliferation takes place

during pregnancy [24]. We made similar observations since

lactiferous sinuses from virgin females displayed very few PCNA-

positive cells and about 30% of the cells from lactiferous ducts

appeared actively proliferating in nipples from feeding females. We

evidenced that this phenomenon was part of the nipple maturation

process since it was not observed in nipples from non feeding WT

females. Moreover, we observed that lactiferous sinuses from virgin

females contained an epithelial plug and apoptotic bodies were

Figure 7. Nipples from nm23-M1-/- females present normal
epidermis. Serial sections of nipples were stained with anti-K10 (a, c, e
and g) and anti-K14 (b, d, f and h). Sections from WT (a, b, c and d) and
mutant (e, f, g and h) nipples show no difference in K10 or K14 signal,
whether they were retrieved from nursing (a, b, e and f) or not nursing
(c, d, g and h) females. Original magnification X75.
doi:10.1371/journal.pone.0018645.g007

Table 1. PCNA indexes in lactiferous sinuses.

Genotype % PCNA positive cells P values

Wild type feeding 35.2660.09 (1597) NA

Wild type not feeding 15.5760.05 (781) 0.006

Nm23-M1-/- feeding 32.1860.05 (1715) 0.9

Nm23-M1-/- not feeding 19.0560.07 (1345) 0.03

Longitudinal sections of L3 nipples were stained for PCNA detection and the
number of PCNA-positive nuclei over the total number of nuclei in the
lactiferous sinus was counted in at least 4 fields for 3 to 5 independent nipples
in each group (except for the Nm23-M1-/- feeding group, n = 2). Results are
expressed as means 6SD. The number of total counted nuclei is indicated in
parenthesis. P values were obtained by unpaired student t tests against the wild
type feeding values. NA: not applicable.
doi:10.1371/journal.pone.0018645.t001
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present around the lumen. We believe that as for the lumen of

lobuloalveolar units, it is very likely that the lumen of the terminal

lactiferous duct appears by cavitation i.e. the apoptosis induction of

the inner cell population [20,39]. In the mutant mice, this

phenomenon might be inhibited or delayed during a period long

enough to cause the pups death by starvation. This hypothesis is

further strengthened by the observation of delayed apoptosis in the

developing virgin gland and by the presence of beta-galactosidase-

positive cells within the persisting epithelial plug in the nipples from

females that failed in nursing their pups.

In conclusion, our work evidenced that nm23-1 gene affects the

proliferation/apoptosis balance of the developing mammary

gland, which delays the maturation of the virgin gland. The

further maturation of the glands during pregnancy did not seem

overly affected, neither the function of the lactating glands.

However, as milk is produced, its delivery out of the nipple was

prevented by the persistence of an epithelial plug.

Supporting Information

Figure S1 nm23-M1 gene is expressed within the luminal
cells of the mammary glands epithelium. Sections of

mammary glands from 6 weeks old virgin (a) and of L1 lactating

nm23+/- females (b) have been processed to detect in situ expression

of LACZ. In both sections, beta-galactosidase is detected in the

epithelium of the glands, the surrounding myoepthelial cells and

adipocytes being negative (original magnification X400).

(TIF)

Figure S2 Newborn nursed by nm23-M12/2 females
display empty stomach and die shortly after birth.
Independent of the newborn genotype or gender, babies nm23-

M1+/2 nursed by nm23-M12/2 females do not display milk in

their stomach (b, white arrow), which can be easily seen in babies

nm23-M1+/2 fed by WT females (a, dashed white circle).

(TIF)

Figure S3 Oxytocin receptor is normally detected in the
nm23-M12/2 mammary gland. Sections from intestine (a)

stained with anti-OTR antibody were used as a negative control

tissue and uterus (b) as a positive control. Analysis of mammary

gland (MG) sections from WT (c) and nm23-M12/2 (d, KO)

stained with anti-OTR antibody revealed normal pattern of OTR

in the mutant glands. Original magification X400.

(TIF)
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Figure 8. Nipples from nm23-M1+/2 virgin females present an epithelial plug rich in beta-galactosidase positive cells. Serial sections
of nipples from 6 weeks old (a, b and c), 12 weeks old (d, e and f) and L1 lactating (g, h and i) nm23-M1+/2 females were stained with anti-PCNA (a, d,
and g), anti-beta-galactosidase (b, e and h) and anti-K2e (c, f and i). Sections from 6 and 12 weeks old display an epithelial plug at the edge of the
lactiferous sinus with numerous apoptotic figures (a) and beta-galactosidase-positive cells (b,e). Very few PCNA-positive cells could be seen (a, d). In
the nipple from L1 lactating heterozygous females, PCNA-positive cells appeared more numerous and beta-galactosidase-positive cells disappeared
together with the epithelial plug. Original magnification X150 except for i: X75.
doi:10.1371/journal.pone.0018645.g008
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