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Abstract

Objective: Septic shock has a clinical mortality rate approaching fifty percent. The major clinical manifestations of sepsis are
due to the dysregulation of the host’s response to infection rather than the direct consequences of the invading pathogen.
Central to this initial immunologic response is the activation of leukocytes and microvascular endothelium resulting in
cardiovascular instability, lung injury and renal dysfunction. Due to the primary role of leukocyte activation in the sepsis
syndrome, a synthetic biomimetic membrane, called a selective cytopheretic device (SCD), was developed to bind activated
leukocytes. The incorporation of the SCD along an extracorporeal blood circuit coupled with regional anticoagulation with
citrate to lower blood ionized calcium was devised to modulate leukocyte activation in sepsis.

Design: Laboratory investigation.
Setting: University of Michigan Medical School.
Subjects: Pigs weighing 30-35 kg.

Interventions: To assess the effect of the SCD in septic shock, pigs were administered 30x10'® bacteria/kg body weight of
Escherichia coli into the peritoneal cavity and within 1 hr were immediately placed in an extracorporeal circuit containing
SCD.

Measurements and Main Results: In this animal model, the SCD with citrate compared to control groups without the SCD
or with heparin anticoagulation ameliorated the cardiovascular instability and lung sequestration of activated leukocytes,
reduced renal dysfunction and improved survival time compared to various control groups. This effect was associated with
minimal elevations of systemic circulating neutrophil activation.

Conclusions: These preclinical studies along with two favorable exploratory clinical trials form the basis of an FDA-approved
investigational device exemption for a pivotal multicenter, randomized control trial currently underway.
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Introduction

The sepsis syndrome is defined as the systemic inflammatory
response to infection. Sepsis is the leading cause of death in critically
ill patients in the United States, affecting 750,000 people annually
[1,2]. Despite prompt treatment with antibiotics, fluid resuscitation
and artificial organ function support, mortality rates still exceed 30
percent [3,4]. Most infections are bacterial, and, as sepsis progresses
in severity, the patient develops cardiovascular instability with
hypotension, lung dysfunction, and renal function deterioration
[5,6]. These major clinical manifestations of sepsis, however, are not
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caused directly by the invading microbes but are results of
dysregulation of the patient’s own inflammatory response [5,7].
Clentral to the initial innate immunologic response to infection is the
leukocyte, especially the neutrophil [6,8]. The neutrophil is a short-
lived circulating phagocyte which, when activated, binds to the
microvascular endothelium and extravasates into local tissue spaces
to degrade injured tissue or kill ingested pathogens with a variety of
stored proteolytic enzymes and rapid production of reactive oxygen
species [6,8]. Its essential role in sepsis is demonstrated by the
recurrence of life-threatening infections in patients with neutropenia
or with leukocyte defects [9,10].
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Although critical in host defense, the activation of circulating
neutrophils and the microvascular endothelium in systemic
infections are the basis for the progression to multiorgan
dysfunction in severe sepsis [6,7]. The interaction of activated
neutrophils and endothelium leads to increased vascular perme-
ability with fluid leakage from the intravascular space to tissue
interstitium with resulting hypovolemia, hypotension and cardio-
vascular instability [7,11]. Sequestration and aggregation of
neutrophils in the peritubular capillaries of the kidney promotes
acute kidney injury (AKI) and, if substantive, acute renal failure
(ARF) [12,13]. Sequestration and infiltration in lung tissue
progresses to diminish pulmonary gas exchange and, if severe,
adult respiratory distress syndrome (ARDS) [14,15].

New therapies directed to treating sepsis have, in the past,
focused on interrupting the excessive levels of inflammatory
cytokines (cytokine storm) or the activation of the coagulation
system during sepsis, with little or modest effects on this disease
process when tested clinically [5]. The administration of
granulocyte-colony stimulating factor (G-CSF) to enhance neu-
trophil number during sepsis has also failed to improve clinical
survival rates in several studies [16,17].

Since activated leukocytes are central to the pathogenesis and
progression of sepsis and other clinical inflammatory disorders, a
variety of new therapeutic approaches are being considered to
limit the deleterious clinical effect of activated leukocytes that
result from a dysregulated immune response to sepsis [18]. Our
group has developed a selective cytopheretic device (SCD)
composed of a synthetic biomimetic membrane that binds and
sequesters activated leukocytes from the systemic circulation along
an extracorporeal blood circuit. The SCD incorporates a low-
velocity, low—shear force blood flow path around a bundled
collection of biocompatible membranes to reproduce capillary
shear in order to bind activated leukocytes during a systemic
inflammatory disease state. To further minimize the systemic
effects of activated leukocytes, the blood is anticoagulated with
regional citrate infusion to lower blood ionized calcium (iCa) levels
to 0.2-0.5 mM, levels which inhibit the coagulation system of the
blood. This lowering of blood iCa also has an inhibitory effect on
neutrophil activation [19], thereby simultaneously combining the
SCD effect to sequester activated circulating leukocytes and limit
the potential activation of leukocytes entering the SCD and the
low-iCa environment.

The SCD with citrate anticoagulation was evaluated in a well-
established porcine model of Escherichia coli (E. coly)-induced septic
shock [20] and demonstrated an ability to lower systemic
neutrophil activation, diminish aggregation of activated leukocytes
in the lungs, decrease systemic capillary leak, preserve cardiac
output (CO) and mean arterial pressure, ameliorate renal
dysfunction, and prolong survival time compared to various
control groups. This approach is currently being tested in a pivotal
multicenter, randomized, control clinical trial with an investiga-
tional device exemption (IDE) from the Food and Drug
Administration (FDA).

Methods

Animal model

The animals were prepared for study using a protocol
previously reported in detail [20]. In brief, pigs weighing 30—
35 kg were anesthetized and artificially ventilated. Arterial and
Swan-Ganz thermodilution catheters, which were connected to
transducers, were placed to monitor cardiovascular parameters at
various time intervals. An ultrasonic flow probe was placed on one
renal artery for continuous assessment of renal blood flow (RBF).
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Septic shock was induced by infusion of 30x10'° bacteria/kg body
weight of Escherichia coli into the animals’ peritoneal cavities. All
groups received identical volume resuscitation protocols but no
vasopressor or inotropic agents as described previously [20].
Volume resuscitation consisted of 80 mL/kg crystalloid and
20 mL/kg colloid (Hespan, 6% hetastarch) as an acute bolus
immediately following bacteria administration, followed by a
continuous infusion of crystalloid at 300 mL/hr for 0-3 hr and
450 mL/hr for 3 hr until the end of the experiment. Ultrafiltration
rate from the hemofilter was maintained at 5 mL/min in all
groups. For heparin animals, volume resuscitation consisted of Na
150, C1 115, HCOs5 38, Ca 2.5, and Mg 1.6 mEq/L in DsW at a
rate of 300 mL/hr from 0-3 hr and 450 mL/hr for 3 hr until the
remainder of the experiment. For citrate animals, volume
resuscitation consisted of ACD-A citrate (Baxter, IL) at 100 mL/
min before the hemofilter and 2% CaCl, at 40 mL/min after the
SCD to maintain iCa levels along the circuit and in the systemic
circulation of the animal described below. The volume replace-
ment of the citrate animals was supplemented with normal saline
to maintain a total administered dose at 300 mL/hr from 0-3 hrs
and 450 mL/hr from 3 hr until experiment termination. This
acute model of septic shock results in death due to hypovolemia
and hypotension secondary to a profound capillary leak process.

Extracorporeal circuit of the SCD

Immediately after bacteria administration, the animal was
connected to an extracorporeal circuit containing a standard
continuous renal replacement therapy (CRRT) hemofilter and an
SCD, as displayed in Figure 1. Extracorporeal blood flow was
regulated at 100-150 mL/min. The hemofilter was a conventional
hemofilter (F40, Fresenius AG). The SCD was a cartridge
containing polysulfone hollow fibers with special blood line
connectors from the blood port of the first hemofiltration cartridge
to the SCD side port. The tested SCD had either a membrane
surface area of 0.7 or 1.8 m? on the lumen side was supplied by
CytoPherx, Inc. (Ann Arbor, MI). Extracapillary space (ECS)
surface arca was approximately 1.0 or 2.5 m? respectively. The
hollow fibers had a molecular weight cut off (MWCO) of 65 kDa
and an inner diameter of 200 um and wall thickness of 40 pm,
with the 0.7 m? cartridge containing roughly 4,200 fibers and the
1.8 m? cartridge approximately 10,900 fibers. The lumen fill
volumes of the 0.7 m? cartridge were 42 mL and 110 mL for the
1.8 m? cartridge, and the ECS fill volumes were 130 mL and
250 mL respectively. At the beginning of the experiment, the
lumens of the fibers were filled with normal saline and the end
ports capped. The dialysis pump system utilized either a Gambro
AK-10 or Fresenius 2008H. The pressure drop across the SCD
was 70-75 mmHg. Two additional groups of pigs were evaluated.
For control-group comparisons, another group of three animals
underwent extracorporeal blood perfusion in a circuit containing a
hemofilter without the SCD and blood perfusion through the
conventional blood flow pathway within the lumens of the hollow
fibers in the hemofilter. These animals received citrate regional
anticoagulation and are labeled the conventional citrate (Con-
citrate) group. A final group of animals were treated similarly to
the SCD group with citrate but without the bacterial infusion. This
group 1s referred to as the non-septic control (NS-control) animals.

Anticoagulation process

The anticoagulation process was a major variable in this series
of experiments. Group SCD-heparin (H, n = 12) received standard
systemic heparinization to maintain patency of the extracorporeal
circuit with targeted activated clotting times (ACTs) of 200-
300 sec; group SCD-citrate (C, n=13) received regional citrate
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Figure 1. Extracorporeal circuit with SCD.
doi:10.1371/journal.pone.0018584.g001

anticoagulation [21,22,23]. Anticoagulation citrate dextrose-A
(ACD-A, Baxter) was infused pre-hemofilter at a rate of
100 mL/hr to maintain the iCa concentration in the circuit at
0.2-0.5 mmol/L. Calcium chloride (2% w/v) was infused into the
venous return of the circuit at approximately 40 mL/hr to
maintain systemic iCa values between 1.1 and 1.3 mmol/L. These
1Ca levels were monitored utilizing an iISTAT reader (Abbott
Labs). An additional group of SCD-C utilized a 1.8 m* SCD
(n=3) for dose comparisons to SCD-C, 0.7 m® group.

Complete blood counts, serum chemistries and systemic
inflammation parameters

Complete blood counts and serum chemistries were measured
with a Hemavet automated analyzer (Drew Scientific) and VET
Test automated analyzer (IDEXX), respectively. Serum myelo-
peroxidase (MPO) activity was measured using a specific modified
o-dianisidine-assay containing 4-aminobenzoic acid hydrazide as a
potent and specific inhibitor of the MPO[24]. Cytokine concen-
trations, including IL-1f, 1L-6, IL-8, I11.-10, TNF-o0 and IFN-v,
were measured with commercial enzyme-linked immunosorbent
assay (ELISA) kits reactive to porcine cytokines (R&D Systems).

Assessment of leukocyte activation

FITC-conjugated anti-porcine CD11b antibody (SeroTec) was
added to pre-chilled peripheral blood. Red cells were then lysed
and the leukocytes fixed by addition of Bectin-Dickenson’s FACS
lysing solution. Cells were collected by centrifugation and
resuspended for flow-cytometry analysis. CD11b expression was
quantitatively assessed as mean fluorescent intensity (MFI) with an
Accuri flow cytometer.

Peripheral blood mononuclear cells (PB-MCs) were isolated
from venous blood samples of the animals. Mononuclear cells were
1solated using standard Ficoll-Hypaque gradient technique (20).
These cells were then incubated for 24 hrs in culture plates
containing RPMI-1640 medium supplemented with antibiotics in
the absence (unstimulated) an in the presence of 1 pg/mL
lipopolysaccharide (LPS, stimulated). The supernatants were
collected and cytokine concentrations measured. The ratio of
stimulated to unstimulated cytokine concentrations in the
supernatants was then calculated.

Lung histology and immunohistochemistry

Lung samples were harvested post-mortem from septic pigs
treated under SCD-citrate or SCD-heparin conditions. Two
random sections from each of the 5 lobes of the lungs were
processed for cryosections. Frozen lung samples were cut at 5-um
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thickness and fixed with 4% paraformaldehyde on ice for 10
minutes. Tissues were stained with hematoxylin and eosin for light
microscopic examination, or for CD11b evaluation; nonspecific
adsorption was minimized by incubating the section in goat serum
in PBS for 1 hour. The sections were then incubated with primary
anti-CD11b at recommended dilution for 1 hour at room
temperature, followed by incubation with 1:200 anti-mouse IgG
Alexafluor594 conjugate at room temperature for 30 minutes, then
nuclei counterstained with DAPI. Image] software [25] was used
to quantitate the percent CD1l1b-positive area in random 10x
images taken with fixed capture settings and then normalized to
cell number by percent DAPI-positive area in the same picture.
The results are expressed as a ratio of percent CD11b-positive
area by percent DAPI-positive area.

Cell elution of SCD cartridges

At the end of the experiment, blood was returned to the pig by
perfusion with replacement fluid. The circuit was disconnected
from the pig and replacement fluid flushed continuously through
the SCD extracapillary space (ECS) until perfusate fluid was free
of visible blood. Replacement fluid was drained from lumen and
ECS of the cartridge and the cartridge was fixed for histologic
processing [26] or exchanged with a proprietary stabilization
buffer containing a calcium chelating agent. Adherent cells were
then mechanically removed from the SCD eluent for analysis. To
ensure that all cells adherent to the device were eluted, several
cartridges were digested after elution with a DNA isolation buffer
(SDS and proteinase K) and the DNA isolated and quantified. The
DNA extracted from cells remaining in the cartridge after elution,
on average, represented less than 5 percent of the total number of
cells recovered from the cartridge.

In Vitro assessment of leukocyte interaction with the SCD
membrane

A custom microscopic flow chamber system was set up to enable
microscopic analysis of leukocyte interaction with a therapeutic
membrane under investigation. The flow chamber consisted of a
polycarbonate housing with an inlet and outlet for perfusion. A flat
sheet polysulfone membrane was affixed to the block with a
polycarbonate gasket to direct the shear flow. Thickness of the
gasket (100 um), length (2 cm), and the width of the channel
(1.5 mm) determined the volume of the flow chamber. Micro-
scopic imaging of the leukocyte/membrane interaction was
accomplished through an optical window of cover glass affixed
to the bottom of the polycarbonate block. This microscopic flow
chamber was used with isolated blood, or purified leukocytes.

Isolated blood is prone to activation with excessive handling;
therefore, 5 mL of fresh heparinized porcine blood was prepared
for custom flow chamber evaluation with minimal manipulation.
Briefly, leukocytes were fluorescently labeled using 50 pg/ml of
Hoechst 33342, a membrane permeable, nuclear intercalating
dye. The effect of activation of leukocytes within whole blood was
assessed by adding 1 pg/ml lipopolysaccharide (LPS) directly to
blood samples. Similarly, 125 pL of anticoagulant citrate dextrose
solution USP Formula A (Baxter, Deerfield, IL) was added to
1solated blood and ioinized calcium levels were measured prior to
microscopic flow analysis with i-stat EG-7+ cartridges. Blood
passed through the flow chamber at a rate of 20 uL/min. with
calculated shear forces between 1-10 dynes/cm”. For each
1solated blood sample, sequences were acquired in triplicate.

Microscopic analysis of cell capture events was accomplished
either using a Zeiss Axiovert 200 M or Axio-Observer epifluor-
escence microscope equipped with a microscope stage-top
incubator to control environmental temperature and COy content.
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Fluorescence images were acquired with either a Zeiss MRm3 or
an Iccl camera at a frequency of 1 frame/second for 5 minutes,
allowing for analysis of the leukocyte/membrane interaction, and
at 1 frame/minute for 1 hr sequences to assess long term
attachment. Frame by frame evaluation of rolling, attachment
and detachment of leukocytes was carried out to determine the
total number and duration of these phenomena. An attachment
event was defined when a leukocyte appeared in the same location
for multiple frames within a sequence. Detachment was defined as
release events associated with previously defined attached
leukocytes. Rolling events were defined by identifying the same
leukocyte in multiple sequence frames within a sequence where the
leukocyte was not in same exact location, but in close proximity to
the prior location, and was moving slower than the fluid flow.

Assessment of in vitro leukocyte activation

Heparinized whole blood was added to microfuge tubes
prepared with and without lipopolysaccharide (LPS) (10 pg/mL)
or formyl-methionyl-leucyl-phenylalanine (fMLF, 50 nM) and/or
anticoagulant citrate dextrose solution (ACD) with gentle mixing
[27,28]. Measurement of various components utilized commer-
cially available ELISA kits from R+D Systems (IL-6, IL-8, IL-10),
from Bender MedSystems (elastase) and EMD chemical (lactofer-
rin); iCa levels for the (+) citrate and (—) citrate conditions were
measured using an I-STAT reader and confirmed to be
=0.25 mM and 1.25 mM, respectively. Samples were incubated
for various times at 37°C and 5% CO,. Plasma samples were
collected and analyzed. CD11b activation was measured using an
FITC-conjugated mouse anti-human antibody (AbD Serotec) and
evaluated on an Accuri C6 flow cytometer.

Statistics

Group comparisons at multiple time points utilized ANOVA
with repeated measures. Otherwise, comparisons between groups
used Students’ t test, paired or unpaired, as appropriate. Statistical
significance was defined as p<<0.05.

Results

Cardiovascular parameters

The intraperitoneal administration of high-dose gram-negative
L. coli bacteria in this porcine study produced a rapid, profound
and ultimately fatal decline in arterial blood pressures (Table 1 and
Fig. 2). These declines occurred soon after bacteria administration
and were progressive with modest volume resuscitation but
without vasopressor or inotropic support. Although mean arterial
blood pressure was similar in the groups, cardiac output (CO) was
significantly higher (p<<0.02) in the SCD-citrate versus SCD-
heparin groups (Fig. 2). This increase in CO was not due to
differences in left ventricular filling pressures, since pulmonary
capillary wedge pressures were similar in both groups, but was
associated with a lower level of systemic vascular resistance of the
SCD-citrate group (p<<0.03, Fig. 2). Pulmonary vascular resistance
(PVR, Fig. 2, p<<0.001) was less in the SCD-citrate groups
compared to the SCD-heparin group. Despite no consistent
difference in RBF in the SCD-H versus SCD-C, 0.7 group, the
SCD-C, 1.8 group, had a significant (p<<0.02) reduction in RVR
at the later time points compared to SCD-H. As a quantitative
measure of systemic capillary leak process activated with bacterial
sepsis, the changes in hematocrit were assessed. Hematocrit values
progressively increased during the course of the experiment in the
SCD-H group compared to a plateauing of values after 6 hours in
the SCD-C group (Fig. 2, p<<0.02). Of importance, the SCD
displayed a dose effect with the SCD-C, 1.8 group, having
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significantly better preservation of cardiac output in the later time
periods compared to SCD-C, 0.7, along with significantly lower
SVR, PVR, and RVR. The Con-citrate animals had similar
cardiovascular changes compared to the SCD-H group (Table 1).
The non-septic (NS)-control animals had stable cardiovascular
parameters through 8 hours, at which time the experiment was
terminated.

Specific detailed evaluation focused on renal parameters, since
clinical testing has been and will be accomplished in acute renal
failure patients in which the SCD can be easily incorporated into
the extracorporeal blood circuit required for continuous renal
replacement therapy (CRRT). In this regard, as shown in Figure 3,
the degree of renal dysfunction in the SCD-C groups were much
less than the SCD-H groups as reflected in BUN (p<<0.02) and
serum creatinine levels (p=0.007). Renal blood flow was much
better preserved in the SCD-C, 1.8 m?, group compared to SCD-
H (p<<0.05) as well as a greater urine output (p<<0.05).

These differences in cardiovascular and hemodynamic param-
eters in the two groups were associated with a significantly longer
survival time in the SCD-C group compared to the SCD-H group
(Figure 4). The citrate-treated animals survived 8.8%0.4 hours
compared to 6.4%0.3 hours for the SCD-H animals (p =0.0002).
Of note, the SCD-C, 1.8 group, had survival times of 11.5, 10, and
9.5 hours. The survival curves of the two groups are displayed in
Figure 3. The key component of the improved cardiovascular and
organ function parameters in these experiments was the
combination of both the SCD and citrate. The Con-citrate group
of animals treated with a single hemofilter cartridge with blood
perfusion through the hollow fiber lumens with citrate anticoag-
ulation but without the SCD demonstrated similar cardiovascular
parameters as the SCD-H group, with survival time of
6.5%0.5 hours (7, 6, and 5.5 hours for three animals). Thus, both
the SCD and the citrate anticoagulation protocol were required to
provide a survival advantage.

Leukocyte parameters

To assess the interactions of leukocytes and the SCD
polysulfone membranes, a customized flow chamber with
videomicroscopy was set up. The addition of citrate decreased
ionized calcium levels of tested blood to 0.32%0.05 mmol/L,
while ionized calcium in the normal blood samples was
1.32£0.05 mmol/L. Analysis of leukocyte attachment events
confirms that LPS activation of the leukocytes in the absence of
citrate significantly increases leukocyte attachment to polysulfone
membranes during shear flow (p<<0.05, Fig. 5). In citrate treated,
low ionized calcium flow chambers, a statistically significant
decrease in leukocyte attachment was observed (p<<0.05),
suggesting that leukocyte adhesion to polysulfone membranes
may be ionized calcium dependent. These results are consistent
with ex vivo data in the severe sepsis porcine model, in which citrate
treated membrane cartridges have fewer adhered leukocytes at the
end of studies, as assessed by elution of the cartridges (see below).
In addition, preliminary analysis of 1 hour sequences demonstrat-
ed far fewer persistent leukocyte adhesion events for +LPS
+Citrate isolated blood compared to +LPS -Citrate isolated blood;
however, there was an observed increase in +LPS +Citrate rolling
events. This suggests a catch and release phenomena when
leukocytes interact with the polysulfone membrane in the presence
of citrate.

Further experiments were carried out to assess the effect of
citrate and a reduction of low iCa on leukocyte activity. An i vitro
whole blood assay system was established [27,28] to assess the
effect of citrate-promoted reductions in blood iCa on leukocyte
cytokine production (IL-6, IL-8, IL-10) and release of preformed
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Table 1. Cardiovascular parameters.
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Parameter 0 1 2 3 4 5 6 7 8 9 10 11
Cardiac output, L/min
SCD-Citrate 4.3+0.3 49%*0.2 4.7+0.2 44+03 3.7%0.2 2.7*03 23%*0.2 2.1x0.3 1.7%0.1 1.0x+0.3 1.1x0.1 1.1%0.1
0.7 m?
SCD-Citrate 39408  52%06  48+03 45%04 41x05 37+05 31x02  28%02 24*03 21*04 14%02
1.8 m?
SCD-Heparin 4.1+0.3 52%+0.2 42+03 3.8%£0.2 26*0.2 1.7%+0.2 1.5+0.2 1.3%£0.2 1.1
Con-Citrate  4.5+0.3 4.7*0.5 537222 1] 2 3.6*0.5 3.8%£0.5 26*04 1.5+0.3 1
Systolic blood pressure, mmHg
SCD-Citrate 96.9+5.7 99.9+2.2 945+3.2 889*44 803%*4.1 69.7+6.5 69570 68.0%6.5 55.0*87 458*51 535*05 36.5*8.5
0.7 m?
SCD-Citrate  1187%292 987%97  657+44 703*41 690+51 670%46 593+45 607+87 617+81 51.0*45 333%79
1.8 m?
SCD-Heparin 96.6+4.7 104948 944+6.5 88.0*44 764+63 58444 524+84 41.0+12.1 55
Con-Citrate 87.3*+1.8 103.0=114 773*42 69.0%£32 747*137 51749 30.0£20.0
Diastolic blood pressure, mmHg
SCD-Citrate 60.5+4.6 64.5+29 54.0*+4.7 455*44 421*47 397*x48 399*48 36.1%x34 263*32 265*47 325*45 195*25
0.7 m?
SCD-Citrate 89.3%259 70.0%6.1  403%66 400+1.0 393+12 367+12 29006 30318 273*19 250%29 17.0%35
1.8 m?
SCD-Heparin 61.4+33 75645 61.7£6.6 483*34 386*36 276*34 26.1*5.1 240*+7.3 36.5
Con-Citrate  53.3+2.0 71.7%6.3 50.3*+4.5 427%15 483%129 31.0*2.1 20.0+10.0
Mean arterial pressure, mmHg
SCD-Citrate 72.2+48 75826 67.2+4.1 599+4.2 548*39 47.1%x64 495*+45 46.5*3.7 357149 343*53 284%10.1 233*27
0.7 m?
SCD-Citrate  99.1%27  79.6*73  488+58 50.1x1.5 492+25 468+21 391%16 404*39 388+39 337%33 224%49
1.8 m?
SCD-Heparin 72.0*33  86.1+44  726*65 60.6*3.1 503*44 365*+36 343*63 26.8*+86 427+03
Con-Citrate 64.7+1.7 82.1+8.0 59.3*+4.1 514*+11 445*05 379%29 233*+133
Systemic vascular resistance, dyn-s/cm®
SCD-Citrate 1288+119 111961 1027%73 994*72 110164 1414+111 1601*x143 1767%204 1701£179 2170*£183 2856*722 1776*336
0.7 m?
SCD-Citrate 1881+152 1073+23 710£143  784%59 874114 926%131 884*59 1028+139 1134+186 1088+87 971
1.8 m?
SCD-Heparin 1371+137 1250120 1268+110 120058 1412%75 1567140 1552£242 1918*533
Con-Citrate 1034111  1149+94 106772 976*+96 1174103 1375343 1274
Pulmonary vascular resistance, dyn-s/cm®
SCD-Citrate 141+17 18025 255*33 321%47 393*78 573*118 632%97 859145 935131 948%343 1602+242 1067*+133
0.7 m?
SCD-Citrate 164+13 228+83 207+86 281*63 317=%55 377%£55 475*61 543154 634*49 694*58 552
1.8 m?
SCD-Heparin 268+102 287=*51 384+46 525+58 763*+76 1293+£243 1024+198 1121%+291 1504
Con-Citrate 147+18 122+17 404*+177 602*83 525*+151 982%248 1199*14
Pulmonary capillary wedge pressure, mmHg
SCD-Citrate 7.8+0.7 8.5*0.9 83%1.0 7.0%1.1 7.2%1.1 7.2x1.1 59%+0.9 59+0.8 49*1.0 6.8*x2.1 50*26 35
0.7 m?
SCD-Citrate 8.3+0.9 11324 10.7+3.7 73%1.2 6.3£0.9 5.7%£09 6.00.6 6.3£0.7 6.3£0.7 6.0£0.6 12.0£5.5
1.8 m?
SCD-Heparin 7.0+0.8 8.5*1.2 7.2+0.8 6.6+0.7 73114 6.3+1.0 57%1.0 6.8+11.0 55
Con-Citrate  7.7%1.2 10709  9.0x15 73%+13 6.3+0.3 6.3+0.3 85+1.5
Renal arterial blood flow, mL/min
SCD-Citrate 197.4+16.9 183.7+12.8 193.4%25.5 173.2+23.4 125.1+£18.2 79.9+18.0 69.3+17.9 48.5*147 37.1=11.8 37.013.9 47.5%125 13.5%85
0.7 m?
SCD-Citrate  152.0+15.5 141.0%£23 170.7%31.5 173.3%33.5 153.0£23.9 131.3+26.9 103.0£23.5 83.0+13.1 67.3+8.2 49.7+9.2 30.5*+24.5
1.8 m?
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Parameter Y 1 2 3 4

6 7 8 9 10 1

Con-Citrate

Renal vascular resistance, mmHg/min/mL

SCD-Heparin 0.39+0.08 0.58+0.08 0.55*0.11

Con-Citrate  0.30+£0.02 0.52+0.12

SCD-Citrate  0.39+0.03 .037+.06 037+005 048+007 1.05+0.29
0.7 m?

SCD-Citrate  0.67+0.27 0.49+0.06

1.8 m?

SCD-Heparin 207.0+22.8 155.2*+15.7 152.0+21.7 1485188 111.8+21.4 53.4+13.6 37.6=13.8 45.8+20.1 24
200.3*£19.5 157.3%=38.1 184.3%63.0 183.0+48.3 138.0=17.7 69.0£24.0 19.0=19.0

137044 218*0.63 1.93*+0.72 1.05*0.31 0.82*+0.37 2.38*1.56

0.25+0.05 0.28+0.07 0.30*+0.05 0.35+£0.08 0.44*=0.09 0.50+0.08 0.59+0.07 1.69+1.14

0.41£0.04 0.63+0.20 0.77£0.16 1.30*0.37 0.78*0.23 1.64+0.30
0.33+0.08 0.26+0.05 0.2820.04 0.67£0.31 0.75

doi:10.1371/journal.pone.0018584.t001

inflammatory proteins from neutrophil exocytotic vesicles (lacto-
ferrin, elastase). As demonstrated in Table 2, citrate-promoted
declines in blood iCa levels were associated with diminution in
both basal and stimulated (LPS, fMLF) promoted release of
cytokines and exocytotic proteins.

To assess the sequestration of activated leukocytes along the
SCD membranes, the SCD cartridges were processed for
histological evaluation at the conclusion of the sepsis-induced
fatality study. The light microscopy findings in Figure 6 clearly
depict leukocyte attachment and aggregation along the outer
surface of the SCD membranes. To determine the amount and
type of adherent leukocytes in the SCD, the devices were
processed and cells eluted off the membrane at the end of
treatment period. The number of white blood cells (WBCis) eluted
off the SCD-heparin and SCD-citrate, 0.7, devices were
6.44+3.4x10% and 1.72+1.20x10% cells (p<0.05), respectively,
suggesting that citrate anticoagulation promoted a higher degree
of detachment events during the treatment protocol. The
distributions of eluted cells were 79%5% neutrophils and
21+4% monocytes in SCD-heparin vs. 55*4 and 30*5%
SCD-citrate, 0.7 groups. Of note, the 1.8 SCD-C group had even
fewer adherent cells averaging 1.88%1.21x107, a tenfold lesser
number than the 0.7 groups, reflective of the low circulating
systemic white counts in the later stages of the experiments in the
1.8 group (see below). Activated leukocytes predominated this
sequestration phenomenon, since an average 8x10° cells cluted
from the cartridges of non-septic control animals with SCD
(n=2). Of note, the C-citrate group had less than 2x10* cells
eluted from lumens of the cartridges with luminal blood
perfusion.

To further test the hypothesis that the SCD with citrate
anticoagulation can influence the activation state of circulating
leukocytes, a variety of biomarkers were assessed in the animals
during the course of the experimental protocol. Activated neutrophils
release various enzymes in response to invading microbes or tissue
injury to initiate tissue repair. Since the dominant enzyme released
from neutrophil granules is MPO [29], blood levels of MPO reflect
the level of activation of neutrophils in the body. Plasma MPO levels
with SCD-citrate were significantly lower compared with SCD-
heparin (p = 0.01 at hour 3), averaging 82.4*21.0 and 307102 ng/
mlL, as well as well as at 6 hours (p<<0.003, Fig. 7), respectively.
Serum cytokine levels, including IL-1, IL-6, IL-8, IL-10, TNF-o. and
IFN-y, were not significantly different between SCD-heparin and
SCD-citrate groups, although IL-1P and IL-8 trended higher in the
SCD-heparin compared to the SCD-citrate group.

@ PLoS ONE | www.plosone.org

The level of neutrophil activation was quantified by measuring
the amount of CDI11b expression on circulating neutrophils.
CD11b is a membrane protein involved in adherence of leukocytes
to activated endothelium as a first step to exiting the circulation to
a site of inflammation [30]. As detailed in Figure 7, the MFI of
neutrophils in the systemic circulation was dramatically increased
during the treatment time course in the SCD-heparin group
compared to the SCD-citrate group (p =0.03).

To further assess the effect of SCD-C on the innate
immunologic system, PBMCs were isolated and assessed for
cytokine release. At baseline prior to sepsis induction, PBMC
release of TNF-o and IL-8 were 2.1+1.8 and 6.5+2.8 pg/10°
cells in response to LPS in the SCD-H group, respectively; in the
SCD-C group, the release was 5.1=0.9 and 18.7%8.1, respec-
tively. At 6 hours of sepsis, PBMC release of TNF- o and IL-8 in
response to LPS was significantly lower in the SCD-C versus SCD-
H groups (p<<0.05), averaging 14*2 and 24*12 percent of
baseline values for TNF- ot and IL-8 in SCD-C animals compared
to 63210 and 108%19 percent of baseline levels in the SCD-H
group. PBMC release of IL-6 was not different between groups.

Since previous studies in animal models of sepsis have reported
that the lung is the first organ target for activated leukocyte
sequestration and infiltration after endotoxemia or sepsis [14,15],
we evaluated the effect of SCD and citrate anticoagulation on the
sequestration of activated leukocytes in lung tissue compared to
SCD-heparin animals. As demonstrated in Figure 8, a substantive
decrease in CDI11b-labeled cells was observed in the SCD-C
group compared to the SCD-H animals. Careful histomorpho-
metric analysis of 4 animals in the SCD-C group versus 5 animals
in the SCD-H group demonstrated ratios of CD11b positive area
to DAPI- positive area of 0.114*0.21 versus 0.334%+0.052
(p=0.007), respectively.

To determine the kinetics of the circulating pool of leukocytes in
the SCD-H and SCD-C groups, the absolute WBC and neutrophil
counts were assessed (Iig. 9). Both groups reached a nadir of
11252240 and 1094=166 neutrophils/mm® at hour 3 in the
heparin and citrate groups, respectively. These groups did not reach
absolute neutropenia (defined as counts below 500) due to an
increase in immature neutrophils from bone marrow, as assessed by
manual examination of blood smears, beginning at 3 hours in both
groups. Of note, the SCD-C, 1.8, group had a persistent low
neutrophil count reaching a nadir of 457%77 at hour 6 due to a
markedly diminished release of immature neutrophils from the bone
marrow. The Con-citrate group had a similar decline and rebound
of leukocyte counts, whereas the NS-control animals tended to have
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Figure 2. Cardiovascular parameters of SCD groups. Statistical comparisons in text.
doi:10.1371/journal.pone.0018584.9g002
neutrophilia, with neutrophil counts rising from approximately excessive host response to infection, or the systemic inflammatory
4,000 to 14,000 over the 8-hour evaluation period. response syndrome (SIRS). The signs and symptoms of SIRS are

not a direct result of the infecting pathogens but are due to the
dysregulation of the host’s innate immunologic system, with

Discussion activation of endothelial cells, leukocytes, and platelets [6,7,8].

Sepsis continues to be a complex and therapeutically challeng- The cardiovascular instability of SIRS with hypovolemia and
ing clinical disease state. Sepsis is the leading cause of death in hypotension is a consequence of leukocyte and endothelial
critically ill patients in the United States [1,2]. The sepsis activation resulting in increased vascular permeability, fluid
syndrome has been recognized as the clinical manifestation of an leakage into the interstittum, and redistribution of intravascular
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Figure 3. Renal function parameters in SCD groups. Statistical comparisons in text.

doi:10.1371/journal.pone.0018584.9003

fluid volume into interstitial spaces and generalized edema [7,11].
The sequestration and infiltration of leukocytes into lung tissue
promotes respiratory dysfunction, often progressing to ARDS
[14,15]. Sequestration and aggregation of activated cellular
elements of the blood system in the renal microvasculature
promotes renal dysfunction, AKI and ARF [12,13].

Neutrophils are the initial and cardinal cellular effectors of the
innate immunologic response. Because of the nonselectivity in
their targets, neutrophils are highly effective in eradicating
invading microbes and responding to tissue injury but with
substantial collateral damage to local tissue. Controlling the levels
of activation of circulating leukocytes during SIRS may be an
effective means of treating sepsis in conjunction with antibiotics,
fluid resuscitation, and artificial organ support. This modulation,
however, must allow adequate neutrophil numbers and activation
required for host defense but not excessive numbers and activation
to promote multiorgan dysfunction. This modulation is empha-
sized since absolute neutropenia in clinical situations has been
clearly shown to result in high susceptibility for infection [9,10],
yet neutrophil depletion, depending upon degree and timing after
sepsis Initiation, has been shown to ameliorate multiorgan
dysfunction and fatal consequences [31,32].

The manner in which an advanced membrane device coupled
with a commonly used anticoagulation solution containing
citrate can influence the multiorgan effects of sepsis and impact
survival times may provide insight into the critical pathways in
which the innate immunologic response promotes multiorgan
dysfunction and fatal consequences. In this regard, we have

@ PLoS ONE | www.plosone.org

formulated an extracorporeal biomimetic membrane device (the
SCD) which preferentially binds activated leukocytes and, with
a regional citrate anticoagulant circuit, promotes a lower
systemic leukocyte activation profile leading to a sustained,
but nonexcessive, leukocyte activation process during a septic
shock episode. The SCD was developed with a proprietary
design using an extracorporeal circuit and a cartridge contain-
ing biocompatible polysulphone hollow fibers. The blood flow
within the device was directed to the extracapillary space of this
cartridge to achieve a blood velocity and shear stress
approaching capillary hemodynamics to provide a surface for
leukocyte adherence. The ability of this device to sequester
activated leukocytes was demonstrated both in wvitro with
videomicroscopy of a custom designed shear chamber contain-
ing a polysulfone membrane and ex vivo during extracapillary
perfusion in a porcine model of gram-negative septic shock.
Elution of cells adherent to the SCD membranes recovered
approximately 10® to 10 leukocytes, a log-fold greater than
non-septic conditions. Ongoing studies with shear chambers
with blood perfusion over flat plate polysulphone membranes
have demonstrated significantly greater attachment events after
activation of leukocytes with LPS.

A second component to this continuous extracorporeal
therapy was combining the SCD with regional citrate antico-
agulation protocols. Citrate infusion achieves effective antico-
agulation by chelating calcium and removing iCa as a cofactor
for the coagulation cascade [21,22]. This decline in iCa also
inhibits key leukocyte activation processes as well [19,33], so
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Figure 4. Survival curves in SCD groups.
doi:10.1371/journal.pone.0018584.9g004

that in combination with citrate regional anticoagulation the
SCD becomes a selective cytopheretic inhibitory device. In this
regard, the experiments presented in this report demonstrate
that lowering iCa in whole blood inhibits the release of cytokines
(IL-6, IL-8, and IL-10) and neutrophil exocytotic proteins
(lactoferrin and elastase) as well as CDI11lb expression after
simulation with LPS or fMLF. The low-iCa environment,
promoted with citrate during the SCD treatment, also appears
to promote detachment of the bound and sequestered leukocytes
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Figure 5. Leukocyte attachment to polysulfone membranes
during shear flow in custom flow chambers. All values are
reported as average normalized values to -LPS -Citrate = Standard
Error. (N=3, p<<0.05).

doi:10.1371/journal.pone.0018584.g005
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since the number of leukocytes bound to the SCD membrane
was approximately 10-fold less than that observed with SCD
during systemic heparin anticoagulation. In addition, citrate
treatment to lower iCa in blood promoted less persistent
attachment events in the @ wvitro shear chambers with SCD
membranes.

To assess the efficacy of the SCD in SIRS, a well-established
large-animal model of septic shock was studied [20]. The SCD
was incorporated into an extracorporeal blood circuit and pump
system used for continuous renal replacement therapy (CRRT) in
anticipation of the clinical evaluation of the SCD in ICU patients
with AKI and MOF. This clinical disorder is an appropriate
initial application since AKI initiates a pro-inflammatory SIRS
process [34] and is treated with continuous extracorporeal
therapy with well-established citrate anticoagulation protocols.
Accordingly, the use of the SCD in an extracorporeal CRRT
circuit was evaluated in this porcine model during both regional
citrate and systemic heparin anticoagulation protocols. The
group of animals treated with the SCD and citrate maintained
better cardiovascular parameters compared to SCD-heparin
animals after the initiation of FE-coli sepsis. More prolonged
preservation of arterial pressures and higher cardiac outputs were
observed in the SCD-C versus the SCD-H groups due to lesser
degrees of systemic capillary leak. Systemic, pulmonary, and
renal resistances were lower in the SCD-C compared to the SCD-
H groups. These improved cardiovascular parameters translated
to nearly 40 percent longer survival times. These effects were
observed only in those animals treated with the combination of
SCD and citrate; animals treated without the SCD with citrate
anticoagulation had similar cardiovascular and neutrophil
activation parameters and survival times as the SCD-heparin
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Table 2. Effect of citrate on leukocyte activation parameters.
IL-6 IL-8 IL-10 Lactoferrin Elastase CD11b
(ng/mL) (ng/mL) (ng/mL) (mg/mL) (mg/mL) (MFI x10%)
Baseline n=7 n=5 n=4 n=4 n=5 n=3
Heparin 0.18%+0.04 0.0*0 0.11%+0.07 8.47+1.54 2.73+0.29 22.55%1.06
Citrate 0.38%+0.15 0.59%1.51 0.01%0.01 1.67+0.29* 0.94+0.148 7.32*0.478
Stimulated
(LPS, fMLF)
Heparin 65.42+19.77 34.18+6.66 3.74*+0.94 12.42+1.08 4.52+0.54 53.43%3.12
Citrate 28.99+7.60* 3.45+2.301 2.06+0.841 3.43+0.188 0.91£0.28** 28.72+2.958
*p<0.05;
Tp<0.02;
**p<0.005;
8p<<0.002, as determined with paired t-test between heparin and citrate groups.
doi:10.1371/journal.pone.0018584.t002

group. A dose effect with SCD-C on cardiovascular parameters These physiologic parameters were associated with significant
was also observed when the membrane surface area was effects on neutrophil activity in the systemic circulation. The level
increased from 0.7 to 1.8 m?. of plasma MPO, a key exocytotic enzyme in the neutrophils

D

Figure 6. Leukocyte adherence to outer surfaces of hollow fibers. Light micrographs stained with H&E from three animals show leukocyte
adherence to surfaces of the SCD. Panel A: Low-power micrograph showing adherent cells around each hollow fiber (160 x). Panels B and C: Higher
power micrographs demonstrating cluster of leukocytes along the outer surface of hollow fibers (400 x). Panel D: High-power micrograph displaying
predominant polymorphonuclear cells along with mononuclear cells in the adherent cell clusters (1600 x).

doi:10.1371/journal.pone.0018584.g006
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Figure 7. Serum MPO levels (top panel) and circulating leukocyte CD11b levels (bottom panel) in SCD groups.
doi:10.1371/journal.pone.0018584.9g007
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Figure 8. Neutrophil aggregation in lung tissue. Neutrophil aggregation was evaluated in cryosections of lung tissue prepared postmortem
from septic animals treated with SCD-heparin (left) or SCD-citrate (right). CD11b was detected with Alexafluor 594, nuclei detected with DAPI and
10x images taken with the appropriate filter sets. Image J software was used to quantitate the percent of positive area in each CD11b picture and

then normalized with DAPI percent area.
doi:10.1371/journal.pone.0018584.g008

respiratory burst process [29], rose dramatically in the SCD-H
animals to a level 10-12 times the baseline level at 3 and 6 hours
after sepsis induction, whereas MPO levels were unchanged in the
SCD-C animals. It should be noted that MPO can be released
from the vascular endothelium by the administration of heparin
[35], but at levels that would not significantly impact those
reported in Fig. 7. The level of CDI1lb expression in the
circulating pool of neutrophils, as determined by flow cytometry,
was also significantly reduced in the SCD-C group compared to
the SCD-H group. These differences in biomarkers of neutrophil
activation had a direct correlate to organ involvement. Since the
lungs are the initial site of neutrophil sequestration in SIRS
[14,15], the number of activated leukocytes in lung tissue was
measured by careful immunohistochemical morphometrics. The
degree of accumulation in lung tissue was significantly higher in
the SCD-H group compared to the SCD-C group. This increase
in leukocyte accumulation was reflected in significantly higher
PVR in the heparin versus citrate SCD animals. Furthermore, the
degree of renal dysfunction as measured with BUN and serum
creatinine levels was substantially worse in the SCD-H versus the
SCD-C  groups. Since the SCD also sequesters circulating
monocytes from the elution studies, PBMCs were isolated from
SCD-C and SCD-H groups. At 6 hours after sepsis, the response
to LPS induced IL-8 and TNF-o release were modulated
downward in SCD-C animals versus SCD-H. These results
demonstrate an immunomodulatory role of the SCD-C in the
response to sepsis.

The WBC kinetics in these studies also provide insight into
the manner in which SCD treatment may influence the
leukocyte response to infection. The number of neutrophils
sequestered in the SCD did not exceed more than 107 cells, a
small percentage of the circulating and marginated pool [8].
Furthermore, despite the decline in circulating neutrophil
counts due to sequestration and infiltration of these cells in
various body compartments, especially the peritoneal cavity,
absolute neutropenia did not occur due to a release of immature
neutrophils from the bone marrow. The magnitude of this bone
marrow response was blunted with the larger SCD membrane,
suggesting that SCD-C treatment may alter the kinetics of

@ PLoS ONE | www.plosone.org
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neutrophil apoptosis and bone marrow release of neutrophils.
Ongoing studies are planned to evaluate this process in greater
detail. Of interest is the finding that the number of leukocytes in
the SCD cartridge during citrate anticoagulation was 10-fold
less than in the heparin condition despite a greater exposure
time to sepsis before cartridge elution. This finding suggests that
the low-iCa environment may promote release of adherent
activated leukocytes. The kinetics of this “catch and release”
phenomenon was supported with ongoing studies utilizing in
vitro shear chambers. Since a log less leukocytes are bound to the
SCD membrane and substantially less white cells were
sequestered in the lung under citrate versus heparin anticoag-
ulation conditions, the SCD-citrate animals may have also been
advantaged with more neutrophils available to respond locally
to the peritoneal infection. These studies suggest that this novel
device and approach may ameliorate the natural progression of
SIRS due to immunomodulation that leads to improved
cardiovascular stability, respiratory performance and renal
function. This study, however, demonstrates a preventative
therapeutic approach initiated at the onset of bacterial infection.
The effect of this treatment protocol on pre-existing septic shock
in a similar model remains undefined. Initial attempts to reverse
developing septic shock in a porcine model 2 hours after E.coli
administration and sepsis onset was not successful. Incorpora-
tion of the extracorporeal circuit 2 hours into the course of
sepsis resulted in substantive afterload reduction in the unstable
animal and rapid cardiovascular collapse, although the outcome
may have been different if the animals were supported with
pressors as is routine in clinical practice for this disease state.
The clinical evaluation of the SCD with citrate anticoagulation
has been initiated in two exploratory clinical trials in ICU patients
with ARF and multiorgan failure due to the ease of incorporating
this device into the standard CRRT approach to these critically ill
patients. These early exploratory clinical trials have demonstrated
an excellent safety profile and compelling efficacy impact [26,36].
Leukopenia and sustained thromobocytopenia were not observed
in these initial exploratory clinical studies. Accelerated renal
recovery with CRRT discontinuation and a 50 percent or greater
relative improvement in survival rates has been observed. A
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pivotal FDA-approved IDE, multicenter, randomized control trial
1s currently underway to evaluate this innovative approach to this
clinical disorder.
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