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Abstract

The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C.
albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1D cells failed
to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on
plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored
filamentation in efg1D. Transcriptional profiling of eed1D during infection of oral tissue revealed down-regulation of hyphal
associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6
rescued filamentation and damage potential in eed1D. Transcriptional profiling during overexpression of UME6 identified
subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating
maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans
within epithelial tissues.
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Introduction

Candida albicans is normally a harmless commensal and part of the

microflora on mucosal surfaces, but frequently causes superficial

infections such as oral or vaginal thrush. Infection of epithelial

surfaces is associated with extensive growth, invasion into and

dissemination within epithelial tissues and inflammation. In some

circumstances, for example after organ transplantation, the fungus

may cause invasive and life threatening systemic infections. In these

patients, the fungus can disseminate, usually from the gastrointes-

tinal tract or from biofilms on medical devices, via the bloodstream

leading to invasion of organs such as the liver or kidney [1].

Several virulence attributes of C. albicans are considered to play

roles during invasion of human cells. One of the most important

invasive properties of C. albicans is the ability to change growth

morphology from spherical yeast cells to elongated hyphae

(dimorphism). Hyphae are not only essential for invasion [2], but

are also more adhesive to host cells as compared to the yeast growth

form [3]. Attachment of C. albicans hyphae to epithelial surfaces is

mediated by hyphal-associated ÿnvasionÿ, namely the glycosylpho-

sphatidylinositol (GPI)-anchored protein Hwp1 [4] and members of

the GPI-anchored agglutinin-like Als protein family of ÿnvasionÿ

[5]. To invade non-phagocytic cells, such as epithelial cells, fungal

hyphae either actively penetrate host cells or trigger up-take via

induced endocytosis by host cells [6–8]. The route of invasion

depends on the host cell type. For example, invasion of oral

epithelial cells occurs via induced endocytosis and active penetra-

tion, while enterocytes are only invaded by active penetration [8].

The Als family member Als3 acts as a C. albicans _nvasion triggering

fungal up-take via interactions with receptors on epithelial or

endothelial cells [9]. Several other hyphal- associated factors may

have specific functions during attachment and invasion of host cells

[10,11]. After initial invasion into superficial epithelial cells, fungal

hyphae can penetrate into deeper cell layers and disseminate, as

shown previously for oral epithelial tissue [12].

Many studies have investigated the environmental conditions,

which induce the yeast-to-hyphal transition of C. albicans in vitro.

Known inducers of hyphal formation are a temperature shift to

37uC, addition of serum, the increase of environmental pH to

physiological values between pH 6 and 7, hypoxic conditions,

physiological CO2 concentrations or contact with surfaces ranging

from plastic (e.g. catheters) to human host cells [13–15].

Furthermore, ingestion by macrophages can induce hyphal growth

of C. albicans as part of an escape mechanism: phagocytosed yeast

cells can produce hyphae, which pierce the host membrane and

kill the macrophage [16,17]. In addition, the transition between

yeast and hyphal growth forms has a significant effect on the host

immune response and possibly on the outcome of an infection

[18,19]. Therefore, hyphae seem to be not only essential for

adhesion and invasion, but also for immune evasion. Consequent-

ly, nonfilamentous mutants are strongly reduced in virulence [16].

However, hyperfilamentous mutants which lack the hyphal
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repressors Nrg1 or Tup1 and which cannot grow in the yeast form

are also reduced in virulence [20,21]. This suggests that

morphological plasticity and the ability to grow either in the yeast

or the hyphal phase are essential for virulence of C. albicans. Due to

the importance of the yeast-to-hyphal transition for virulence of C.

albicans, multiple studies have investigated the molecular and

cellular events associated with this morphological transition. Signal

transduction pathways controlling hyphal formation such as the

mitogen- activated protein (MAP-) kinase cascade and the cAMP

pathway converge at the transcription factors Cph1 and Efg1

which together are crucial for hyphal formation and the activation

of hyphal-associated genes [14,15,22]. Other cellular factors such

as the Rho-GTPase Cdc42 and the cyclin Hgc1 play further

important roles in the regulation of filamentous growth of C.

albicans. Hgc1 has been shown to phosphorylate Efg1 and mutants

lacking Hgc1 fail to form true hyphae, but still express certain

hyphal-associated genes [23–25]. Although much is known about

hyphal induction of C. albicans, regulation of hyphal extension is

less well studied and despite intensive research on dimorphism, it is

still poorly understood how the switch from hyphal-to-yeast

growth is regulated. Only a few genes, such as PES1, which

encodes a C. albicans pescadillo homolog, were shown to be

involved in the switch from hyphae to yeast cells [26].

Furthermore, the consequences of a dimorphic switch on

pathogenesis remain unclear. More recent studies have identified

another key transcription factor, Ume6, which is necessary for the

extension of germ tubes into hyphae [27]. Overexpression of

UME6 can restore filamentation in several mutants which are

unable to form hyphae [28].

We recently identified a C. albicans gene of previous unknown

function, which was expressed during oral tissue infections and in

patients suffering from oral infections. Mutants lacking this gene

were able to invade superficial oral epithelial cells, but once inside

a host cell, the mutants grew as yeast cells, remained trapped

intracellularly and did not disseminate within epithelial tissue.

Therefore, the gene was named EED1 (Epithelial Escape and

Dissemination 1) [12].

Here, we show that Eed1 is a unique protein of C. albicans and

essential for hyphal extension on solid surfaces and during

interaction with host cells. Expression of UME6 depends on

Eed1, which itself is a target of the transcription factor Efg1, and

ectopic overexpression of UME6 restored hyphal elongation in

eed1D. We suggest that Eed1 and Ume6 act in a pathway which

controls the extension of germ tubes into hyphae, the hyphal-to-

yeast transition and escape from non-phagocytic host cells.

Results

EED1 is unique to C. albicans
Using Blast searches within the available genomic sequences we

aimed to identify homologues of EED1. The closest hit was DEF1,

coding for a regulator of RNA polymerase II (RNAPII) with

multiple functions in S. cerevisiae [12,29,30]. In fact, Eed1 has

structural similarities with Def1: both proteins are of comparable

length and unusually rich in glutamine residues over a 200–300

amino acid central region [12]. However, we found the overall

identity (13%) and similarity (18.2%) were low and no homology

was found flanking the glutamine rich region, suggesting that both

genes have evolved independently and are likely to have different

functions. No homolog of EED1 was detected in the genomes of

species within the CUG clade, including very close relatives of C.

albicans ([31]). This was despite the fact that the gene locus of

EED1 in C. albicans (containing genes YTA6, BET2, DPB2, and

GPN3) is conserved within the CUG species, although the gene

order differs (not shown). The closest relative of C. albicans, C.

dubliniensis, contains a syntenic gene between YTA6 and BET2

named MDP1 (Moran et al., unpublished data). However, the

overall identity between Eed1 and Mdp1 is low (13.4%), with a

slightly higher similarity (26.6%) than between Eed1 and Def1.

These data suggest that Eed1 is unique to C. albicans.

Dynamics of transient filamentous growth of eed1D on
plastic surfaces

Mutants lacking EED1 were unable to produce true hyphae in

liquid media and only transiently produced filaments during

contact with oral epithelial cells, but switched to yeast cell growth

during the infection process [12]. Induction of hyphal formation of

eed1D during co-cultivation with epithelial cells was dependent on

contact with epithelial cells, but also occurred after contact with

other surfaces (e.g. plastic). To study the dynamics of this contact-

dependent, transient filamentation of eed1D cells in more detail, we

analyzed growth of wild type and mutant cells on plastic surfaces

in RPMI medium via time lapse microscopy.

Since the triple auxotrophic wild type strain BWP17 was used to

produce the eed1D mutant [12] and since differences between the

parental C. albicans wild type SC5314 and the derivative BWP17

are sometimes observed, we compared these two strains in all

assays used in this study. For comparison, we used an autotrophic

version of BWP17 carrying the plasmid pCIP30 (see Material and

Methods). Both strains behaved similarly in all assays and no

differences were observed. Therefore, we used strain SC5314 in all

further experiments as a wild type control.

In addition to the eed1D mutant described in Zakikhany et al.

[12] we also have produced an eed1D mutant with SC5314 as a

parental strain. Regardless of the strain background, either

BWP17 or SC5314, eed1D mutants showed similar phenotypes

throughout this study (data not shown). The growth rate of eed1D
mutant and wild type yeast cells was similar (not shown).

Supplemental movies S1 and S2 and Fig. 1 clearly show that both

wild type and mutant cells respond to contact to plastic surfaces in

RPMI medium by forming germ tubes. However, after 3 h, wild

type germ tubes continued to extend and occasionally showed

branching filaments, while eed1D germ tubes did not form such

structures. Instead we observed budding of yeast cells from the

initial filaments (‘‘budding filaments’’) (Supplemental movies S1 and

S2̧ Fig. 1). Over time, the wild type strain maintained hyphal growth

and produced a dense mycelium at time point 12 h. In sharp

contrast, the entire population of eed1D cells grew as yeast cells after

12 h (Fig. 1, 12 h). These morphological differences were

accompanied by dramatic differential adhesion properties. While

germ tubes of wild type and eed1D cells adhered to the plastic

surface, budding filaments almost completely lost their adherence

properties and yeast cells were released from the surfaces

(Supplemental movies S1 and S2). These altered phenotypes of

eed1D cells indicate not only differences in the morphology, but also

in the expression of hyphal associated adhesins.

Analysis of septation and budding events in primary
eed1D filaments

To further analyze the cellular morphology and dynamics of

‘‘budding filaments’’ of eed1D as compared to wild type cells, we

questioned whether primary filaments were able to produce

septae. In order to stain septae with Calcofluor White, wild type

and mutant cells were grown on glass surfaces with RMPI1640

medium at 37uC. As shown in Figure 2, both wild type and eed1D
cells formed filaments with septae (Fig. 2, 6 h, septae marked by

arrows). Budding of eed1D yeast cells from primary filaments

Hyphal Extension of C. albicans
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occurred predominantly from sites of septation (Fig. 2, 6 h, 8 h,

marked by arrows). These results suggest, that septum formation is

not affected by the deletion of EED1, that true hyphae are formed

after contact to surfaces and that budding of yeast cells from

filaments occurs after septation.

Identification of genes regulated by EED1
To identify genes whose expression is influenced by the activity

of EED1 during interaction with host epithelial cells, we analyzed

the genome wide gene expression profiles of both wild type and

eed1D mutant cells during an experimental oral tissue infection

using reconstituted human oral epithelium (RHE). Total fungal

RNA was isolated 1 h, 12 h and 24 h after infection, labeled and

hybridized to C. albicans DNA microarrays. Clustering of all

transcriptomes during RHE infections revealed that wild type and

eed1D transcript profiles clustered closely together at the earliest

time point (1 h), reflecting the similar morphologies and

pathogenic interactions with host cells (Fig. 3 A). However, at

time points 12 and 24 h, profiles for the eed1D strain form a

subcluster, which is more related to the 1 h time point of eed1D
than to the transcriptional profiles of wild type cells at 12 and 24 h

(Fig. 3 A). One hour after infection, only 59 genes were at least 2-

fold up-regulated in wild type compared to eed1D, while 60 other

genes were up-regulated in the mutant compared to the wild type

(Fig. 3 B). Multiple genes associated with filamentous growth were

similarly expressed in both wild type and eed1D, for example

HWP1, CHT2 and ALS3 or the transcription factors CPH2, UME6

and TEC1 (Fig. 3 B, C). However, the global differences in

expression between wild type and eed1D increased over time.

Twelve h after infection, 548 genes were at least 2-fold

differentially regulated in both strains (308 genes up-regulated in

wild type, 240 up-regulated in eed1D, Fig. 3 B). This trend

continued up to the 24 h time point. Out of 430 differentially

regulated genes, 332 were up-regulated in wild type and only 98

were up-regulated in mutant cells (Fig. 3 B). No gene was up-

regulated in the mutant at all time points, however, seven genes

were always up-regulated in the wild type. Among these were the

hyphae-associated genes ECE1 and HYR1 (Fig. 3 A, B). Other

hyphal-associated genes, which were similarly expressed in wild

type and mutant cells 1 h after infection, were down-regulated in

the mutant at later time points, for example ALS3, HWP1 and

SOD5 (Fig. 3 C). The pH response gene PHR1 was down-regulated

in the mutant after 24 h (Fig. 3 C). Furthermore, the transcription

factor genes CPH2, TEC1 (not shown) and UME6 or RDI1,

involved in polarized growth, were down-regulated in eed1D after

12 and 24 h (Fig. 3 C, Table S1), with UME6 being down-

regulated 4-fold in the mutant after 24 h. Other genes, such as

WOR2, involved in the regulatory circuit that controls white-

opaque switching, were up-regulated in eed1D after 12 and 24 h

(Table S2). Some genes associated with yeast-like growth were up-

regulated in eed1D at later time points. Among these are the hyphal

Figure 1. Dynamics of C. albicans wild type and eed1D during growth on plastic surfaces. C. albicans wild type (WT) or eed1D mutant cells
were grown in RPMI1640 medium on Petri dishes at 37uC and 5% CO2. Growth was monitored by timelapse microscopy with a ZEISS AxioObserver.
Z1 microscope and analyzed by Axiovision software. Selected pictures from movies S1 and S2 are shown here. Scale bar: 20 mm.
doi:10.1371/journal.pone.0018394.g001

Figure 2. Analysis of septation in C. albicans during growth on
glass surfaces. C. albicans wild type and eed1D cells were grown on
glass slides (37uC, RPMI1640 medium) for the indicated incubation
times. After incubation, cells were fixed with 4% Histofix, washed with
1x PBS and stained with Calcofluor White prior to microscopy. Septae
are indicated by arrows. Scale bar: 20 mm.
doi:10.1371/journal.pone.0018394.g002
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growth repressor gene NRG1, which was 2.4-fold up-regulated in

eed1D 24 h after infection (Fig. 3 C) and the amino acid permease

gene AGP2 which is up-regulated in eed1D 12 and 24 h after

infection (Fig. 3 C, Table S2).

Expression of the regulatory gene UME6 depends on
Eed1

Since eed1D cells showed a strong and significant down-

regulation of UME6, recently shown to be necessary for the

extension of germ tubes into hyphae [27], we focused further

experiments on the genetic interactions between UME6 and

EED1. In order to analyze the influence of EED1 on the

expression level of UME6 in more detail, we quantified the

expression of UME6 and monitored morphology during growth on

plastic surfaces in a C. albicans wild type strain and an eed1D mutant

strain carrying a pTET-EED1 construct at the ADH1 locus. After

addition of 50 mg/ml doxycycline, which activated the tetracycline

promoter driven EED1 allele, the mutant strain grew as filaments

and expressed UME6 at significantly higher levels as compared to

control cells in the absence of doxycycline (Fig. 4 A, B). pTET-

driven expression of EED1 during infection of RHE restored

filamentation and the ability to cause cell damage of the eed1D
mutant (Fig. 4 C, D). These results indicate that expression of

UME6 depends on the expression of EED1 and that the

morphological defects of eed1D cells may be caused by a down-

regulation of UME6 expression.

Ectopic overexpression of UME6 rescues filamentation in
eed1D

Since UME6 was found to be down-regulated in eed1D, we

hypothesized that UME6 may be a downstream target of Eed1 and

that overexpression of UME6 in eed1D may rescue the lack of

hyphal extension in eed1D. Therefore, we integrated a pTET-

UME6 construct into the ADH1 locus of the eed1D mutant and

analyzed the phenotype of eed1D after forced expression of UME6.

Growth of wild type, eed1D and eed1D + pTET-UME6 cells was

tested under three different conditions: (a) growth on plastic, (b)

growth under embedded conditions and (c) during infection of oral

Figure 3. Transcriptome analysis during experimental oral epithelial tissue infections. (A) Global clustering of transcriptional profiles of C.
albicans wild type (WT) and eed1D during RHE infections over a time period of 24 h. (B) The numbers of genes differentially expressed at least with a
2-fold change are shown in Venn diagrams for all three points (1 h, 12 h, 24 h). (C) Dynamics of the expression of selected morphology-associated
genes in WT and eed1D during the time course, shown by the ratio between expression in eed1D and expression in wild type.
doi:10.1371/journal.pone.0018394.g003
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epithelial cells (TR- 146 cell line). During growth on plastic and

during co-incubation with host cells, wild type cells formed hyphae

while the eed1D mutant grew as yeast cells after initial filamenta-

tion (Fig. 5). In contrast to the wild type, cells lacking EED1 failed

to produce any filaments under embedded conditions, showing

that Eed1 is also required for filamentation under these conditions

(Fig. 5). However, forced overexpression of UME6, within eed1D
cells caused filamentation under all three conditions tested (Fig. 5).

Identification of Ume6- regulated gene subsets in eed1D
Since overexpression of UME6 in eed1D restored filamentation

during growth on plastic surfaces, we analyzed the transcriptome

of wild type, eed1D and eed1D + pTET-UME6 cells with or without

doxycycline after 12 h growth on plastic (Fig. 6, Table S3 and S4)

to identify genes regulated by Eed1 and/or Ume6. When

comparing the transcriptome of wild type and eed1D cells, we

identified 910 genes, which were at least 2-fold differentially

expressed in the mutant. Of these, 441 were down-regulated and

469 were up-regulated in eed1D (Fig. 6, Table S3). Compared to

eed1D, 313 genes were at least 2-fold differentially expressed after

forced pTET-UME6 expression (Fig. 6, Table S4). Of these, 195

genes were up-regulated and 118 genes were down-regulated

compared to eed1D (Fig. 6, Table S4). Clustering of gene

expression pattern of wild type, eed1D and eed1D + pTET-UME6

cells showed that wild type and eed1D + pTET-UME6 gene

expression pattern clustered together (Fig. 6A), a result which

reflected the observed similar morphologies (Fig. 5). Among the

441 genes, which were down-regulated in the eed1D mutant on

plastic (Table S3), were several hyphae-associated genes such as

ECE1, HYR1, HWP1 and SOD5 and regulatory genes such as

UME6 and HGC1 (Fig. 6 B). All of them were also down-regulated

in the eed1D mutant during RHE infections (Fig. 3). Ectopic

overexpression of UME6 in eed1D could restore the expression of

117 of these 441 down-regulated genes to wild-type levels,

including ECE1, HYR1, SOD5, HGC1 and UME6 (Fig. 6 B, Table

S4). The remaining 324 genes did not reach wild type levels in the

microarray analysis. However, 78 genes were expressed even

higher in the eed1D + pTET-UME6 mutant as compared to the

wild type (Fig. 6 B, Table S4). Among these were filament-

associated genes like SAP6 and SUN41.

Among the 469 genes which were up-regulated in eed1D during

growth on plastic as compared to the wild type were yeast-specific

genes such as AGP2, regulatory genes like NRG1 and MIG1 and the

adhesion genes ALS2 and ALS4 (Fig. 6 C, Table S3). Some of these

expression patterns (e.g. AGP2, NRG1) reflected the yeast cell

growth of eed1D at the 12 h time point and were similar to the

Figure 4. Expression of the UME6 gene depends on EED1 expression levels. (A) C. albicans eed1D mutant cells harboring the ectopic pTET-
EED1 were grown on plastic (RPMI1640 medium, 37uC, 5% CO2) for 12 h either in the absence or presence of 50 mg/ml doxycycline (with or without
DOX) in the medium. Scale bar: 20 mm. (B) Expression of the UME6 gene was down- regulated in eed1D compared to wild type. Expression was
restored after overexpression of pTET-EED1. Expression was detected by qRT PCR using SYBR Green. Gene expression was normalised against EFB1
and ACT1. Total RNA was isolated after 12 h growth on plastic surfaces. Asterisk means p#0.05. (C) Infection of reconstituted human oral epithelium
(RHE, Skinethic) was carried out using the eed1D mutant harboring the ectopic pTET-EED1 cassette. Induction of EED1 expression was achieved by the
addition of 50 mg/ml doxycycline to the infection. Pictures show PAS stained sections of the RHE tissues. (D) Average LDH release caused by eed1D +
pTET-EED1 exhibited in the presence and absence of doxycycline in three independent infections compared to uninfected RHE tissue.
doi:10.1371/journal.pone.0018394.g004
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expression pattern monitored during the RHE infection (Fig. 3).

However, only 82 out of the 469 genes up-regulated in eed1D cells

were significantly down-regulated to wild type levels following

ectopic overexpression of UME6 (Table S4), including ALS2, ALS4

and AQY1. The expression levels of 387 genes, including NRG1

and AGP2, remained unaffected by overexpression of UME6 in

eed1D.(Fig. 6 C). Thirty six genes exhibited greater down-

regulation in eed1D + pTET-UME6 as compared to wild type

levels. Most of these genes were of unknown function including

orf19.1780 and orf19.5503 (Fig. 6 C). These results show that a

significant portion of EED1-regulated genes, including the most

prominent hyphae-specific genes ECE1, SOD5 and HYR1, the

cyclin gene HGC1 and the hyphal repressor gene NRG1, are

regulated via UME6.

EED1 is up-regulated in C. albicans nrg1D and tup1D
In order to gain more information about the possible pathways

which may be associated with EED1 regulation, we analyzed the

expression of EED1 in mutants lacking key regulators of hyphal

formation. The intergenic region between the open reading frame of

EED1 and the 59 upstream gene YTA6 is unusually long consisting of

approximately 3 kb. Within this untranslated region we identified

three putative Nrg1 response elements (NRE, Table S5,[21]), which

suggest a possible regulation of EED1 expression by this repressor. In

fact, under conditions which favor yeast growth of wild type cells

(YPD, 30uC, Fig. 7 A), EED1 was significantly up-regulated in nrg1D
cells as compared to the wild type (Fig. 7 B). Even higher up-regulation

of EED1 was monitored in tup1D mutant cells at 30uC (Fig. 7 B). Both

nrg1D and tup1D mutant cells grew as filaments under these conditions

(Fig, 6 A). Under conditions which favour hyphal formation of C.

albicans (RPMI1640 medium, 37uC, Fig. 7 A), EED1 expression

increased 10-fold in wild type hyphae compared to yeast cells (Fig. 7

B). In contrast, expression did not further increase and even slightly

decreased in nrg1D mutant cells under conditions that induce hyphal

growth in wild type cells (Fig. 7 B). Similar EED1 expression patterns

were monitored in tup1D cells which reverted from hyphae to yeast

cells and pseudohyphae (Fig. 7 A, B). These data suggest that EED1 is

repressed by Nrg1 and Tup1 in wild type yeast cells.

EED1 expression depends on Efg1
In addition to NREs, the promoter of EED1 contains several E

box motifs which resemble binding sites of Efg1, the key

Figure 5. Ectopic overexpression of UME6 restores filamentous growth in eed1D. C. albicans wild type or eed1D mutant cells were
incubated for 12 h on plastic surfaces (37uC, RPMI1640 medium, 5% CO2) or embedded in YPS agar and agar plates were incubated for 3 days at 25uC
prior to microscopy. Additionally, wild type and eed1D were co- incubated with human oral epithelial cells (TR 146 cell line, DMEM medium, 37uC, 5%
CO2) for 24 h. Those parts of fungal cells, which were outside of host cells, were stained with Anti-Ca 560 (red) and Calcofluor White (blue) resulting in
a purple overlay. Those parts, which were inside the host cells, were stained with Calcofluor White only and appeared blue. To induce expression of
the tetracycline promoter 50 mg/ml doxycycline were added (indicated as with DOX). Scale bar: 20 mm.
doi:10.1371/journal.pone.0018394.g005
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transcriptional regulator of the cAMP pathway (Table S5, [32]). A

previous study has shown that expression of EED1, formerly

known as EDT1 (Efg1- dependent- transcript, [33]) was down-

regulated in efg1D mutant cells. In order to quantify expression of

EED1 in the efg1D mutant, we incubated the efg1D mutant and

wild type cells under hyphal inducing conditions in liquid medium

(RPMI) at 37uC. While the wild type formed hyphae under these

conditions, efg1D cells remained in the yeast-like growth phase. We

found that EED1 was approximately 10-fold down-regulated in

efg1D as compared to wild type hyphae (Fig. 7 B). In contrast, the

expression level of EED1 in efg1D under conditions which favor

yeast growth (YPD, 30uC, Fig. 7 A) was similar to wild type cells.

These data suggest that EED1 is a downstream target of Efg1.

Ectopic overexpression of EED1 partially rescues
filamentation in efg1D

If EED1 is a crucial regulator of hyphal extension and a

downstream target of Efg1, one would expect that a forced

overexpression of EED1 may cause filamentation in efg1D. To test

this possibility, we ectopically integrated a pTET-EED1 construct

into the ADH1 locus of the efg1D mutant and studied morphology

of the resulting mutant (efg1D + pTET-EED1) with and without the

addition of 50 mg/ml doxycycline during growth on plastic. As

expected, wild type strains showed strong hyphal induction on

plastic surfaces and efg1D + pTET-EED1 failed to form filaments

without the addition of doxycycline (Fig. 8 A). Induction of EED1

by the addition of doxycycline in efg1D + pTET-EED1 caused

Figure 6. Transcriptome analysis of the effects of ectopic overexpression of UME6 in eed1D during growth on plastic. (A) Global
clustering of transcriptional profiles of C. albicans wild type (WT), eed1D and eed1D expressing pTET-UME6 after 12 h growth on plastic surfaces. (B)
Venn diagram showing the numbers of genes at least 2 fold down-regulated in eed1D compared to WT (red and yellow) and in eed1D compared to
eed1D + pTET-UME6 (yellow and green). The intersection (yellow) indicates the number of genes whose expression is restored by ectopic expression
of UME6 in eed1D. Selected genes referred to in the text are highlighted. (C) The numbers of genes at least 2 fold up-regulated in eed1D compared to
WT (red and yellow) or eed1D compared to eed1D + pTET-UME6 (green and yellow). The intersection (yellow) indicates the number of genes whose
expression is repressed by ectopic expression of UME6 in eed1D. Selected genes referred to in the text are highlighted.
doi:10.1371/journal.pone.0018394.g006
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formation of hyphae or pseudohyphae in approximately 80% of all

cells after 12 h (Fig. 8 A). Since filamentation of efg1D mutant cells

expressing EED1 was observed, we analyzed the expression of the

hyphal-associated genes ECE1 and HWP1 and the hyphal

regulatory gene UME6 in wild type, efg1D and efg1D + pTET-

EED1 cells. ECE1 and HWP1 were approximately 10-fold down-

regulated in efg1D as compared to the wild type (Fig. 8 B). Forced

expression of EED1 in efg1D + pTET-EED1 caused increased

expression of HWP1 similar to wild type levels (Fig. 8 B). Similarly,

expression of ECE1 was increased in efg1D + pTET-EED1,

although expression levels were slightly lower as compared to

the wild type (Fig. 8 B). For UME6, we observed 5-fold reduced

expression in efg1D + pTET-EED1 cells without addition of

doxycycline as compared to the wild type (Fig. 8 B). However,

during forced expression of pTET-EED1 by the addition of

doxycycline, the expression of UME6 increased to the level of wild

type hyphae (Fig. 8 B). This supports the hypothesis that UME6

expression depends on Eed1. Confirming previous observations

made by Zeidler et al. [28], we also observed that forced

expression of UME6 restored filamentation in efg1D cells (Fig. 8 C).

It should be noted that hyphal growth in efg1D + pTET-UME6

seemed to be stronger than in efg1D + pTET- EED1 after addition

of doxycycline (Fig. 8 A, C). Taken together, these data suggest

that forced expression of EED1 not only triggered hyphal

formation, but also expression of hyphal-associated genes.

Discussion

EED1 is a unique, species-specific gene of C. albicans
Although the gene locus of EED1 is conserved within the

ascomycetes CUG clade, we did not find a homologous gene in

any genome sequence accessible via NCBI (http://blast.ncbi.nlm.

nih.gov/Blast.cgi). Only C. dubliniensis contains a sytentic gene at

the same locus named MDP1 (Moran et al., unpublished data).

However, the overall homology between Eed1 and Mdp1 is low

and functional analysis of Mdp1 in C. dubliniensis suggests different

roles of both proteins (Moran et al., unpublished data). Therefore,

we concluded that EED1 is a unique gene.

The only putative motif of the deduced protein of EED1,

which may indicate a cellular function, is a central glutamine-

rich region similar to the S. cerevisiae protein Def1 [12,29,30],

which may facilitate interactions with other proteins. In C.

albicans, many regulatory proteins including Efg1, Cph1, Ume6

and Tec1 possess such multi glutamine stretches (http://www.

Figure 7. EED1 expression is regulated by Nrg1, Tup1 and Efg1. (A) Morphology of C. albicans wild type, nrg1D, tup1D and efg1D strains at
30uC and 37uC. Strains were incubated in liquid cultures at 30uC for 6 h in YPD or for 6 h in RPMI1640 at 37uC prior to microscopy. Scale Bar: 20 mm.
(B) Expression of EED1 in C. albicans wild type and mutant strains under conditions which favor yeast growth (YPD) and hyphal-inducing conditions
(RPMI). Expression levels were quantified by qRT PCR using SYBR Green and normalised against housekeeping genes EFB1 and ACT1. Asterisk means
p#0.05.
doi:10.1371/journal.pone.0018394.g007
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candidagenome.org, [34], and not shown) suggesting that this

glutamine-rich region may have an important regulatory

function for Eed1. The intergenic region between EED1 and

the 59 upstream neighbour gene YTA6 is unusually long

(approximately 3 kb), similar to and typical for other hyphal-

associated (e.g. ALS3) or hyphal regulator genes (e.g. EFG1)

[35,36], which is in agreement with the proposed role of EED1

in regulation of morphology.

Eed1 is a key factor within the network regulating
dimorphism

Due to the importance of C. albicans morphology for

pathogenicity, multiple studies have investigated the processes

involved in hyphal formation and several pathways regulating

the morphological transition from yeast-to-hyphal cells have

been described [14,15,22]. However, the regulation of hyphal

extension of primary filaments into long and dividing hyphae is

less well studied. Due to the phenotype of cells lacking EED1,

which were able to form germ tubes but failed to extend these

into hyphae with dramatic consequences during infection of

epithelial tissues [12], we have focused our study (1) on the

regulation of hyphal extension and (2) the gene expression

associated with hyphal extension. The results of our work

dealing with the regulatory role of Eed1 during dimorphism

were combined with recent findings of other studies and

summarized in a model shown in Fig. 9. In this model, C.

albicans cells grow in the yeast form until an external stimulus

triggers the formation of germ tubes. This step includes the well-

studied MAP kinase cascade and the cAMP pathway as

discussed in several reviews [14,15,22]. Key regulators of germ

tube formation include the GTPase Ras1 and the transcription

factors Cph1 and Efg1 (Fig. 9). However, a second regulatory

network is required to promote extension of germ tubes into

hyphae. When this regulation fails, germ tubes switch back to

yeast cells as shown for mutants lacking Eed1 or Ume6 in

[12,27] and in this work (Fig. 9). We propose that Eed1 is the

primary element of a regulatory cycle which controls hyphal

extension on a transcriptional level. As shown in this work,

EED1 expression depends on Efg1, a member of the APSES

gene family [37] (Fig. 9), confirming previous data of the Fink

group who originally named EED1 (orf19.7561) EDT1 (Efg1-

dependent transcript 1) [33]. Expression of EED1 is also

regulated by Nrg1 as shown by transcriptional profiling of the

nrg1D mutant [37] and quantitative RT-PCR (this work) (Fig. 9).

The second step of the hyphal extension cycle is an EED1-

dependent expression of UME6 (Fig. 9). In this work we provide

evidence that expression of UME6 depends on the expression

levels of EED1, in particular, mutants lacking either EED1 or

UME6 share very similar phenotypes [12,27], supporting our

hypothesis that both have important roles in hyphal extension.

Similar to EED1, UME6 is repressed by Nrg1 [27,38] (Fig. 9). It

is unclear whether Efg1 directly activates UME6 expression. We

show that UME6 was down-regulated in efg1D mutant cells,

Figure 8. Ectopic overexpression of EED1 restores filamentation in efg1D during growth on plastic surfaces. (A) Ectopic overexpression
of pTET-EED1 restored filamentation in efg1D during 12 h growth on plastic surfaces (37uC, RPMI1640 medium, 5% CO2). To induce expression of the
tetracycline promoter 50 mg/ml doxycycline were added (indicated as with DOX). (B) Hyphae-associated genes ECE1, HWP1 and UME6 are
upregulated in efg1D after overexpression of pTET-EED1. Expression was detected by qRT PCR using SYBR Green. Gene expression was normalised
against EFB1 and ACT1. Total RNA was isolated after 12 h growth on plastic surfaces. Asterisk means p#0.05. (C) Ectopic overexpression of pTET-UME6
restored filamentation in efg1D during 12 h growth on plastic surfaces (37uC, RPMI1640 medium, 5% CO2 with or without 50 mg/ml doxycycline).
Scale bars: 20 mm.
doi:10.1371/journal.pone.0018394.g008
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however, expression of UME6 was restored by forced overex-

pression of EED1. We suggest that EED1-dependent UME6

expression is an essential step of hyphal extension in C. albicans.

Overexpression of UME6 in eed1D not only restored filamenta-

tion, but also expression of prominent hyphal-associated genes

like ECE1, HWP1 and HYR1. Previously it was shown that

UME6 expression levels have an impact on the growth of C.

albicans as either pseudohyphae (low UME6 expression) or true

hyphae (high UME6 expression) [39]. High expression of UME6

correlated with higher expression of hyphal-associated genes

such as ECE1 and HWP1 [40], which is supported by our

findings. Interestingly, Ume6 seems also be involved in keeping

NRG1 expression levels low in C. albicans hyphae [27]. As both,

EED1 and UME6, are repressed by Nrg1, this mechanism could

contribute to regulating hyphal extension. Our transcriptional

data show an up-regulation of NRG1 in eed1D during both,

infection of RHE and growth on plastic, and this up-regulation

was reversed by ectopic overexpression of UME6 in eed1D. This

may indicate that Eed1-dependent up-regulation of UME6 is

required to keep NRG1 expression at low levels in order to

prevent Nrg1-mediated reversion of hyphae to yeast cells.

Another important target of Ume6 seems to be the HGC1 gene,

encoding a hypha-specific G1 cyclin [23,40] (Fig. 9). HGC1 was

down-regulated in eed1D at late phases of RHE infections and

growth on plastic. This down-regulation was bypassed by

ectopic overexpression of UME6 in eed1D, indicating that

HGC1 belongs to the set of genes which is regulated by Ume6

as reported previously [40]. Hgc1 itself, together with its

interaction partner Cdc28, is involved in the phoshorylation of

Efg1 [25], Cdc42 activation [24] and the regulation of polarized

secretion [41]. It should be noted, that during growth on plastic,

CDC28 was down-regulated in eed1D and strongly up-regulated

in eed1D overexpressing UME6 (Fig. 6). A previous report has

shown that mutants lacking another G1 cyclin, Ccn1, were not

able to maintain filamentous growth although these cells

produced initial germ tubes similar to eed1D and ume6D mutant

cells [42]. However, in our experiments we did not observe

significant changes of CCN1 expression levels in eed1D cells

suggesting no direct link between Eed1 and Ccn1. Other genes

encoding factors involved in polarized growth, including

CDC42, RDI1, MYO2, CDC11, CYB2, MOB1 and MLC1 were

down-regulated in the eed1D mutant. Their expression was

partially restored to wild type levels after forced overexpression

of UME6 (supplemental tables S3 and S4). These results provide

a link between the transcriptional regulation of hyphal extension

presented here (Fig. 9) and the known cellular requirements for

maintenance of polarized growth and associated structures such

as the spitzenkörper. This may explain why mutant cells lacking

key elements of the hyphal extension cycle lose their ability to

maintain polarized hyphal growth and therefore switch from

germ tubes to yeast cell growth. Analysis of the transcriptome

data during growth on plastic also showed a slight up-regulation

of PES1 in the eed1D mutant. This gene was reported to encode

a regulator of the hypha-to-yeast switch in C. albicans [26] and

also plays an important role for dispersion of yeast cells from

biofilms [43]. The up-regulation of PES1 was partially reverted

to wild type levels in eed1D overexpressing UME6. This further

supports the view that Eed1 and Ume6 are involved in the

repression of the reversion of hypha into yeast cells. It was

already shown that Ume6 might have a negative influence on

dispersion of yeast cells from biofilms [43,44]. Therefore, it may

be postulated that Eed1 also plays a role during biofilm

formation.

In summary, our data suggest that Eed1 and Ume6 act in a

pathway regulating the maintenance of hyphal growth thereby

repressing the hyphal-to-yeast transition.

Figure 9. Extension of germ tubes to hyphae depends on Eed1. The proposed model indicates the crucial role of Eed1 during hyphal growth
of C. albicans. Yeast cells are induced by environmental stimuli to form germ tubes. Regulators like Ras1, Cph1 and Efg1 control this process. Eed1 and
Ume6 are essential for extension of initial filaments into long hyphae. The G1 cyclin Hgc1 is regulated by Ume6. Deletion of either EED1 or UME6
causes budding of yeast cells from the initial filaments and initiation of hyphal-to-yeast transition.
doi:10.1371/journal.pone.0018394.g009
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Materials and Methods

In silico analysis
The search for homologes of C. albicans Eed1 was performed

with protein Blast and tBlastn from the NCBI home page (http://

blast.ncbi.nlm.nih.gov/Blast.cgi). To compare syntheny for the

EED1 locus within the CUG Candida clade we have used the online

databases from the Broad Institute (http://www.broadinstitute.

org/annotation/genome/candida_group/MultiHome.html) and

from the Sanger Institute (http://www.sanger.ac.uk/Projects/

Fungi/). Sequences were aligned with DNASTAR Lasergene

MegAlign software.

Strains and media
C. albicans strains (listed in Table 1) were routinely grown in

YPD medium (1% yeast extract, 2% bacto- peptone, 2% D-

glucose) at 30uC or 37uC in a shaking incubator overnight. Prior to

use in experiments, fungal cells were semisynchronised by

incubating twice in YPD overnight and washed three times with

1x PBS. Cells were counted with a Neubauer chamber and added

to experimental assays at the given concentrations. For growth

under embedded conditions, cells were grown overnight in YPD

medium at 30uC, washed with 1x PBS, diluted to a concentration

of 16103 cells/ml and mixed with YPS agar (1% yeast extract, 2%

bacto- peptone, 1% agar, 2% sucrose), plated and incubated for 3

days at 25uC (modified from [45]). Colonies were analyzed with a

Leica DM IL inverted microscope (Leica Microsystems, Wetzlar,

Germany). Image acquisition and analysis was done with the Leica

Application Suite Software.

Cell lines and cell culture
In this study we have used the human oral epithelial cell line

TR146 [46]. TR146 cells were grown in DMEM medium with

10% FBS at 37uC and 5% CO2 until they have reached

confluency. For infection assays, 16105/ml human cells were

plated into 24 well plates and grown in DMEM + 10% FBS at

37uC and 5% CO2 until confluency was reached. Prior to

invasion, cells were washed and then FBS- free DMEM was

added. For infection, C. albicans strains were grown in YPD at

30uC overnight and then diluted to OD600 = 0.2 in fresh YPD,

followed by a new incubation at 30uC for approximately 4 h. Cells

were harvested by centrifugation, washed three times with 1x PBS

and finally resuspended in 1x PBS. Host cells were infected with

fungal cells in different cell numbers ranging from 56102 (24 h

infection) to 16105 (3 h infection). Infection assays were incubated

at 37uC and 5% CO2 for a maximum of 24 h.

Experimental oral epithelial tissue infection
For the analysis of invasion abilities of different C. albicans strains

we have used the reconstituted human oral epithelium (RHE,

SkinEthic, Nice, France) which consists of differentiated multilayers

of the TR146 cell line. Infection assays were performed as described

previously [47]. Prior to infection, C. albicans strains were grown in

YPD at 30uC overnight and then diluted to OD600 = 0.2 in fresh

YPD, followed by a new incubation at 30uC for approximately 4 h.

Cells were harvested by centrifugation, washed three times with 1x

PBS and finally resuspended in 1x PBS. 26106 C. albicans cells were

added to each RHE. The infection assays were incubated for a

maximum of 24 h at 37uC and 5% CO2. The release of lactate

dehydrogenase (LDH) from epithelial cells into the cell-culture

medium was measured to quantify the extent of epithelial cell

damage. The CytoTox 96H non-radioactive cytotoxicity assay

(Promega Corp., Madison, WI) was used to measure the amount of

LDH in each sample. The reaction was assayed at 480 nm using a

Genios plate reader (Tecan U.K. Ltd.). One unit of LDH activity is

equivalent to 1 mM formazan formed per reaction. Result shown

were generated from three separate infections. Prior to sectioning

and staining for light microscopy, RHE tissues were fixed in 4% (v/

v) paraformaldehyde in PBS (pH 7.4), dehydrated in ethanol and

embedded in paraffin wax. Sections were stained with Periodic Acid

Schiff (PAS) reagent for visualization of fungal elements. Tissues

were examined using a Nikon Eclipse 600 microscope.

Construction of C. albicans mutants
For transformation of C. albicans we have used the lithium-

acetate method as previously described [48]. Ura– mutant strains

were recovered by integrating the plasmid pCIp10 (URA3) into the

RPS10 locus [49,50]. A parental strain was created by integrating

pCIP30 (URA3; HIS1; ARG4) [51] into the RPS10 locus of BWP17.

pCIp10 and pCIp30 were kindly provided by A. Brown,

Aberdeen. The pTET-UME6 construct was excised with the

restriction enzymes ApaI and PmlI from a pNIM1 derivative kindly

provided by A. Bito, University of Salzburg [28] and transformed

into eed1D mutant strains. For experiments including pTET-EED1

Table 1. Candida albicans strains used in this study.

Strain Genotype Reference

SC5314 C. albicans wild type [56]

BWP17 + CIp30 Dura3:: imm434/Dura3:: imm434
his1::hisG/his1::hisG
arg4::hisG/arg4::hisG plus pCIp30

[12]

HLC52(efg1D) efg1::hisG/efg1::hisG-URA3-hisG
in CAI-4

[16]

MMC4 (nrg1D) nrg1::hisG/nrg1::hisG in CAI-4 [21]

BCA 2-10 (tup1D) tup1::hisG/tup1::hisG in CAI-4 [20]

UZ149 (pTET-UME6) ADH1/adh1::SAT1-pTET-UME6
in SC5314

[28]

M1263 (eed1D) eed1::HIS1/eed1::ARG4, pCIp10
in BWP17

[12]

M1273 (eed1D + EED1) EED1/EED1 plus pCIp30 [12]

M1315 (eed1D) eed1::FRT/eed1::FRT
in SC5314

this work

M1457 (tup1D) BCA 2-10 plus pCIp10 this work

M1458 (nrg1D) MMC4 plus pCIp10 this work

M1563 (eed1D +pTET-UME6) ADH1/adh1::SAT1-pTET-UME6
in M1263

this work

M1573 (eed1D +pTET-EED1) ADH1/adh1::SAT1-pTET-EED1
in M1263

this work

M1574 (efg1D +pTET-EED1) ADH1/adh1::SAT1-pTET-EED1
in HLC52

this work

M1764 (efg1D +pTET-UME6) ADH1/adh1::SAT1-pTET-UME6
in HLC52

this work

M1773 (EED1/eed1) EED1/eed1::ARG4, ura3, his1,
pCIp30t
in BWP17

his work

M1774 (eed1/EED1DN) eed1::ARG4/EED1DN::HIS1, ura3,
pCIp10, in BWP17

this work

M1775 (eed1/EED1DNQ) eed1::ARG4/EED1DNQ::HIS1, ura3,
pCIp10, in BWP17

this work

M1776 (eed1/EED1DQC) eed1::ARG4/EED1DQC::HIS1, ura3,
pCIp10, in BWP17

this work

M1777 (eed1/EED1DC) eed1::ARG4/EED1DC::HIS1, ura3,
pCIp10, in BWP17

this work

doi:10.1371/journal.pone.0018394.t001
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we have amplified the SAT1-pTET fragment from pNIM1 and the

EED1 ORF from genomic C. albicans SC5314 DNA with

overhanging oligonucleotid primers (see Table S6). Both PCR

fragments were linked in a fusion PCR and transformed into C.

albicans. pTET-UME6 or pTET-EED1 were integrated into the

ADH1 locus as described previously [52]. Transformants were

selected on YPD with 200 mg/ml nourseothricin [53] and were

verified by PCR and Southern Blot analysis. All oligonucleotid

primers used in this study are listed in supplemental table S6.

RNA isolation
For RNA isolation cells were harvested by centrifugation and

resuspended in 400 ml AE buffer (50 mM sodium acetate, 10 mM

EDTA). Next, 40 ml 10% SDS and an equal volume of phenol/

chloroforme/isoamylalcohol was added. Mixtures were incubated

at 65uC for 5 min, followed by an incubation at 280uC until they

were frozen. After a second incubation at 65uC (until samples were

thawn) the mixtures were centrifugated for 2 min at 120006g.

The upper liquid phase was transferred into a new reaction tube.

After addition of 10% volume sodium acetate pH 5.3 and 1

volume 2-propanol, RNA was precipated for 30 min at 220uC.

Samples were centrifugated for 10 min at 120006g, supernantant

were discarded and RNA pellets washed twice with 70% ethanol

(prepared with RNAse free water). Finally, RNA was solved in

RNAase free water. Qualities and quantities of isolated RNA were

analyzed with an Agilent 2100 Bioanalyzer (Agilent Technologies).

Transcriptional profiling
For transcriptional profiling we have used C. albicans oligo

microarrays (Eurogentec, Seraing, Belgium). Sample RNA from

RHE and plastic assays was labelled with Cy5 (GE Healthcare).

These sample RNAs were cohybridized with a common reference

(RNA from SC5314 grown in YPD, mid-log phase, 37uC, Cy3-

labelled). Slides were hybridized, washed and scanned with

Genepix as described [54]. Data normalization (LOWESS) and

analysis was performed with Genespring 7.2 software (Agilent

Technologies) as described previously [12,54]. Microarray studies

were done in three biological independent triplicates. Student’s t-

test was used to compare expression data from the triplicates to

identify significant differences. Only differences with p#0.05 were

used as statistically significant. All microarray data are MIAME

compliant and raw data have been deposited at ArrayExpress

(http://www.ebi.ac.uk/microarray-as/ae). The accession numbers

are E-MEXP-3085 for the RHE infection microarrays and E-

MEXP-3083 for the plastic growth experiments.

Quantitative RT PCR
For gene expression analysis, 100 ng of total RNA were used to

perform quantitative RT-PCR with the One Step RT-qPCR

Master Mix Plus for SYBR Green I Kit (Eurogentec, Seraing,

Belgium). RT-PCR was perfomed on a Applied Biosystems 7300

Fast Real- Time PCR System (Applied Biosystems, Darmstadt,

Germany). Expression was calculated by the DDCt method as

described previously [55]. Student’s t-test was used to compare

expression data from the triplicates to identify significant

differences. Only with p#0.05 differences were regarded as

statistically significant.

Growth on plastic surfaces
Strains were twice grown in YPD at 30uC overnight for

semisynchronisation. Cells were washed with 1x PBS and 16105

cells/ml were added to RPMI1640 medium (PAA). This mixture

was given on petri dishes or 6- well plates and incubated for 24 h at

37uC at 5% CO2 in the air. For microscopy, a Leica DM IL

inverted microscope (Leica Microsystems, Wetzlar, Germany) was

used. To analyse dynamics of growth on plastic via timelapse

microscopy we have used the same environmental conditions and a

Zeiss AxioObserver. Z1 fluorescence microscope (Zeiss, Göttingen).

Microscopy
Differential staining of C. albicans during infection of host cells

was done as described previously [8]. After fixation and washing

with 1x PBS C. albicans cells were stained with rabbit anti-C.

albicans polyclonal antibody conjugated with Alexa Fluor 560

(Invitrogen). Subsequently, human host cells were permeabilised

with 0.5% Triton X-100 and Calcofluor White was added to stain

C. albicans cells. Therefore, fungal elements of C. albicans outside of

host cells were stained with the antibody and Calcofluor White

while parts within the host cells were stained with Calcofluor

White only. For staining of cells grown on glass coverlslips without

human cells, C. albicans cells were fixed with 4% histofix for 30 min

(Carl Roth, Karlsruhe, Germany), washed with PBS and stained

with Calcofluor White prior to microcopy. Microscopy was

performed with a Leica DM 5500B fluorescence microscope

(Leica Microsystems, Wetzlar, Germany). Image acquisition and

analysis was done using the Leica Application Suite Software.
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