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Abstract

Antimicrobial peptides (AMPs) represent a class of natural peptides that form a part of the innate immune system, and this
kind of ‘nature’s antibiotics’ is quite promising for solving the problem of increasing antibiotic resistance. In view of this, it is
highly desired to develop an effective computational method for accurately predicting novel AMPs because it can provide
us with more candidates and useful insights for drug design. In this study, a new method for predicting AMPs was
implemented by integrating the sequence alignment method and the feature selection method. It was observed that, the
overall jackknife success rate by the new predictor on a newly constructed benchmark dataset was over 80.23%, and the
Mathews correlation coefficient is 0.73, indicating a good prediction. Moreover, it is indicated by an in-depth feature
analysis that the results are quite consistent with the previously known knowledge that some amino acids are preferential in
AMPs and that these amino acids do play an important role for the antimicrobial activity. For the convenience of most
experimental scientists who want to use the prediction method without the interest to follow the mathematical details, a
user-friendly web-server is provided at http://amp.biosino.org/.
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Introduction

Natural gene-encoded antimicrobial peptides (AMPs) are a

group of small, innate immune molecules, generally containing

12–100 amino acid residues [1]. AMPs have been discovered in

most life forms, including bacteriocins, fungal peptide antibiotics,

plant thionins and defensins, insect defensins and cecropins,

amphibian magainins and temporis, as well as defensins and

cathelicidins from higher vertebrates [1,2,3]. Owing to the broad

spectrum antimicrobial activity [4,5], antibacteria, antifungi,

antivirus, and even anticancer, are thought to be less likely to

induce resistance. Thus, AMPs have attracted the attention of

many investigators as a substitute for conventional antibiotics [1].

Currently, most researchers in this area are focused on screening

and in silico modeling novel AMPs [6,7] as computational

approaches can accelerate the process of antimicrobial drug

discovery and design [8]. Many bioinformatics methods have been

developed for predicting new AMPs. For example, the APD

method predicted whether the new peptide had the potential to be

antimicrobial based on some known principles [9]. The AMPer

method [10] was developed by constructing the hidden Markov

models (HMMs) to automatically discover AMPs. The BACTI-

BASE [11,12] and PhytAMP [13] methods were specifically

designed for bacteriocin and plant respectively. The AntiBP

method [14] and AntiBP2 method [15] used the Artificial Neural

Network (ANN), Quantitative Matrices (QM) and Support Vector

Machine (SVM) to predict antibacterial peptides. Their training

sets were limited to N and/or C terminus residues of peptides. The

CAMP method [16] was developed based on the Random Forests

(RF), SVM, and Discriminant Analysis (DA), trained on all classes

of AMPs (antibacterial, antifungal and antiviral) and full length of

mature AMP sequences. However, none of the aforementioned

methods has the function to identify which kinds of features are

optimal for accurately predicting and meaningfully interpreting

their biological implications.

The present study was initiated in an attempt to establish a new

classification method for predicting AMPs by integrating the

sequence alignment method and the feature selection method. In

the sequence alignment method, the prediction was carried out by

assigning the query peptide to the category of the peptide that has

the highest sequence similarity with the query peptide. In the

feature selection method, each peptide was coded with 270

features, including amino acid composition [17,18] and pseudo-

amino acid composition [19] that incorporated electrostatic

charge, codon diversity, molecular volume, polarity, and second-

ary structure [20]. Subsequently, the feature selection and analysis

methods, including the Maximum Relevance Minimum Redun-

dancy method (mRMR) [21] and the Incremental Feature

Selection (IFS) [22] method, were employed to select the optimal

features for the prediction of AMPs versus non-AMPs. The
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prediction model was built using the well-known Nearest Neighbor

Algorithm (NNA) [23,24,25]. As a result, the methods achieved a

satisfactory overall success rate.

Materials and Methods

Datasets
Training set. The AMP sequences were downloaded from

CAMP [16]. The 1,216 AMP sequences validated by

experiments and the 1,651 AMP sequences filed with patents

were used. After eliminating those sequences with non-standard

residues ‘B’, ‘J’, ‘O’, ‘U’, ‘X’, or ‘Z’, the final positive dataset

contained 2,752 AMP sequences, of which only 35 peptides in

UniPort database [26,27] are annotated with experimentally-

verified no antimicrobial activity. Because AMPs are generally

secretory in nature [28], we also randomly selected 10,000 non-

secretory protein sequences from UniProt database without

annotated by ‘antimicrobial’. Since most of the AMPs in positive

dataset are with 10–80 amino acids, we randomly cut out a

fragment with the same length range from each sequence and

added them to the negative dataset. After eliminating those

sequences with non-standard residues ‘B’, ‘J’, ‘O’, ‘U’, ‘X’, or

‘Z’, the final negative dataset thus obtained contained 10,014

non-AMP sequences.

Test set. CAMP [16] predicted dataset contained 1,153

sequences identified as antimicrobial based on the evidences of

similarity or annotations in NCBI as ‘antimicrobial regions’

without exprerimental evidences. After eliminating those

sequences containing non-standard residues ‘B’, ‘J’, ‘O’, ‘U’, ‘X’,

or ‘Z’, 1,136 sequences were left that will serve as independent

positive test dataset. As mentioned above, only 35 peptides are

experimentally-verified no antimicrobial activity, and we had used

these peptides as negative samples in the training dataset.

Therefore, there were no more peptides left that could be used

as independent negative samples for the test dataset in this study.

Cutoff threshold for sequence identity. Generally,

homologous sequences in the datasets often influence the

performance of the predictors. In order to remove the

homologous peptides inside the training dataset and between the

training and test datasets, a cutoff threshold of 70% was imposed

to exclude those peptides from the training set that have equal to

or greater than 70% sequence identity to any other in the

training/test set by the CD-HIT program [29]. As a result, the

training set thus obtained contained 9731 sequences, including

870 AMPs and 8661 non-AMPs.

It is known to us that the peptide’s function is strongly related to its

sequence order. Therefore we first apply the sequence alignment

algorithm to predict AMPs. Secondly, we use amino acid composition

and pseudo amino acid composition which can approximately reflect

the sequence order [30], to deal with those peptides which can’t be

performed by the sequence alignment method.

Sequence alignment method
Sequence alignment is a very important problem in Bioinfor-

matics [31]. The sequences segments with high identify are

inclined to share the structure and function. In the past decades,

various sophisticated method such as FASTA, BLAST, HMMER

and Smith-Waterman algorithm [32,33,34,35] were developed for

local and global alignments for DNA and protein sequences. Here,

BLASTP [36] was used to predict AMPs, which can be described

as follows. First, let us suppose a query peptide P and the training

set P1f ,P2,:::,Png, then the high-scoring segment pairs (HSPs)

score between the query peptide and each peptide in the training

set are calculated by BLASTP with default parameters. Then the

peptide is predicted to share the same category as the peptide Pk if

the HSP score between P and Pk is higher than other scores.

Expressed in a formula, Pk subjects to

HSPs Score (P, Pk)~max HSPs Score(P, Pi)ji~1, 2f , :::, ng ð1Þ

If more than one Pk fulfils the Eq. (1), one of them is chosen at

random and its category was assigned to the query peptide P.

Feature selection method
In this research, amino acid composition and pseudo-amino

acid composition were used to code the AMP sequences.

Amino acid composition. Amino acid composition is a basic

feature of protein sequence [25], which is closely correlated with

its attributes, such as subcellular location [37,38,39,40,41], folding

type [17,42], secondary structure content [43], and domain [44].

Amino acid composition consists of 20 discrete numbers, each of

which represents the occurrence frequency of the native amino

acid in a protein sequence. Therefore, the protein can be coded

into a 20-D (dimensional) numerical vector by the amino acid

composition.

Pseudo-amino acid composition. The concept of pseudo-

amino acid composition (PseAAC) was originally introduced by

Chou for predicting the protein subcellular locations and

membrane protein types [19]. Based on the conventional amino

acid composition, Chou proposed a set of discrete numbers to take

into account some sequence order effects. PseAAC has been

proved to be an extremely effective feature in treating many

protein and protein-related systems (see, e.g., [45,46,47,48,49,50,

51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,

72] as well as the Wikipedia web page at http://en.wikipedia.org/

wiki/Pseudo_amino_acid_composition). For the detailed description

about PseAAC, refer to [19,73] and a recent comprehensive review

[74]. Here, for reader’s convenience, the concept of PseAAC is

briefly described as follows.

Suppose a protein sequence of L amino acid residues:

R1R2R3
:::RL{2RL{1RL ð2Þ

The sequence order effect of the protein can be reflected by a

set of discrete correlation factors, which are calculated as follows:

h1~
1

L{1

XL{1

i~1

H(Ri,Riz1)

h2~
1

L{2

XL{2

i~1

H(Ri,Riz2)

h3~
1

L{3

XL{3

i~1

H(Ri,Riz3)

:::

hl~
1

L{l

XL{l

i~1

H(Ri,Rizl) (lvL)

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð3Þ

where h1, h2, h3, hl are the first-tier, second-tier, third-tier, l-th

tier correlation factors. And the correlation function is

H(Ri,Rj)~½F (Rj){F (Ri)�2 ð4Þ

where F (Ri) is the feature (e.g. hydrophilicity) value of the amino

acid Ri. The value is converted from the original feature value of

the amino acid according to the following equation:

Antimicrobial Peptides Prediction
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F (Ri)~

Fo(Ri){
X20

i~1

Fo(Ri)

20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20

i~1

Fo(Ri){
X20

i~1

Fo(Ri)

20

" #2

20

vuuuut
ð5Þ

where Fo(Ri) is the original feature value of the amino acid Ri.

Thus, the PseAAC of a protein can be represented by a (20+l)-D

vector as follows:

V~ v1,v2, � � � ,v20,v21, � � � ,v20zl½ �T ð6Þ

where superscript T is the transpose operator and

vx~

fxP20

i~1

fizv
Pl
j~1

hj

, (1ƒxƒ20)

vhx{20P20

i~1

fizv
Pl
j~1

hj

, (21ƒxƒ20zl)

8>>>>>>><
>>>>>>>:

ð7Þ

where fx(x~1,2,:::,20) represent the occurrence frequencies of the 20

amino acids in the protein sequence, hj represents the j-th tier sequence

correlation factor calculated according to Eq. (3), and v represents the

weight for the sequence order effect. Based on the above description,

we know that the first 20 components in Eq. (6) reflect the effect of the

conventional amino acid composition, while the remaining l
components are the correlation factors reflecting the effect of sequence

order. A set of such 20+l numbers is named PseAAC. In this study, we

chose v~0:15 and l~50 for getting the optimal results.

In this study, the codon diversity, electrostatic charge, molecular

volume, polarity, and secondary structure are used to describe the

physicochemical and biochemical properties of amino acids. And

the values of the 5 features of the amino acids are retrieved from

[20,75,76], as shown in Table 1. For each of the five features, a set

of discrete correlation factors can be calculated according to Eq. (3)

and Eq. (4) so as to contribute l~50 additional components for

defining the protein sequence according to Eq. (6). Likewise, the

similar approach can also be used to code the AMPs.

Since each of the aforementioned five features (cf. Table 1) can

generate l~50 discrete numbers, the AMPs will be defined in a

(20z50|5~270)-D vector space.

In the feature space, we firstly prioritized the 270 features by the

Maximum Relevance, Minimum Redundancy (mRMR) method.

Based on the feature order, Incremental Feature Selection (IFS)

method was employed to select the optimal feature subset. The

prediction model was constructed according to Nearest Neighbor

Algorithm (NNA) and evaluated by the jackknife test.

mRMR method. In pattern recognition, feature selection is an

important procedure for constructing the classifier. Generally, a

‘‘good’’ feature for classification is considered to be not only highly

correlated to the class, but also lowly redundant to the already

selected features. Here, the Maximum Relevance, Minimum

Redundancy [21] (mRMR) method was employed to sort the 270

features according to the descending order. The key ideas of the

method are the Maximum Relevance criterion and Minimum

Redundancy criterion as meant by its name. According to the

Maximum Relevance criterion, the feature to be selected should

have the maximal correlation with the class variable; while according

to the Minimum Redundancy criterion, the feature to be selected

should have minimal redundancy to the already selected features.

Features are selected from the 270-D feature space one by one, being

put into the MaxRel feature list by applying the Maximum

Relevance criterion, and being put into the mRMR feature list by

applying both the criteria. Both the relevance and redundancy are

quantified by the mutual information (MI) defined as follows

I(x,y)~

ðð
p(x,y) log

p(x,y)

p(x)p(y)
dxdy ð8Þ

where p(x,y) is the joint probabilistic density for feature x and

feature y, p(x) and p(y) are the marginal probabilistic densities for

feature x and feature y, respectively.

Suppose the whole feature set is denoted by V, the already

selected feature set with m features by Vs and the feature set with n

features by Vt. The relevance D between the feature f in set Vt and

the class c is calculated by

D~I(f ,c) ð9Þ

The redundancy R of f with all the features in Vs is calculated by

R~
1

m

X
fi[Vs

I(f , fi) ð10Þ

To select the feature fi in set Vt with the maximum relevance and

minimum redundancy to already selected features in set Vs, Eq. (9)

and Eq. (10) are combined to generate the function:

Table 1. The physicochemical and biochemical properties of
the 20 amino acids.

Amino
Acid Polarity

Secondary
structure

Molecular
volume

Codon
diversity

Electrostatic
charge

A 20.591 21.302 20.733 1.57 20.146

C 21.343 0.465 20.862 21.02 20.255

D 1.05 0.302 23.656 20.259 23.242

E 1.357 21.453 1.477 0.113 20.837

F 21.006 20.59 1.891 20.397 0.412

G 20.384 1.652 1.33 1.045 2.064

H 0.336 20.417 21.673 21.474 20.078

I 21.239 20.547 2.131 0.393 0.816

K 1.831 20.561 0.533 20.277 1.648

L 21.019 20.987 21.505 1.266 20.912

M 20.663 21.524 2.219 21.005 1.212

N 0.945 0.828 1.299 20.169 0.933

P 0.189 2.081 21.628 0.421 21.392

Q 0.931 20.179 23.005 20.503 21.853

R 1.538 20.055 1.502 0.44 2.897

S 20.228 1.399 24.76 0.67 22.647

T 20.032 0.326 2.213 0.908 1.313

V 21.337 20.279 20.544 1.242 21.262

W 20.595 0.009 0.672 22.128 20.184

Y 0.26 0.83 3.097 20.838 1.512

Listed below are the scores of the physicochemical and biochemical properties
of the 20 amino acids, each of which can be coded by a 5-dimensional vector.
doi:10.1371/journal.pone.0018476.t001
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max
fj[Vt

I(fj ,c){
1

m

X
fi[Vs

I(fj, fi)

2
4

3
5(j~1,2,:::,n) ð11Þ

Subsequently, the selected feature fi will be taken away from the set

Vt and added into the set Vs. Such a process will be repeated until

all the features are taken away from the set Vt and added into the

set Vs. The better the feature is, the earlier it will be selected.

Nearest Neighbor Algorithm. Nearest Neighbor Algorithm

(NNA) [23] is a simple and effective instance-based learning

method. It assigns the unknown sample to the class of the nearest

neighbor. The distance function, the core of the algorithm, can be

defined as follows [68]:

D(vi,vj)~1{
vi
:vj

jjvijj:jjvj jj
ð12Þ

where the symbol jjvjj stands for the vector module of the sample,

and vi
:vj stands for the dot product of the two coding vectors.

Suppose a queried peptide with the 270-D coding vector p and

the training set comprised of n classified peptides with the coding

vector set fp1,p2,:::,pi,:::,png respectively. Then the queried

peptides will be assigned to the class of vector pm, which satisfies

D(p,pm)~minfD(p,pi)j(i~1,2,:::,n)g ð13Þ

If more than one pm satisfies to Eq. (9), the class of one of these

peptides will be randomly selected as the predicted result for the

queried peptide.

Incremental Feature Selection. In essence, feature

selection is a combinatorial optimization problem. Its goal is to

seek the feature subset that maximizes the performance of the

predictor. To find the optimal feature subset from the feature

space with N features, all the combinations of N features should be

tried from the point of view of the exhaustion principle, which is of

computational intractability. Therefore Incremental Feature

Selection [76,77] (IFS) method was utilized to get the

approximate solutions for this problem.

Based on features prioritized in the mRMR feature list, 270

feature subsets were obtained according to

Si~ff1, f2,:::, fig(1ƒiƒ270) ð14Þ

where fi is the i-th feature in the mRMR feature list.

Then a NNA predictor was constructed for each feature subset

and evaluated by the jackknife test. With the number of features of

subset Si as its x-axis and accuracy as its y-axis, IFS curve was

plotted to reveal the relation between the performance of the NNA

predictor and the feature subset. The optimal feature subset is

considered with the highest prediction accuracy, and the predictor

thus obtained was used to classify the peptides.

Overall prediction
For a query peptide, BLAST method was first applied to

estimate whether it has antimicrobial activity. If it did not have any

hits against the training sequences, then the Feature selection

method was applied.

In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its anticipated

accuracy: independent dataset test, subsampling (K-fold cross-

validation) test, and jackknife test [78]. In this study the jackknife

test was adopted to examine the quality of the current predictor.

During the jackknifing process, each of the peptide samples was in

turn singled out from the benchmark dataset as a test sample, and

identified by the prediction engine trained by the rest of the

peptide samples in the dataset.

The following equations were often used in literatures to reflect

the prediction quality:

Sn~
TP

TPzFN

Sp~
TN

TNzFP

AC~
TPzTN

TPzFPzTNzFN

MCC~
(TP|TN){(FN|FP)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p

ð15Þ

where Sn reflects the sensitivity, Sp the specificity, AC the accuracy,

and MCC the Mathews correlation coefficient; while TP represents

the true positive, TN, the true negative; FP, the false positive, and

FN, the false negative (Figure 1). Sn, Sp and AC stand for the

success rates of prediction on positive, negative and overall

datasets, respectively. MCC is used to evaluate the performance of

the predictor when the positive and negative samples in the dataset

are out-of-balance. Its value ranges from 21 to 1, and a larger

MCC means a better prediction.

Results and Discussion

Results of sequence alignment method
In the jackknife cross-validation, each peptide was singled out

from the benchmark data set as the query peptide, and the

remaining peptides would serve as the training data set to train the

predictor. Then the BLASTP method was applied to classify the

peptide according to Eq. (1). However, some query peptides could

not be processed by the method because no hits at all were found

between them and the peptides in the training dataset. Among the

Figure 1. An illustration to show (I) TP (true positive) quadrant
(green) for correct prediction of positive dataset, (II) FP (false
positive) quadrant (red) for incorrect prediction of negative
dataset; (III) TN (true negative) quadrant (blue) for correct
prediction of negative dataset; and (IV) FN (false negative)
quadrant (pink) for incorrect prediction of positive dataset.
doi:10.1371/journal.pone.0018476.g001
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9731 peptides in the benchmark data set, 5855 peptides were

predicted by the BLAST. The predicted results were shown in

Table 2. The Sn, Sp, AC, and MCC were 91.22%, 95.55%,

95.12%, and 0.7723, respectively.

Results of feature selection method
As the sequence alignment method could not deal with all the

peptides, we designed the feature selection method to classify the

remaining 3876 (3876~9731{5855) peptides.

Here, the prediction model was constructed as follows. All the

peptides in the benchmark data set were firstly represented by

the 270 features retrieved from the amino acid composition and

pseudo-amino acid composition. The mRMR program (http://

penglab.janelia.org/proj/mRMR/index.htm) was then applied

to prioritize the features according to the Maximum Relevance

criterion and Minimum Redundancy criterion. The MaxRel

feature list and mRMR feature list thus obtained can be found

in Table S1 and Table S2, respectively. Based on the sorted

feature in mRMR feature list, the 270 feature subsets were

constructed according to Eq. (14). Each of the feature subsets

was used to recode the peptides in the dataset and construct

the prediction model according to NNA. The prediction

accuracies of the NNA predictor evaluated by jackknife test

are shown in the IFS curve (Figure 2). It was observed that the

peak of the accuracy was corresponding to the number of

features at 25. Hence, the optimal feature subset was obtained

with the first 25 features in the mRMR feature list. Therefore

the predictor with these 25 features was used to cope with the

3876 peptides. The predicted results were also shown in

Table 2. The Sn, Sp, AC, and MCC were 56.83%, 93.19%,

90.58%, and 0.6426, respectively.

The overall predicted results
By combining the results of prediction from sequence alignment

method and sequence based method, the overall success rates for

the benchmark data set were obtained, as shown in Table 2.

Evaluated by jackknife test, the Sn, Sp, AC, and MCC were 80.23%,

94.59%, 93.31%, and 0.7312, respectively, indicating a good

prediction from the integration of the two methods. From the

table, we can see that although BLASTP method obtained good

predicted results, it could not deal with all the peptides. As a fall-

back, the feature selection method was used to process the

remaining peptides. By integrating the two methods, the hybrid

one leads to satisfactory results.

Independent test and comparison with the existing
predictors

Generally speaking, the independent dataset is used for

demonstrating how to use the predictor for practical applications

[37]. This is because each of the peptides singled-out from the

benchmark data set during the jackknifing process can actually be

deemed as a sample of an independent data set. Now, just as a

demonstration, let us use the benchmark dataset as a training

dataset to identify the 1,136 AMP sequences collected in the

independent dataset. The prediction sensitivity thus obtained with

the integrated method was 72.27%, somewhat lower than the rate

of jackknife test Sn, this may because some AMPs in the test set

were derived according to the annotations in NCBI based on the

similarity principle and hence cannot avoid some sort of

arbitrariness or false positive.

Up to now, several computational methods [10,11,12,13,

14,15,16] have been proposed for the predicting AMPs. However,

AMPer method [10] is not available at http://www.cnbi2.com/

cgi-bin/amp.pl as described in [10]. BACTIBASE [11,12] and

PhytAMP [13] methods were specifically designed for bacteriocin

and plant respectively. As for AntiBP [14] and AntiBP2 methods

[15], they were designed for identifying the AMPs in a protein

sequence, and hence could not be used to compare with our

method. To make the comparison meaningful, our method was

compared with CAMP method [16], which was developed based

on the Random Forests (RF), SVM, and Discriminant Analysis

(DA). In the comparison, the original 2,752 AMPs and 10,014

non-AMPs were treated as the training set. This is because to

make the predictor better, nornally all the training samples need to

be used. The comparison results are shown in the Table 3. The

prediction Sn by our method was 84.95%, higher than the

predicted results of CAMP, indicating that our method outper-

formed CAMP.

Table 2. The predicted results of the three methods.

Method

Number of
Predicted
Peptides Sn (%) Sp (%) AC (%) MCC

Sequence
Alignment Method

5855 91.22 95.55 95.12 0.7723

Feature selection
Method

3876 56.83 93.19 90.58 0.6426

Integrated Method 9731 80.23 94.59 93.31 0.7312

doi:10.1371/journal.pone.0018476.t002

Figure 2. IFS curve. It reveals the relation between the performance
of the NNA predictor and the feature subset. The IFS curve arrives at the
apogee when the feature set is comprised of the first 25 features in the
mRMR feature list.
doi:10.1371/journal.pone.0018476.g002

Table 3. Comparison between CAMP and our method on the
test set.

Method Algorithm Predicted AMPs Sn (%)

CAMP Support Vector Machine 866 76.23

CAMP Random Forest 852 75.00

CAMP Discriminant Analysis 881 77.55

Our Method BLASTP+Nearest Neighbor
Algorithm

965 84.95

doi:10.1371/journal.pone.0018476.t003
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Comparison between sequence alignment method and
feature selection method

In this study, sequence alignment method and feature selection

method were developed to identify the AMPs from peptides. To com-

pare the performance between them, each method was used alone to

predict the peptides in the test set. To investigate the effect of sequence

homology on the performance of the methods, original dataset (2,752

AMPs and 10,014 non-AMPs) and the dataset ,0.7 sequence

similarity were used. The predicted results are shown in Table 4.

From the table, we can see that the prediction Sn by sequence

alignment method is much higher than the Sn by feature selection

method. However, the sequence alignment could not deal with all

the 1136 peptides in the test set. The sequence alignment method

has the high predicted accuracies, while the feature selection

method can predict all the peptides. To utilize the two advantages,

the two methods were integrated to predict AMPs as above

mentioned. The accuracies dropped by about 10% from the

original dataset to dataset with ,0.7 sequence similarity, which

indicates sequence homology influenced the predictive quality.

Analysis of optimal features
Among the 25 optimal features obtained from the feature

selection method, the one for the amino acid composition took up

64% (Figure 3). In the previous works, except for the simple and

linear AMPs, larger AMPs are prone to contain certain amino acid

types, such as cysteine, proline, arginine, tryptonphan, and histidine

[79]. These five amino acids are all in our optimal features. Actually,

according to our results, cysteine, arginine, tryptonphan and

histidine are rich in antimicrobial peptides (Figure 4), fully

consistent with the findings in [79], while proline is not obviously

different between antimicrobial and non-antimicrobial peptides.

Our results further confirm that amino acid composition is

important for identify whether a peptide is an effector molecules

of immunity. According to the ranks of these features, cysteine is the

second one. Cysteine-rich peptides are particularly typical in plants

[80,81] and animals [82]. Pairs of cysteines forming intramolecular

disulfide bridged are common in AMPs, thus allowing a complex

three-dimensional structure, such as b-sheet [83] and b-turn [84].

Arginine, lysine and histidine are also important amino acid

component features in our result. Arginine, lysine, and histidine in

acidic environments are with positive net charged [85]. Meanwhile,

the negative charged amino acids, glutamic acid and aspartic acid,

are lack in AMPs (Figure 4). This may help AMPs to flip into

biological membranes owing to the anionic phospholipid mem-

branes [86]. Another AMP-rich amino acid is tryptophan. It is

important for lipid binding [87,88]and preferential in the protein-

membrane interface [89]. The secondary structures, codon diversity

as well as polarity of AMPs would ensure their abilities to defend

microorganisms. All these effects may help AMPs disrupt the

microbial membranes integrity.

Conclusion
In this study, two methods are implemented: the sequence

alignment method based on the BLASTP and the feature selection

Table 4. Comparison between sequence alignment method and feature selection method.

Dataset Method
Number of
Predicted Peptides

Number of Correctly
Predicted Peptides Sn (%)

Original Dataset with high sequence similarity Sequence Alignment 986 896 90.87

Feature Selection 1136 791 69.63

Dataset with ,0.7 sequence similarity Sequence Alignment 869 679 78.14

Feature Selection 1136 692 60.92

doi:10.1371/journal.pone.0018476.t004

Figure 3. The numbers of each kind of features in optimal features. In the feature space, all the features can be classified into six kinds:
amino acid composition, codon diversity, electrostatic charge, molecular volume, polarity and secondary structure.
doi:10.1371/journal.pone.0018476.g003
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method with amino acid composition and pseudo amino acid

composition features [90]. The prediction accuracy of the

integrated method on the benchmark dataset is 80.23%. It is

anticipated that the new method may be of use for helping to

understand the role of peptide in antimicrobial activity, identify

the natural AMPs, and design the synthetic AMPs against the

resistance of microorganisms to antibiotics. For the convenience of

readers, a user-friendly web-server is freely accessible at http://

amp.biosino.org/.

Supporting Information
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(DOC)
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