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Abstract

Field-scale environmental models have been widely used in aquatic exposure assessments of pesticides. Those models
usually require a large set of input parameters and separate simulations for each pesticide in evaluation. In this study, a
simple use-exposure relationship is developed based on regression analysis of stochastic simulation results generated from
the Pesticide Root-Zone Model (PRZM). The developed mathematical relationship estimates edge-of-field peak
concentrations of pesticides from aerobic soil metabolism half-life (AERO), organic carbon-normalized soil sorption
coefficient (KOC), and application rate (RATE). In a case study of California crop scenarios, the relationships explained 90-
95% of the variances in the peak concentrations of dissolved pesticides as predicted by PRZM simulations for a 30-year
period. KOC was identified as the governing parameter in determining the relative magnitudes of pesticide exposures in a
given crop scenario. The results of model application also indicated that the effects of chemical fate processes such as
partitioning and degradation on pesticide exposure were similar among crop scenarios, while the cross-scenario variations
were mainly associated with the landscape characteristics, such as organic carbon contents and curve numbers. With a
minimum set of input data, the use-exposure relationships proposed in this study could be used in screening procedures for
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potential water quality impacts from the off-site movement of pesticides.
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Introduction

As part of the registration process, pesticides are evaluated for
their potential to move off-site and impact non-target organisms.
Surface runoff and tile flow are significant pathways for pesticides
movement to surface waters. Monitoring-based surface water risk
assessments of pesticides are usually conducted at the watershed
scale using measured concentration data from river sites, especially
at watershed outlets. For example, in-stream measurements of
pesticides were assessed for U.S. watersheds with spatial scales
across 14 orders of magnitude [1,2]. However, water flow from
non-application areas and non-agricultural headwaters may
significantly dilute pesticide concentrations in the river. For
example, in California’s Central Valley, one of the most
productive agricultural areas in the world, pesticide concentrations
are substantially higher in small creeks dominated by irrigation
return flows, as compared to main streams where the majority of
flow originates in Sierra Nevada mountains [3,4,5,6]. Because of
the dilution effects, data in larger streams are associated with great
spatial variability and thus not able to provide reliable and
comparative information for pesticide management and mitiga-
tion. Therefore, assessments of aquatic risk now generally focus on
smaller water bodies close to the edge-of-field.

Monitoring data are not always available and adequate for risk
assessment, especially for pesticide products with new active
ingredients. Environmental fate and transport models may be used
to predict likely concentrations and associated risks of pesticides
and to determine priorities for monitoring and regulatory

@ PLoS ONE | www.plosone.org

assessments. Water quality modeling is a key component of
pesticide management, as in the development of Best Management
Practices (BMPs) and Total Maximum Daily Loads (TMDL).
Compared to watershed-scale models, field-scale models better
account for hydrologic processes within agricultural fields and
have the capability to simulate agricultural management practices.
Field-scale models, such as the Pesticide Root Zone Model
(PRZM) and the Root Zone Water Quality Model (RZWQM) [7],
provide dynamic simulation of pesticide fate and transport
processes, from pesticide applications to edge-of-field discharge.
However, these models usually require a large set of model input
parameters for the full descriptions of landscape characteristics,
climate conditions, and management practices [8]. Consequently
parameterization and simulation using field-scale models could be
complicated and time-consuming, particularly when batch simu-
lations and post-data analysis are involved [9]. In addition, during
the pesticide registration process, the required input data may be
difficult to obtain, especially for new pesticides which have not
been applied in field conditions. Therefore, there is a research
need to develop simple mathematical relationships to determine
the potential aquatic risks of pesticides based on a minimum set of
input parameters. Such simple relationships may be used in a
screening procedure to identify pesticides that require more
refined studies. As an early modeling effort, U.S. Environmental
Protection Agency (USEPA) developed the model for Generic
Estimated Environmental Concentration (GENEEC) to mimic
more sophisticated simulations of pesticide transport from crop
field to a standard pond [10]. However, differences in climate, soil,
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topography or crop are not considered in estimating potential
exposure, thus substantially limiting its applications to pesticide
evaluation and registration.

This study develops “use-exposure relationships” in the form of
linear regression equations that link pesticide application rate and
physicochemical properties to a predicted exposure level (such as
peak concentration) for specific environmental configurations. The
relationship is developed from the results of more detailed field-
scale model simulations, but use significantly fewer input
parameters. Specific study objectives are [1] to identify governing
parameters in pesticide fate and transport processes in canopy-soil
system [2]; to establish empirical relationships between those
parameters; and [3] to demonstrate the developed model with
parameterizations in the crop scenarios of California. The
approach enables a quick risk assessment based on limited input
data, and yields accuracy comparable to the dynamic simulation of
the selected field scale model. The parameterized use-exposure
relationship provides useful information for decision making in
pesticide registration and management.

Materials and Methods

PRZM Model and Aquatic Exposure Assessment

PRZM is a one-dimensional compartmental model developed
by USEPA for predicting pesticide movement in unsaturated soils
[11]. It is designed to evaluate the influence of climate, soil
properties, and management practices on pesticide transport and
transformation processes, e.g., surface runoff, plant uptake,
leaching, erosion, and volatilization. PRZM generates daily
pesticides fluxes in both dissolved and adsorbed forms at the edge
of fields. The resulting fluxes are useful for further analyses, such as
aquatic risk assessment [12], loading calculation [13], and water
quality evaluation [14]. PRZM has undergone validation and
testing to field-scale runoff and leaching studies [15,16]. An
enhanced version of PRZM is being used for surface water and
groundwater exposure assessments in the European Union [17].

PRZM was selected in this study based on its ability to simulate
relevant governing processes of pesticide transport and because of
its use by regulatory agencies in their pesticide exposure
assessments [10,17]. USEPA has also developed crop scenarios
to facilitate the application of PRZM in risk assessment [18].
Those scenarios specify the environmental configurations for
typical crops in major agricultural regions of U.S., including
weather conditions, landscape characteristics, crop growth pa-
rameters, and soil properties.

To assess pesticide risks to aquatic organisms, an exposure index
(EI) was defined in this study as follows. First, the estimated
environmental concentrations (EEC) of pesticide in surface runoff
and soil erosion were predicted as daily time series by PRZM. For
dissolved pesticides, the exposure index was then calculated as the
peak concentration of 4-day moving averages in the 1-in-3 year
return period. This definition is consistent with the current
regulatory surface water criteria for two widespread pesticidal
surface water contaminates chlorpyrifos and diazinon [19,20].

Simulation Design and Input Data

Stochastic PRZM simulations were conducted to develop crop-
scenario-specific “‘use-exposure relationships”, i.e., empirical
equations for predicting edge-of-field pesticide runoft concentra-
tions. The simulations were based on crop scenarios developed by
USEPA for pesticide risk assessment. A single annual pesticide
application, repeated every year during 1961-1990, was simulated
for a specific scenario. Annually repeated applications were
utilized to incorporate the effects of climatic and hydrologic
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variations on pesticide off-site movement. In addition, the 30-year
simulation also accounted for the accumulation of persistent
pesticides. For those pesticides, residues from previous applications
may remain in the soil and add to the newly applied chemicals in
the next year. A random application date was assigned to a PRZM
simulation and pesticide was applied on the assigned date for each
year in that simulation. The random date was generated within the
pesticide’s application season depending on the actual use pattern
of the pesticide, such as dormant-season application, in-season
application, and pre-emergent application. On each day of
application, pesticide was applied at a fixed rate (a “base rate”
or BASE, kg/ha as the active ingredient), which was an arbitrary
small application rate for stochastic PRZM runs. A linear
relationship was assumed between pesticide application rate and
pesticide loadings from the field. A small base rate was used to
avoid high predicted concentrations that exceed the water
solubility (SOL) of the pesticide during the simulation. In this
study, the base rate was set as 0.1 kg/ha. Preliminary simulations
showed that, with base rate of 0.1 kg/ha, EECs were always lower
than the corresponding SOL in all PRZM runs. Predicted
concentrations should be compared to the SOL when applying
the developed use-exposure relationships with actual label rates.

The chemical properties of aerobic soil metabolism half-life
(AERO), organic carbon-normalized soil adsorption coefficient
(KOC), and SOL are the governing factors for pesticide runoff
potential in both dissolved and adsorbed phases [21,22]. KOC
and SOL are direct input parameters in PRZM, and AERO is
used in calculating the model inputs of decay rate constants [23].
In PRZM and most of other field-scale models, SOL is considered
only as an upper limit on the dissolved concentration. In addition,
significant association between the two properties of KOC and
SOL has been reported in several previous studies. For example,
linear correlation (p<0.001) was confirmed between log-trans-
formed KOC and SOL [24]. Similar linear relationships were also
used to estimate KOC from SOL [11,25]. Therefore, only the
independent chemical properties of AERO and KOC were
selected 1n this study for stochastic PRZM simulations. The two
selected parameters were also used by other studies for estimating
pesticide runoff potentials [21,26,27,28].

The probability distributions for AERO and KOC were derived
from a database of physiochemical property and reaction half-life
complied by Spurlock [24] for 172 pesticides. Spurlock [24]
suggested that log normality is a reasonable assumption for AERO
and KOC, and that the two properties are independent
(p=0.551). Maximum likelihood estimation (MLE) was applied
to estimate the distribution parameters (Table 1). Latin Hypercube
Sampling (LHS) was used to generate random input data of

Table 1. Parameters for the log-normal distribution of
aerobic soil metabolism half-life (AERO) and organic carbon-
normalized soil sorption coefficient (KOC).

Variable n o E SD
AERO 3.44 1.99 226.01 1613.14
KOC 6.51 2.52 1.61e4 3.82e5
Notes:

[1] the parameter estimation was based on the median fate properties derived
from registration studies of 172 pesticides [24].

[2] pand o are the mean and standard deviation of the data’s natural logarithm,
respectively; E and SD are the mean and standard deviation of the data,
respectively.

doi:10.1371/journal.pone.0018234.t001
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AERO and KOC within 95% of cumulative frequency of the
corresponding log normal distribution as defined in Table 1. For
ecach PRZM run, the exposure index from the single pesticide
application at base rate, denoted as EI_BASE, was calculated from
the predicted daily EECs. Finally, the general mathematical
relationship between the EI_BASE and input chemical properties
of AERO and KOC for the particular crop scenario was
developed based on regression analysis. The built-in Monte Carlo
simulation in PRZM does not report daily time series of edge-of-
field pesticide concentrations. In addition, a deficiency has been
reported for the built-in Monte Carlo module in PRZM [29].
Therefore, LHS algorithm was taken from our previous study
[30]; and a batch program was developed for stochastic PRZM
runs and post-data analysis.

Crop Scenarios in California

Crop scenarios developed by USEPA for California were used
for simulations. Available scenarios include standard crop
scenarios [18], crop scenarios developed for organophosphate
pesticide cumulative risk assessment [31], and crop scenarios
developed for effects determinations for California listed endan-
gered and threatened species [32]. Combined, approximately 30
scenarios are available for California, some of which are associated
with pesticide use patterns with high runoff potential. These
include crops with flood or furrow irrigation, winter rain season
application, and pre-emergent herbicide application. These
scenarios were selected in this study to demonstrate the
development of the pesticide use-exposure screening model.
Results of a statewide survey of California irrigation methods
[33] indicated that field crops and tomatoes are dominated by
flood and furrow irrigation. Scenarios of almond and turf were
selected to represent wet season application and pre-emergent
herbicide application, respectively. Tables 2 and 3 summarize the
selected scenarios for PRZM simulations for California. A non-
California scenario (Florida tomatoes) was also included in this
study to compare/contrast results with a wetter climate.

The crop scenarios specify the weather conditions, soil
properties, and crop growth parameters used in the PRZM
simulations. Other model inputs used in this study, including
chemical property and pesticide application, are summarized in
Table 4. To provide conservative estimation of pesticide residues
at the edge of field, pesticides were assumed to be incorporated
into the soil at application and all mass loss fluxes by interception,
volatilization, and decay on the plant canopy were set as zero.

Meta-Modeling Approach for Pesticide Assessment

Results and Discussion

Use-Exposure Relationship for a Single Pesticide
Application

The response of EI_BASE to random values of AERO and
KOC was evaluated by stochastic PRZM simulation. For each
crop scenario, the predicted dissolved or adsorbed EI_BASE were
paired with corresponding inputs of AERO and KOC for further
regression analysis. The logarithmic transformation was also
applied to EI_BASE according to preliminary analyses on
pesticide concentrations detected in surface water of California
[34]. Finally, an Nx3 matrix of (InAERO, InKOC, InEI_BASE),
with N denoting the number of stochastic PRZM runs, was
generated from Monte Carlo simulation. Demonstrated in
Figure la is an example plot of the matrix for dissolved pesticides
for the standard crop scenario for cotton in California. Significant
correlations were identified between dissolved EI_BASE vs.
AERO and KOC, especially for pesticides with KOG higher
than a certain value (e.g., about 5 for InKOC as shown in
Figure 1a). This correlation reflected the effects of degradation and
partitioning of pesticides on the peak concentration predicted at
the field edge. For pesticides with lower KOC, EI_BASE was
generally invariant with KOC. With low KOC values, pesticides
are mainly present in dissolved phase, thus the change in KOC do
not have a great effect on the phase partitioning.

Stochastic PRZM simulations for other crop scenarios revealed
similar relationships among the predicted EI_BASE and input
parameters, 1.e., the general linear relationship between EI_ BASE
and AERO and KOC, and the presence of an approximate
InKOC cutoff, below which EI BASE i1s independent of KOC.
Therefore, a conceptual model was developed for the use-
relationships from a single pesticide application based on that
general data structure (Figure 1b). First, a breakpoint for KOC
(KOC#*) was determined from the trend of dissolved EI_BASE
with KOC for the given crop scenario. Multivariate linear
regression with logarithmic transformations was conducted
between EI_BASE vs. AERO and KOC on the data points with
KOC>KOC#*. A similar relationship was applied to pesticides
with KOC=KOC* by substituting KOC with KOC¥*, in order to
provide conservative estimation of EI_BASE for those pesticides.

The general use-exposure relationship is:

In(EI_.BASE)=f(AERO,KOC)=b,+ b,In(AERO)+b3In(KOC) (1)

Table 2.0verview of selected California crop scenarios developed by USEPA.

Crop scenario Represented use pattern

Soil (hydrologic group) Weather station

Alfalfa (OP)
Almond (STD)
Cotton (STD)
Sugar beet (OP)
Tomato (STD)
Turf (RLF)

Wheat (RLF)
Tomato_FL (STD)

Pasture, gravity irrigation
Dormant application

Field crop, gravity irrigation
Field crop, gravity irrigation
Tomato, gravity irrigation
Pre-emergent application
Grain, gravity irrigation

Tomato scenario in Florida

Sacramento clay (D) Fresno
Manteca fine sandy loam (C) Sacramento
Twisselman Clay (C) Fresno
Ryde clay loam (C) Fresno
Stockton clay (D) Fresno

CapaySilty Clay Loam (D) San Francisco

San Joaquin Loam (D) Fresno

Riviera Sand (C) West Palm Beach

doi:10.1371/journal.pone.0018234.t002
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Data source: USEPA Tier 2 crop scenarios for PRZM/EXAMS Shell [18,31,32]. “STD"” = Standard crop scenarios, “OP” =scenarios developed for the cumulative risk
assessment of organophosphate pesticides, and “RLF” = scenarios developed for the effects determinations for the California red-legged frog and other California listed
species. “Tomato_FL"” denotes the standard USEAP crop scenario for tomato in Florida, provided as an example of the crop scenarios in other states.
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Table 3. Landscape characteristics and soil properties of
selected California crop scenarios.

Crop scenario CN USLE K/LS/P USLE C oc1
Alfalfa 90/88/89 0.20/0.30/1.0 0.051-0.217 1.77%
Almond 84/79/84 0.28/0.30/1.0 0.034-0.221 0.81%
Cotton 89/86/89 0.21/0.37/1.0 0.054-0.412 0.29%
Sugar beet 89/86/89 0.28/0.30/1.0 0.015-0.769 3.48%
Tomato 91/87/91 0.24/0.13/1.0 0.035-0.255 0.95%
Turf 80/80/80 0.37/1.80/0.5 0.001 35.6%
Wheat 92/89/90 0.37/0.79/1.0 0.027-0.604 0.44%
Tomato_FL 91/87/91 0.03/0.20/1.0 0.177-0.938 1.16%
Parameters:

CN =Runoff curve numbers of antecedent moisture condition Il for fallow,
cropping, and residue, respectively;

USLE K =soil erodibility for the universal soil loss equation (USLE);

USLE LS =topographic factor for the USLE;

USLE P = practice factor for the USLE;

USLE C=cover management factor for the USLE;

OC1 =0rganic carbon content in the surface soil.
doi:10.1371/journal.pone.0018234.t003

And the relationship for dissolved pesticides is:
In(EI_BASE)=f(AERO,KOC)

=b, +b, In(AERO) + bs In(max(KOC,KOC™))

where by, by, and bs are coefficients derived by regression. KOC*
was determined by maximizing the coefficient of determination

Meta-Modeling Approach for Pesticide Assessment

(R? in the regression analysis. Based on the linear assumption
between pesticide application and exposure, the dissolved
exposure index (EI, pug/L) from pesticide applications at the
actual rate (RATE, kg/ha) was expressed as,

RATE
El= 2 EI BASE 3)

Derived Parameters for Dissolved Pesticides

For each selected scenario, 5 000 stochastic simulations of
PRZM (N =5 000) were conducted for the 30-year period of
1961-1990. Regression coeflicients and other statistics for the use-
exposure relationship for dissolved pesticides are summarized in
Table 5.

Values of InKOC#* varied with different scenarios, ranging from
0.5 to 5.5. With higher organic carbon content in surface soil
(OC1), such as for the California turf scenario (35.6%), lower
KOC#* values were observed relative to other scenarios with
smaller OC1 ranging from 0.44% to 3.48% (Table 3). However,
the product of KOC* and OCI, equivalent to the corresponding
limiting distribution coefficient (KD#*), was approximately constant
among the scenarios, ranging from 0.5 to 0.7. Since the
distribution coefficients indicate pesticide mobility in the soil, the
KD#* value determined from the PRZM simulations was
considered as the critical KD value below which the transport
process of dissolved pesticides with surface runoff was insensitive to
their KOC values.

The empirical AERO-KOC based use-exposure relationships
explained 90-95% of the variances on the predicated EI_BASE of
dissolved pesticides. The predictive ability of the relationships was
mainly attributable to InNKOC, which solely explained 85-90% of

@ PLoS ONE | www.plosone.org

Table 4. Chemical property and pesticide application in PRZM simulations.

Variable Description Values/notes

APPDAY Application date Random numbers (uniform) in the application season
APPEFF Application efficiency 0.99 (ground application) [2]
CAM Pesticide application method 4 (soil incorporation)

DAIR Diffusivity in air (cm2/day) 4300 [1]

DEPI Incorporation depth (cm) 4 [2]

DRFT Drift fraction 0.01 [2]

DSRATE Adsorbed phase decay rate (1/d) =In2/AERO, LHS sampling
DWRATE Dissolved phase decay rate (1/d) =DSRATE [2]

ENPY Enthalpy of vaporization (kcal/mol) 20 [1]

FEXTRC Washoff extraction (1/cm) 0.5 [1]

HENRYK Henry's law constant (g/aq, dimensionless) 03]

IPSCND Disposition of foliar pesticide after harvest 1 (surface applied) [3]
PLDKRT Decay rate on foliage (1/d) 01[2]

PLVKRT Volatilization rate on foliage (1/d) 0[2]

KOC Organic carbon-normalized soil adsorption coefficient (L/kg[OC]) LHS sampling

TAPP Application rate (kg/ha) 0.1 (base application rate used in this study)
UPTKF Pesticide uptake 0[2]

Notes:

[11Suggested value in the PRZM manual [11].

[2]USEPA-suggested model input parameter value [23].

[3]1Assumptions made for conservative evaluation of pesticide exposure.

doi:10.1371/journal.pone.0018234.t004
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Figure 1. Use-exposure relationship for dissolved pesticides (EI_BASE in pg/L): (a) example results of Monte Carlo simulation and

(b) conceptual model.
doi:10.1371/journal.pone.0018234.g001

the total variances in InEI_BASE, while AERO had only a limited
contribution. Generally, the relative magnitudes of dissolved
EI_BASE for pesticides with large KOC were mainly related to
the regression coeflicients of KOC (b3), while those for pesticides
with lower KOC were determined by the intercepts (b1). This
reflected the competition between phase partitioning and water
runoff extraction on the pesticide yields from the applied field.
Relatively higher regression coefficients for AERO (b2) were
observed for scenarios with higher OC1 such as sugar beet

@ PLoS ONE | www.plosone.org

(OC1 =3.48%) and turf (OC1 = 35.6%) (Table 3). With elevated
OC: contents, pesticides are less mobile in the soil and could be
accumulated for a longer period. Previous studies indicated that
pesticide half-life in the soil is the key parameter in determining
the total amount of pesticide residues discharged from fields
[21,22,35]. However, the measure of exposure in risk character-
ization is estimated from peak concentrations, which are usually
observed shortly after pesticide applications once surface runoff
induced by precipitation or irrigation is available. Thus, soil
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Table 5. Use-exposure relationships for dissolved pesticides
in selected California crop scenarios.

Scenarios Coefficients R2 InKOC*
b1 b2 b3
Alfalfa 5.2156 0.1907 —0.8288  0.9494 35
Almond 4.8131 0.1869 —0.7467  0.9335 4.5
Cotton 6.3173 0.1467 —0.7662  0.9102 5.5
Sugar beet 4.9105 0.2412 —0.8377  0.9193 3.0
Tomato 5.9979 0.1785 —0.7844 0.8970 4.0
Turf 3.3647 0.2821 —0.8248 0.9546 0.5
Wheat 6.0764 0.1853 —0.7954 0.9487 5.0
Tomato_FL 4.9362 0.2531 —0.8063  0.9422 4.0

Note: “Tomato_FL" denotes the standard USEAP crop scenario for tomato in
Florida, which is provided as an example of the crop scenarios in other states.
doi:10.1371/journal.pone.0018234.t005

metabolism might have only moderate effects on pesticide
exposure at the edge of field as measured by peak concentrations.

The regression coefficients for AERO and KOC did not vary
much over scenarios. For instance, the maximum regression
coefficient for KOC was —0.7467 (almonds), while the minimum
value was —0.8377 (sugar beet). The regression coeflicients for
AERO ranged from 0.1467 (cotton) to 0.2821 (turf) (Table 5). The
use-exposure relationship derived for crops in other states, taking
tomato in Florida as an example in this study, also showed similar
regression coeflicients as in California crops. This suggested that,
for a specific pesticide, the difference of predicted EI_BASE over
scenarios were mainly determined by the intercepts of bl in Eq.
(1). In another words, the effects of chemical fate processes such as
partitioning and degradation on pesticide exposure were similar
among scenarios, while the spatial variability was related to
environmental parameters including climate condition, soil
property, and landscape characteristics.

While the California scenarios are developed for areas with similar
climate, they are associated with substantial variability in soil type and
hydrologic group (Table 3). The intercept in the regression equation
for the use-exposure relationship (bl in Table 5) was significantly
correlated to curve numbers for residue surface soil condition (with a
p-value, p = 0.008), and moderately correlated to curve numbers for
cropping surface condition (p = 0.063). In most of the crop scenarios,
curve numbers for residue surface condition were implemented for
winter months, or the rainfall season in California. In the use-
exposure relationship, the intercept was associated with water runoff
generation since the chemical fate processes such as partitioning and
degradation were represented by the chemical properties. Therefore,
the significant correlation between b1l and curve number for residue
surface soil condition indicated that peak concentrations of pesticide
at the field edges were most likely observed during the rainfall season
in California. The dependence of pesticide runoff potential on curve
number in the PRZM simulation has been reported in previous
studies [22,36,37]. Findings in this study confirmed the effects of
curve number on the predicted pesticide concentrations and loadings
from the crop fields.

Derived Parameters for Sediment-Bound Pesticides

At present there are no surface water quality criteria at either
federal or state level for sediment-bound pesticides. Water quality
assessments for pesticides in sediment, such as those for Clean Water
Act Section 303(d) listing [38], are based on 10-day Hyalella azteca

@ PLoS ONE | www.plosone.org
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sediment toxicity tests [39]. To mimic the sediment toxicity tests, 10-
day averages were calculated as adsorbed exposure index from
PRZM-predicted daily concentrations of pesticide associated with soil
erosion. The same frequency as for dissolved pesticide, i.e., once every
three years return period, was used in the development of use-
exposure relationship for adsorbed pesticides. Median lethal
concentration (LC50) values for sediment toxicity are usually reported
on an OC-normalized basis. For example, Hyalella azteca 10-day
LC50 values for pyrethroids are typically reported at 1% OC, as
compiled by Domagalski et al. [40]. To match the toxicity data,
PRZM-predicted concentrations of pesticide in eroded sediment
were normalized by OC1 defined in each scenario (Table 3).

For pesticide associated with eroded soil, Figure 2 shows the
results of stochastic PRZM runs based on the USEPA standard
scenario for cotton in California. There was a general increasing
trend of EI. BASE with increases of KOC and AERO, especially
for pesticides with KOC lower than a certain value. For pesticides
with extremely high values, such as those with InKOC larger than
about 11 as shown in Figure 2a, the predicted EI_BASE for
adsorbed pesticides were associated with high uncertainty and
might not be significantly correlated with their KOC values. FFor
these pesticides, the majority of the residues have been partitioned
into the particulate phase. Based on the similar equations for
dissolved pesticides, the following use-exposure relationship was
developed for adsorbed pesticides,

In(EI_.BASE)=f(AERO,KOC) "
=b1+by In(AERO) +b3 In(min(KOC,KOC™))

where EI_BASE (ng/g) is the predicted exposure index associated
with eroded soil from a single pesticide application at BASE rate of
0.1 kg/ha, b’s are regression coefficients, and KOC* is a threshold
value for KOC above which the EI_BASE was assumed to be
independent the pesticide’s KOC.

Table 6 shows the parameters of the use-exposure relationships
for adsorbed pesticides under selected California scenarios. The
R? values ranged from 60-85%, substantially lower than those for
dissolved pesticides (T'able 5). Similar to the equations for dissolved
pesticides, the majority of the variance in the use-exposure
relationships for adsorbed pesticides wasexplained by KOC.
Although the KOC* varied greatly, the KD* values as the
product of KOC* and OCI for the modeled scenarios were
generally invariant, ranging from 160-240. However, the
regression coefficients varied greatly among scenarios. Observed
uncertainty in predicted exposure of adsorbed pesticides might be
related to soil erosion processes. PRZM simulates soil erosion
based on themodified universal soil loss equation (MUSLE) with
input parameters. These parameters are usually associated with
seasonality and variability in soil properties and management
practices (Table 3). With only input parameters of AERO and
KOC, therefore, the proposed use-exposure relationship was
inadequate for capturing the variability in soil erosion processes.

Use-Exposure Relationship for Multiple Applications

The use-exposure relationships in Egs. (1)through(4) provide
estimates for the exposure index from a single pesticide
application. For multiple applications, the exposure could be
conservatively estimated from the maximum season application
rate. To refined the estimation, especially for pesticides with short
field dissipation half-lives (FD), equivalent application rate at any
given time, RATE_eq(t), is calculated as the total pesticide amount
in the soil available for runoff and soil erosion processes.
RATE_eq includes contributions from both applied pesticide on
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Figure 2. Use-exposure relationshio for adsorbed pesticides (EI_BASE in ng/g): (a) example results of Monte Carlo simulation and
(b) conceptual model.
doi:10.1371/journal.pone.0018234.g002

the given day and residues from previous applications, and could where t0 is the first day of the application season, RATE(t) is the

be calculated in the form of a convolution, application rate at day t, and D(A¢) is the total fractional decay
during At. The calculation of RATE_eq accounted for only the
t pesticide loss by degradation. Losses from surface runoff, soil
RATE _eq(t)= J[ RATE(z) D(t—1)|dx erosion, and leaching were ignored to provide a conservative
i (5) estimation of the amount of pesticide remaining in the soil.

Figure 3 presents a schematic of the RATE_eq calculation from
multiple applications of carbaryl for tomatoes (maximum single

In2
DiAn)=exp(= EAI) application rate = 2.24 kg/ha, application interval =7 day, and
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Table 6. Use-exposure relationships for adsorbed pesticides
in selected California crop scenarios.

Scenarios Coefficients R? In(KOC¥*)
b1 b2 b3

Alfalfa 1.7756 0.3140 0.4936 0.6896 9.5
Almond 0.1179 0.2116 0.6937 0.7955 10.0
Cotton 0.9213 0.1890 0.7221 0.8466 11.0
Sugar beet 2.7386 0.3254 0.5118 0.6409 8.5
Tomato 3.2070 0.1912 0.6062 0.7770 10.0

Turf 2.7715 0.2832 0.4486 0.6106 6.5

Wheat 1.0782 0.3233 0.5848 0.7210 10.5

Tomato_FL 1.7065 0.4105 0.4809 0.7607 10.0

doi:10.1371/journal.pone.0018234.t006

maximum number of applications =4) [32]. The exposure index
from multiple pesticide applications could be estimated by
substituting RATE in Eq. (3) with the maximum value of
RATE_eq during a year or a cropping season. For single pesticide
application rate and application interval INTERVAL, day) as
fixed values, as usually documented in pesticide labels, the
maximum RATE_eq could be directly calculated as,

max[RATE eq(t)] =

M-1
In2
RATE- Y exp|— ;—D(Mfi)JNTERVAL]
i=1

where M is the maximum number of applications.

Meta-Modeling Approach for Pesticide Assessment

Summary and Conclusions

Use-exposure relationships were developed as an alternative
approach to field-scale modeling for pesticide runoff and
associated aquatic risks. The relationships require a minimum
set of Input parameters to estimate exposure, which is defined
herein as peak pesticide concentrations at the edge of field. The
selected input parameters, half-life in the soil, adsorption
coefficient, and recommended application rates, are generally
available during pesticide registration. Thus the proposed
approach is appropriate for quickly screening pesticide products
for their potential adverse effects on the environment and human
health. While the PRZM model was chosen to parameterize the
weighting factors of the selected parameters for this study, the
approach could be applied with other field-scale models.

The development of use-exposure relationships was demon-
strated using crop scenarios developed by the USEPA for
California. The relationships explained 90-95% of variations in
the exposure index of dissolved pesticides as predicted by PRZM
modeling. Regression coefficients for AERO and KOC for the
simulated scenarios varied only in small ranges, suggesting that the
effects of chemical property-related fate processes such as
partitioning and degradation on the predicted exposure index
were similar among scenarios. KOC was the governing factor in
predicting pesticide exposures for all scenarios. Since aquatic risk
analysis is mainly focused on the peak concentrations of pesticides,
and these concentrations are usually observed shortly after
pesticide applications, the half-life in the soil had limited influence
on the exposure index defined in this study. The results of this
study suggested that the selection of evaluation approaches for
pesticide exposure could be dependent on the purpose of
regulatory assessment and management planning. For instance,
total pesticide loadings from agricultural fields might be very
sensitive to chemical persistence, while the peak concentrations of
a pesticide are mainly related to its mobility. For a particular

5 T T T T T
Pesticide residue
from multiple applications
4k (RATE eq) 2

Pesticide residue in the field, kg/ha

Contribution of the individual
application to RATE eq

0 10 20 30 40
Days after the 1st application in a season

50 60

Figure 3. Equivalent application rate from multiple pesticide applications, illustrated with recommended application rates and
intervals of carbaryl for tomatoes [32]. Bars represent four applications at 2.24 kg/ha and 7-day intervals.

doi:10.1371/journal.pone.0018234.g003
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pesticide, the spatial variability on its exposure indices across
various scenarios i3 associated with landscape characteristics, such
as OC and CN values. In addition, significant correlation was
observed between intercept constants (bl) in the use-exposure
relationships and the curve numbers for residue in the crop
scenarios. Those findings indicated the possibility in developing
generic equations of use-exposure relationships.

Methods to extend the capability of use-exposure relationship
modeling are provided, including applications for assessing
sediment-bound pesticides and provisions for multiple pesticide
applications within a growing season. Since the use-exposure
relationships were parameterized from regression analysis on the
simulation results of existing field-scale models, the accuracy of risk
assessment based on those relationships is associated with the
model itself and the configuration of crop scenarios. Future work
issuggested to implement the developed equations in real field
conditions and to compare the predictions with measured pesticide
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data. An evaluation of measured data with corresponding field
conditions would generate instructive information for developing
crop scenarios for pesticide exposure assessment and risk
characterization.
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