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Abstract

Understanding the processes and conditions under which populations diverge to give rise to distinct species is a central
question in evolutionary biology. Since recently diverged populations have high levels of shared polymorphisms, it is
challenging to distinguish between recent divergence with no (or very low) inter-population gene flow and older splitting
events with subsequent gene flow. Recently published methods to infer speciation parameters under the isolation-
migration framework are based on summarizing polymorphism data at multiple loci in two species using the joint site-
frequency spectrum (JSFS). We have developed two improvements of these methods based on a more extensive use of the
JSFS classes of polymorphisms for species with high intra-locus recombination rates. First, using a likelihood based method,
we demonstrate that taking into account low-frequency polymorphisms shared between species significantly improves the
joint estimation of the divergence time and gene flow between species. Second, we introduce a local linear regression
algorithm that considerably reduces the computational time and allows for the estimation of unequal rates of gene flow
between species. We also investigate which summary statistics from the JSFS allow the greatest estimation accuracy for
divergence time and migration rates for low (around 10) and high (around 100) numbers of loci. Focusing on cases with low
numbers of loci and high intra-locus recombination rates we show that our methods for the estimation of divergence time
and migration rates are more precise than existing approaches.

Citation: Tellier A, Pfaffelhuber P, Haubold B, Naduvilezhath L, Rose LE, et al. (2011) Estimating Parameters of Speciation Models Based on Refined Summaries of
the Joint Site-Frequency Spectrum. PLoS ONE 6(5): e18155. doi:10.1371/journal.pone.0018155

Editor: John J. Welch, University of Cambridge, United Kingdom

Received November 12, 2010; Accepted February 27, 2011; Published May 26, 2011

Copyright: � 2011 Tellier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants of the DFG Forschergruppe 1078, ‘‘Natural selection in structured populations’’, to D.M., P.P., and L.E.R.; DFG grants
STE 325/9 and STE 325/13 to W.S.; Swiss National Science Foundation grant 31003A_130702 to T.S.; and Volkswagen Foundation grant I/82752 to A.T.. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tellier@biologie.uni-muenchen.de

Introduction

Understanding speciation processes is crucial in numerous fields

including conservation biology, ecology, host-parasite co-evolution

and human evolution [1]. According to the ‘‘biological species

concept’’, a species is defined as a group of interbreeding

individuals that are reproductively isolated from other taxa [2].

Under this framework, the study of the speciation process focuses

on the conditions leading to the emergence of reproductive

isolation [3].

Allopatric population divergence is the classical scenario for

isolation between populations [2]. In this model, two populations

diverge in complete geographic isolation from one another. A

second scenario considers divergence with continuing gene flow

between populations, for example when species ranges abut

(parapatry) or overlap following secondary contact, allowing for

introgression. The latter model has been suggested to describe

speciation events between human populations and ape species or

sub-species [4], Drosophila species [5], and the wild tomato species

Solanum peruvianum and S. chilense [6]. Key theoretical predictions

have been generated to distinguish parapatric and allopatric

population divergence based on genomic data [5,7]. These show

that under the model of parapatric separation greater variation in

divergence time is expected across the genome compared to an

allopatric model [5]. In other words, the variance of shared

polymorphisms between populations can be used to distinguish

between recent divergence without gene flow and an older split

characterized by high levels of subsequent gene flow between

populations [7]. However, to reliably use these variances for

parameter estimation, data sets with large numbers of sequences

are needed, which is a practical constraint in studies of many non-

model organisms [8].

The most widely used general model of population divergence is

the ‘‘isolation-migration’’ model [5]. This model has six

parameters, assuming two populations are used: the splitting time,

the effective population size of each extant population and of the

ancestral population, and the rates of gene flow. Bayesian Markov-

Chain Monte-Carlo (MCMC) methods to sample from the

posterior distribution of the parameters given the full sequence

data are implemented in the program IM and its successors IMa

and IMa2 [5,9,10,11]. Since the development and application of

these methods to different species, a surprising number of cases

indicate that speciation can occur in the presence of continual

gene flow between incipient species [12]. However, existing

implementations of these methods are limited to certain types of

input data. For example, IM, IMa and IMa2 require that
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haplotypes are known and that there is no intra-locus recombi-

nation. This second assumption is particularly problematic in

species in which the ratio of recombination to mutation rates is

high, including Drosophila melanogaster [13] and wild tomato species

[14,15,16]. In these species, recombination cannot be ignored

since sequenced genomic fragments have experienced one or more

recombination events [17]. In practice, researchers have excluded

segments or haplotypes with evidence of recombination for

inference of parameters using this method. This ostensible

‘‘solution’’ has two disadvantages. First, it introduces bias into

parameter estimation because genealogies of samples without

recombination tend to be shorter [5,18]. Specifically, divergence

time and current population sizes are shown to be overestimated,

and ancestral population size is underestimated [18]. Second, for

studies with few sequenced loci, the amount of data available for

inference is significantly reduced, contributing to higher variances

in parameter estimates.

Other methods rely on summary statistics such as the joint site-

frequency spectrum (JSFS) [19], which is an array S of dimension

(n1+1)6(n2+1)22 where entry Si,j is the number of polymorphic

sites for which the derived state is found i times in the sample from

population 1 and j times in the sample from population 2. For

example, S2,3 = 10 if 10 polymorphisms are found as doubletons in

population 1 and as tripletons in population 2. For parameter

estimation, Wakeley and Hey [19] summarized the JSFS by a

vector W = (W1,W2,W3,W4) containing the number of private

polymorphisms in species 1 and 2, respectively (W1, W2), fixed

differences between species (W3), and shared ancestral polymor-

phisms (W4). Examples of JSFS expectation values are shown in

Fig. 1 for various combinations of parameter values. Methods

using summaries are aimed to be computationally faster than

maximum-likelihood and Bayesian full-data methods while being

reasonably accurate, especially when many independent loci are

used [20]. The method MIMAR (MCMC estimation of the

isolation-migration model allowing for recombination [4]) uses a

variant of the Wakeley-Hey summary statistics W. Approximate

Bayesian Computation (ABC) methods were also developed to

estimate parameters of the isolation-migration model from

summary statistics such as the amount of private polymorphisms

and diversity per population and in the pooled sample (popABC

[21]). A great advantage of ABC methods is that they can be

implemented in a few days or weeks whereas the implementation

of full-likelihood methods or Bayesian full-data MCMC algorithms

may take months or years, though to check the quality of the

summary statistics in the ABC might require additional time

consuming simulations. More recently, Gutenkunst et al. [22]

developed the method hahi, which takes into account the entire

JSFS. Note that in hahi, all sites are considered to be independent,

and the JSFS is calculated for all sites and not per locus contrary to

other methods [22]. In this composite likelihood approach, the

expectation values of the full JSFS are numerically computed using

diffusion approximations.

The present study was motivated by research on non-model

organisms, including, for example, two recently diverged species of

wild tomatoes (S. peruvianum and S. chilense). Not only do these

species appear to have recently diverged but gene flow may be on-

going [6,23]. The programs IM, IMa and IMa2 cannot be used

due to high levels of intra-locus recombination. Furthermore,

given the low number of genes sampled (7 to 13 in this case)

methods based on the data summary W have limited power to

distinguish between divergence in isolation and divergence with

continuing gene flow. Since we wished to determine whether these

two species split recently with no or negligible levels of gene flow,

or split less recently, but diverged in the presence of gene flow, we

realized that previously described methods were not adequate.

Our first aim is to show as a proof of concept that refining the

summary of the JSFS to more classes results in improved estimates

of divergence time and gene flow. For this purpose we decompose

the class W4 (shared polymorphisms) of the JSFS into further

classes for singletons and doubletons shared between species (see

Fig. 1). The rationale behind this new decomposition is that if gene

flow between species has been low, as expected if the two species

are distinct, there should be (i) few incidences of shared

polymorphisms compared to the number of private polymor-

phisms per species [19], and (ii) recent migrants lead to an excess

of low-frequency shared polymorphisms (singletons and double-

tons) whose frequency over time is affected by drift. We observe in

Figure 1 that indeed private polymorphism is in large excess

compared to shared polymorphisms. However, under the

assumption of constant gene flow [5], small variations in the low

Figure 1. Three examples of joint site-frequency spectra for an Isolation-Migration model. An ancestral population of size hA = 5 splits
into two incipient populations (h1 = h2 = 5) at time t = 0.2 or 4 in the past. 10 individuals are sampled from the two current populations and
sequenced at 1,000 independent loci of 1,000 bp each. Intra-locus recombination occurs at a rate r = 0.02. The color legend indicates the proportion
of polymorphisms in a given JSFS class. Migration rate from population 1 to 2 (M12), from population 2 to 1 (M21) and split time (t) are indicated for
each panel.
doi:10.1371/journal.pone.0018155.g001
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frequencies of shared polymorphism are indicative of the strength

and symmetry of gene flow (Fig. 1). In the case of symmetric

migration rates (gene flow from species 1 to species 2 equals that

from species 2 to species 1) there is a symmetrical amount of

shared low frequency polymorphism (singletons, doubletons) in

both species (Fig. 1, third panel). On the other hand, if migration

from species 1 to species 2 is high (and the opposite migration rate

is low, Fig. 1 first and second panel) there is a higher proportion of

shared polymorphism at low frequency in species 2, and a deficit of

shared polymorphism at low frequency in species 1 (Fig. 1). We use

the information from these differences in the amount of shared low

frequency polymorphism in either species to estimate divergence

time and gene flow using a simple likelihood ratio calculation

method based on Hey and Nielsen [5]. We show that methods

with more complex decompositions of W perform better than

MIMAR.

The second aim is to develop a computationally efficient

method designed for species with high levels of recombination (on

the order of the mutation rate), which decreases the correlation

across polymorphic sites. We neglect these dependencies and

employ a composite likelihood approach based on a Poisson point

process approximation of the JSFS, which significantly reduces the

run time of the simulations. The parameter estimations are

realized by local log-linear regression analysis. We demonstrate

that this leads to a quantitative improvement of the use of the

Wakeley-Hey summary statistics, because it allows the estimation

of unequal directional gene flow between populations. Further-

more, computation time is much reduced compared to other

methods. We show that our method is faster and gives more

accurate estimates of divergence times and rates of gene flow than

MIMAR, popABC, and hahi. However, for very recent divergence

times (,0.1 Ne generations) all methods overestimate divergence

time and gene flow, although our more complex summary of the

JSFS seems to be more robust than other methods. Importantly,

we show that our composite likelihood methods based on the

assumption of genealogically independent SNPs are also more

accurate than previous methods when estimating parameters at

low recombination rates. As a practical conclusion for the use of

JSFS statistics, we apply our composite likelihood method to

determine which JSFS decompositions yield the highest accuracy

for estimating divergence and gene flow parameters. We provide

this comparison for the case where 7 loci (approximately 300 to

400 SNPs as found in studies in wild tomato species [14,23,24]) or

100 sequenced loci (as available for some model organisms such as

Drosophilids or primates [8]) are available.

Methods

1. General model
We consider a neutral IM model in which an ancestral

population splits into two populations that may exchange

migrants. It is assumed that n1 and n2 alleles are sampled in the

two populations and sequenced for a number of independently

evolving loci (all loci have the same n1 and n2). Following Wakeley

and Hey [19], m is the average mutation rate across loci and can be

used to estimate the effective population sizes of the three

populations (NA, N1, N2) if the scaled mutation rates hA = 4NAm,

h1 = 4N1m and h2 = 4N2m can be estimated from the data. Note

that as in Wakeley and Hey [19], t is the estimated time of species

divergence (in units of 2N1 generations). The two migration rates

m12 and m21 are defined as follows: m12 is the fraction of population

2 that is replaced by migrants from population 1 each generation,

and vice versa for m21. The migration parameter is rescaled as twice

the number of individuals in a population replaced by migrants

(backward in time) with M21 = 4N1m21 and M12 = 4N2m12. In the

current version, this model assumes that each locus is located on

an autosome and follows the infinite-site mutation model with

reciprocal recombination [25]. The coalescent simulations use

Hudson’s ms program [26]. Similar to Becquet and Przeworski

[4], our model allows for intralocus recombination but not for

gene conversion. The population recombination rate per base pair

per generation is c. This value is assumed to be constant and

known within a given locus and across all loci, i.e. we do not allow

for variable recombination rates in the genome.

Following the description of the IM model by Hey and Nielsen

[5], the posterior distribution of the parameters H= (hA, h1, h2, t,

M12, M21, c) is

p(HjV)!p(VjH)p(H): ð1Þ

where V is the data, p(V | H) is the likelihood of the vector of

parameter values, H, and p(H) is its prior probability.

The full JSFS can be used to compare nucleotide sequence data

of derived alleles from n1 sequences from population 1 to n2

sequences from population 2 [19]. It is assumed that an outgroup

sequence is available and can be used to determine which allele is

derived. Each derived allele is assigned to one cell of the JSFS

depending on its frequency in the population. Note that i and j

take integer values between 0 and n1 and 0 and n2, respectively.

Wakeley and Hey [19] and Hey and Nielsen [5] used summary

statistics for parameter inference in the isolation-migration model.

Formally, they are written as

W1~
X

1ƒiƒn1{1

Si,0zSi,n2

� �
; W2~

X
1ƒjƒn2{1

S0,jzSn1,j

� �
;

W3~S0,n2
zSn1,0; W4~

X
1ƒiƒn1{1

X
1ƒjƒn2{1

Si,j :
ð2Þ

Note that in MIMAR, Becquet and Przeworski [4] make use of an

outgroup sequence to derive a slightly different set of four

summary statistics for the frequencies of a derived allele:

W ’1~
X

1ƒiƒn1{1

Si,0; W2
’~

X
1ƒjƒn2{1

S0,j ;

W3
’~S0,n2

zSn1,0; W4
’~

X
1ƒiƒn1

X
1ƒjƒn2

Si,j :

We demonstrate that using additional classes of the JSFS allows

us to utilize more information than these original approaches, and

improves the estimation of H. We present two methods that differ

a) in the summary statistics used, i.e. different classes of the JSFS

are used as summary statistics, and b) in the estimation procedure

used to calculate the parameter values. To investigate the benefit

of various sets of summary statistics for the joint estimation of

divergence time and gene flow, we focus on estimating H= (t,

M12, M21) assuming that hA, h1, h2, and c are known.

2. Maximum likelihood method
Our first approach is based on the maximum likelihood

inference of the set of parameters H= (t, M12, M21) [4,7]. The

data summaries are defined as a vector of four summary statistics

extracted from the JSFS: D, D9, D0, D*. Our simplest summary of

the JSFS, D, is a vector of 7 values (Dk, k = 1,…,7) expanding the

four classes Wk (k = 1,..,4) in Eq. 2. Additional classes relative to the

Estimation of Speciation Parameters
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Wakeley-Hey set are created by splitting each class of private

polymorphisms to each species (W1 and W2) and the fixed

differences class (W3), by distinguishing whether the derived allele

is fixed or absent in the other species. This results in the following

relation between Eq. 2 and elements of D: W1 = D1+D6,

W2 = D2+D7, W3 = D3+D4 and W4 = D5 (Appendix S1). The other

vectors of summary statistics (D9, D0, D*) have more elements, 12

for D9 and D0 and 23 for D*, because singletons and doubletons in

each population are included as new classes of shared polymor-

phism (see Appendix S1 for details). Compared to Nielsen and

Wakeley [7] and Becquet and Przeworski [4], the class of shared

polymorphisms between populations W4 (Eq. 2) is further divided.

The amount of information taken into account from the JSFS

increases from D to D*, as shared low frequency and private

polymorphisms are counted as separate elements of the summary

statistics vector.

Following Eq. 1, the likelihood LD(H) = p(D | H) of the

parameter combination H, for the given data summaries D (or

similarly for D9, D0, D*) is an integral over all genealogies G (or

Ancestral Recombination Graphs, ARG) [9,27] as

LD(HjD)~p(DjH)~

ð
G

p(DjH,G)p(GjH)dG: ð3Þ

The branch lengths of G are scaled in units of 2N1 generations.

Since the probability of the sequence data depends only on G and

the mutation rate, we get:

p(DjH)~

ð
G

p(Djh1,G)p(dGjh2=h1,hA=h1,t,M12,M21,c):

Thus, the likelihood p(D | H) can be approximated for each locus

by generating a set of I genealogies Gm, m [ f1,:::,Ig, using

Hudson’s ms [26] as

p(DjH)&
1

I

XI

m~1

p(Djh1,Gm): ð4Þ

In Eq. 4, p(D | h1,Gm) can be computed explicitly. The number Si,j

of polymorphic sites of frequency i in population 1 and j in

population 2 is Poisson distributed with mean Li,jh1/2, where Li,j is

the total length of ARG branches leading to i sequences in the first

and j sequences in the second sample. Conditional on the

genealogies, the probabilities of observing each element Dk of

the vector D are independent. The likelihood of the data for a

given locus is approximated by

p(DjH)&
XI

m~1

1

I
P
K

k~1
p(Dkjh1,Gm): ð5Þ

Note that for the vector D, K = 7, but for D9 and D0, K = 12, and

for D*, K = 23.

A modified version of Hudson’s ms is used to calculate the

likelihood values for each simulated genealogy, and 10,000

genealogies were randomly drawn for each parameter combina-

tion. In the following, the maximum-likelihood methods based on

these summaries are called D1 (using vector D), D2 (using vector

D9), D3 (using vector D0) and D4 (using vector D*).

Since this method is not yet optimized for speed, the distribution

of likelihood values is simply computed for values of H, i.e. t, M12

and M21, within a defined range. The maximum likelihood

parameter values are obtained by local regression analysis using

the locfit function available in the statistical software R (locfit

package; [28]).

3. Composite likelihood method
Our second method is a variant of the method Jaatha, which is

implemented as R code available from http://evol.bio.lmu.de/

_statgen/software/jaatha. This method is computationally effi-

cient because it takes advantage of the high recombination rate

observed in Drosophila [13] and in some outcrossing plant species,

including wild tomatoes [16]. This allows us to simplify the

computation by treating the sites within and between loci as if they

were independent. A further advance of this method is the

improvement in estimation of rates of gene flow between

populations, for example when migration rates are unequal.

Briefly, the method comprises three steps. First, summary

statistics, i.e. classes of the JSFS, are calculated by coalescent

simulations over the range of the three parameters to be estimated.

Second, the three-dimensional parameter space is subdivided into

86868 blocks. In each block, a log-linear regression (generalized

linear model of Poisson type [29]) is fitted to the simulated data to

describe for each of the JSFS classes how the expected number of

mutations in this class depends on the Np parameters. Third, the

composite likelihood of each block, given the observed values of

JSFS summaries, is approximated using the fitted local log-linear

regressions, and parameter estimates are obtained within the

region with the highest likelihood. Note that the composite

likelihood method is equivalent to the fitting of a multivariate

Poisson distribution [30] to the summary statistics as a function of

the genetic model parameters.

The parameters, t, M12, and M21, of the isolation-migration

model are estimated. Using Hudson’s ms as coalescent simulator,

we calculate summary statistics from the JSFS for numerous points

on a grid in the parameter space (in this case a three-dimensional

space). In the initial version of Jaatha, the JSFS is split into 23

elements constituting the vector D̆k, k [ f1,:::,23g. The vector D̆ is

similar to D* mentioned above as it considers classes of shared

polymorphisms that are singletons or doubletons in both

populations (D̆6 in Appendix S1). However, D̆ differs from D*

through the addition of classes of shared polymorphism with

nearly fixed frequencies (such as n1 – 1, n1 – 2, n2 – 1, n2 – 2). We

give a detailed description of D̆ in Appendix S1. In practice,

simulations considered 40 different values for each parameter, and

for each of the 40640640 = 64,000 parameter combinations, 10

coalescent simulations were performed and the vector D̆ of

summary statistics was stored.

Next, the three-dimensional space of parameters was divided

into sub-regions of size NR for all three parameters. Each region

contained NR
3 points characterized by the set of summary statistics

J. In practice, we chose NR = 5, i.e. we subdivided the parameter

space into 86868 blocks each of which contained 56565

different parameter combinations used in the simulation step.

For each block and for each of the 23 summary statistics a log-

linear Poisson regression model with the three parameters (t, M12,

and M21) as explanatory variables was fitted to the simulated data

from 56565610 = 1,250 simulations (generalized linear model of

Poisson type; [29]. For x = 1,…,5; y = 1,..,5 and z = 1,..,5 let tx,

M12,y and M21,z be the parameter values in a certain block. Then, x

is an affine transformation of log(tx) and the same holds for y with

log(M12,y) and z with log(M21,z). Fitting the log-linear Poisson

model for a certain block b and a certain summary Jk requires the

estimation of coefficients (a1,k, a2,k, a3,k, a4,k) such that the following

equation holds for the expected value dk,x,y,z of D̆k

Estimation of Speciation Parameters
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log dk,x,y,z

� �
~a1,kxza2,kyza3,kzza4,k: ð6Þ

or, equivalently,

dk,x,y,z~t
b1,k
x

:M
b2,k
12,y

:M
b3,k
21,z

:b4,k,

where parameter values of 0 are replaced by small positive values

and bi,k is a transformation of ai,k. Given any parameter values t,

M12, and M21 in the range of block k, the observed values of the

summary statistic D̆k are assumed to be Poisson distributed with

expected value t
b1,k
x

:M
b2,k
12,y

:M
b3,k
21,z

:b4,k. If d1,Q , d2,Q , …, d23,Q are

the expected values of the 23 summary statistics for a certain

combination Q = (t, M12, M21) of parameter values and F = (F1, …,

F23) are the observed values, then the Poisson model likelihood of

Q is

LF Qð Þ~P
d

Fi
i,Q

Fi!
:e{di,Q :

Note that Eq. 6 uses the logarithm of the parameter values to

increase the resolution at low values, i.e. recent divergence time

and low gene flow.

The first two steps are carried out independently of the observed

data, and the most time-consuming part of the method is to fit

regression models that describe how the expectation values of the

summary statistics depend on the model parameters in the

simulated data. The results of these steps can be reused to analyze

data with similar sample sizes and parameter ranges. We have

tried four different strategies for parameter estimation (called J1, J2,

J3 and J4):

N J1. Only the 86868 = 512 parameter combinations in the

centers of the blocks are considered. Compute the Poisson

model likelihood of each block center using the log-linear

regression model. Output the block center with the highest

value.

N J2. Output a weighted mean of the block centers. The weights

are the Poisson model likelihoods as computed in J1.

N J3. For each block, start in the block center and numerically

optimize the Poisson model likelihood within the block.

Output the highest value that is found in any of the blocks.

N J4. Start an optimization in each block center. Allow the

optimization search paths to change between the blocks. Near

the block boundaries mixtures of the log-linear regression

models fitted to the neighboring blocks are used to estimate the

expected values of the summary statistics.

On a standard desktop computer, strategies J1 and J2 only take a

few seconds, strategy J3 takes less than five minutes and strategy J4

takes 10 to 15 minutes for one data set. This requires that the log-

linear model fitting has been performed in advance. Note that this

step does not depend on the data. The fitting procedure takes

about three to four days and the stored results can be re-used for

data sets with the same sample sizes n1 and n2.

4. Power analysis
i) Analysis for various JSFS coarsenings. We conducted a

power analysis to compare the different coarsenings of the JSFS for

estimating divergence time and detecting post-divergence gene

flow. Sets of sampled loci were simulated under the IM model

using Hudson’s ms. We defined the simulated values of the model

parameter as tsim, M12-sim, and M21-sim. Then using the JSFS

obtained for each set of simulation, we estimated the three

parameters of the model (test, M12-est, and M21-est) using our

maximum likelihood methods (D1–D4) and the composite method

(J1–J4). For comparison, estimations were also computed using the

MCMC-likelihood program MIMAR [4]. To make the methods

comparable, MIMAR, D1–4 and J1–4 have identical fixed values

for population sizes and recombination rate (hA, h1, h2, and c)

when estimating divergence and migration. The model underlying

our simulation study is motivated by research on sequence

variation in genes from non-model organisms for which few loci

(here 7, each of length 1,000 bp) are available in two closely

related species. However, our methods can also be applied to

species for which numerous sequenced loci are available. In this

case, the accuracy of the parameter estimates increases (see Fig.

S11).

We evaluated how the different coarsenings of the JSFS affect

the accuracy of parameter estimates compared to MIMAR. For

these analyses we fixed a recent divergence time to t = 0.1 but

varied the migration rates (M12, M21) from very low

(M12 = M21 = 0.5) to intermediate (M12 = M21 = 2). Moreover, we

investigated how other parameters of the model influence the

accuracy of each method. Based on population sizes observed in

wild tomatoes [14,23], the mutation parameters hA, h1, h2 are

assumed to be equal (hA = h1 = h2), taking a value of 5 or 10.

Similarly, the recombination rate r = 4N1c takes values of 5 (low c),

10 (intermediate c) or 20 (approximating high recombination). For

each set of parameter values, 20 datasets of 7 loci were generated

and analyzed using our maximum likelihood methods (D1–4), the

composite method (J1–4) and MIMAR. MIMAR was run twice

with two and 10 million steps of burn-in, the outputs being

calculated based on 100,000 or 500,000 steps, respectively.

Convergence to maximum likelihood values was assessed by a

high rate of accepted steps, as recommended (over 10%; [4,31]).

The results of this analysis are shown in Figures 2 and 3 (and Figs.

S1 and S2, Tables S1 and S2, Appendix S1).

ii) Analysis of robustness and speed. The second accuracy

analysis deals with testing the robustness and speed of the

composite method (J1–J4) by comparing performance with that

obtained with MIMAR [4], the ABC implementation popABC

[21], and the program hahi [22]. We generated 100 simulated data

sets for a wide range of parameter values chosen at random. The

divergence time was set from very recent (t = 0.01) to ancient

(t = 9), migration rates were unequal (M12?M21) each ranging

from very low (M = 0.01) to high (M = 9). The mutation

parameters hA = h1 = h2 and the scaled recombination rate

r = 4N1c were chosen at random between 5 and 20 per locus.

The uniform priors for divergence time and migration rates are

identical for our composite method (J1–J4), MIMAR, and

popABC, and are defined as 0.01,t,10 and 0.01,M12,

M21,10. Note that all methods have identical fixed values for

the population sizes and recombination rate (hA, h1, h2, and c).

We used popABC to generate 300,000 simulations for each of

the 100 data sets assuming fixed values of r and hA = h1 = h2 for

seven independent loci. The rejection and regression steps of the

ABC were performed using the ABCreg code [32], with estimates

of t, M12 and M21 calculated as the mode of the best 3,000 (1%)

simulations. Tests with popABC using all 22 possible summary

statistics did not lead to reliable estimates. ABC methods can lack

statistical power to estimate parameters when the number of

summary statistics is too large [33,34], because too few simulated

datasets are close enough to the observed data, and the regression

part of the ABC procedure cannot be realized. Therefore, we used

fewer summary statistics. A first set of estimations are conducted
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based on six statistics from popABC closely related to the JSFS, i.e.

for each species: the mean mutation frequency spectrum, an

estimate of FST based on segregating sites, and the number of

private segregating sites [21]. A second set of estimations with 11

summary statistics was constructed by adding the number of

segregating sites per species and for both species pooled, and the

frequency of private polymorphisms. Finally, a third set of

estimations with 14 statistics additionally comprised the number

of different haplotypes in each species and for the pooled samples

[21]. These 100 identical data sets were also analyzed using the

hahi program [22]. However, we were unable to obtain reasonable

parameter estimates from MIMAR. In fact, despite using 10 to 20

million burn-in steps, convergence to a maximum likelihood value

for t, M12 and M21 (fixing r and hA = h1 = h2) could not be

obtained after more than 4 weeks of running. This is probably due

to the wide range of priors for t, M12 and M21 extending over

several orders of magnitude (C. Becquet pers. comm.).

iii) Finding the best summary statistics. We looked for

the best set of summary statistics, i.e. coarsenings D, D9, D0, D* or D̆

of the JSFS, to be used for parameter estimation with our fast

composite likelihood method. We ran methods J1–4 with these 5

different vectors of summary statistics and compared estimates

Figure 2. RMSE for the estimate of divergence time (t) as a function of the population mutation rate (h), values of simulated
migration rate (M12 = M21) and population recombination rate (r). The RMSE is computed across 140 datasets with divergence time fixed at
t = 0.1. (a) For the four maximum likelihood methods (D1–D4) and MIMAR, (b) for the four composite-likelihood methods (J1–J4) and MIMAR.
doi:10.1371/journal.pone.0018155.g002
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with those obtained running methods J1–4 with the Wakeley-Hey

vector of statistics (W). We analyzed the 100 simulated data sets of

7 loci (each of length 1,000 bp) with randomly chosen parameter

values as described above. In addition, we performed a second

analysis with simulated data sets of 100 independent loci of

1,000 bp each with parameters values in the same range as above

(0.01,t,9, M12?M21 and 0.01,M,9, hA = h1 = h2 and r = 4N1c

chosen at random between 5 and 20 per locus). The results of this

analysis are shown in Figure 5 (and Figs. S6, S7, S8, S9, S10,

Appendix S1).

iv) Statistical treatment. The results are presented in the

format commonly used for power analyses. We report the mean of

the estimate for each parameter value and three other statistics (see

for example [35,36]). The relative error (RE) is the relative

difference between the estimated parameter value and the true

parameter value that was used to simulate the data. For example,

for the divergence time (t), the relative error is REt:

REt~
test{tsim

tsim

:

Figure 3. RMSE for the estimate of migration rate (M12 = M21) as a function of the population mutation rate (h), values of simulated
migration rate (M12 = M21) and population recombination rate (r). The RMSE is computed across 140 datasets with fixed divergence time at
t = 0.1. (a) for the four maximum likelihood methods (D1–D4) and MIMAR, (b) for the four composite-likelihood methods (J1–J4) and MIMAR.
doi:10.1371/journal.pone.0018155.g003
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The root mean square error (RMSE) is the square root of the

average squared difference (over nsim data sets) between the

estimated value and the simulated value divided by the simulated

value, and similarly, for t:

RMSEt~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nsim

X test{tsim

tsim

� �2
s

:

The Factor 2 (F2) is the proportion of data sets for which the

estimated value (of t or M) is at least half and at most twice the

simulated value. Analyses of variance statistics were computed

using the glm function, and multiple mean comparisons are based

on Tukey’s HSD test (confirmed by a Bonferroni test), as

implemented in the R software ([28]; see Appendix S1, Tables

S1 and S2 for details). We also analyzed the coverage of the

methods, which is defined as the probability that the true

parameter values are within the estimated 95% confidence range

for t and M. A possible approach to construct confidence ranges is

based on the x2-approximation for the distribution of log-

likelihood ratios. In the case of two parameters, the confidence

range consists of all parameter combinations for which the natural

logarithm of the ratio of the maximum likelihood and the

likelihood of the candidate values is smaller than 2.99 [37].

Coverage analyses were performed for this type of confidence

range for the composite likelihood and the maximum likelihood

methods, and for the credibility ranges reported by MIMAR based

on 140 datasets of 7 loci (each 1,000 bp).

Results

1. General results
All methods (maximum likelihood, composite likelihood,

MIMAR, popABC, and hahi) showed variation in estimates of

divergence time and, in particular, migration rates (Figs. 2, 3, 4

and Tables 1, 2). However, our methods showed the smallest

relative error and RMSE for divergence time, resulting in good

power to detect recent divergence (t = 0.1; Figs. 2 and 3, Fig. S1).

MIMAR significantly underestimated migration rates and overes-

timated divergence time compared to other methods (Figs. 2 and

3; Figs. S1 and S2).

Over a large range of divergence times, from very recent

(t = 0.01) to very old (t = 9), large overestimations were not

common (relative error .10; Tables 1 and 2). However, migration

rates were consistently overestimated by the composite likelihood

methods, hahi, and popABC (i.e. relative error of 10 to 950;

Table 1). Our methods J1–4 perform better than popABC and hahi

in estimating both the divergence time and migration rates

(Tables 1 and 2), and estimates of migration are always more

accurate for high divergence times (t.0.5) than for recent

population splits (t,0.5; Figs. S8 and S9).

An interesting, though expected, pattern is found when

divergence time is fixed to a recent split, e.g. t = 0.1. For our

eight methods and MIMAR, a positive correlation is found

between the relative error in estimates of divergence time and

migration rates (Fig. S2). This means that when a given method

over- or underestimates the divergence time, it also over- or

underestimates the migration rate.

The estimates of divergence time and migration rates are only

slightly affected by other population parameters, such as the

mutation rate (h) and the recombination rate (r). In fact, the

relative error of the divergence time depends only on the method

chosen and the population mutation rate. A significant interaction

between method and h is analyzed further by calculating the

RMSE, in order to find which method performs better for a given

value of h (Fig. 2 and 3, Table S1). For all methods, the relative

error of migration rates decreases when gene flow between

populations increases (Fig. 3, Table S2).

2. Estimating divergence time
Our maximum likelihood methods D3 and D4 and composite-

likelihood methods J2 and J3 perform better in estimating

Figure 4. Comparison of RMSE for estimates of the divergence time and migration rates (M12?M21) between methods. Results are
shown for the four composite-likelihood methods (J1–J4), hahi, and for popABC with 6, 11 and 14 summary statistics (computed across 100 datasets).
doi:10.1371/journal.pone.0018155.g004
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divergence time than other methods (MIMAR, D1, D2, J1, J4; see

the lower RMSE in Fig. 2; Fig. S1). MIMAR shows increased

accuracy in estimating t as the migration rate (M) increases,

reflecting the dependence between these parameter estimates

(Fig. 3). This means that estimates of divergence time are

improved by increasing the number of segregating sites, i.e.

increasing h (Fig. 2, Figs. S3 and S4). On the other hand, our

methods do not show this trend (Figs. S6 and S7). On the contrary,

the RMSE for divergence time increases as a function of h for

methods D1–4 (ANOVA in Table S1). According to the RMSE

and Factor 2 values, our methods D2, D3, D4 and J2, J4 are the

most accurate for estimating recent divergence time (Fig. 2, Figs.

S3 and S4).

3. Estimating gene flow
Estimates of migration rates are generally less accurate than

those of divergence time. The maximum likelihood methods D1–4

show greater variance in estimates than the composite methods J1–

4 and MIMAR. However, MIMAR always underestimates the

migration rate (Fig. 3). This consistent underestimation of

Figure 5. Power analysis of the various JSFS coarsenings to estimate divergence time and migration rates for 100 datasets of 7 loci.
RMSE are computed for estimates of (a) the divergence time, and (b) migration rates (M12?M21) for the four composite-likelihood methods (J1–J4)
based on six vectors of summary statistics. The vector W is defined by the four Wakeley-Hey classes from Eq. 2, and other vectors D, D9, D0, D* and D˘

are refined decompositions of the JSFS with higher numbers of classes.
doi:10.1371/journal.pone.0018155.g005
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migration rates by MIMAR results in small RMSE values because

as the estimated migration rate goes to zero, the relative error, by

definition, goes to 21 (Fig. S1b). Underestimation of migration

rates by MIMAR is also revealed by the small Factor 2 values (Fig.

S4). However, the lowest RMSE values are obtained for method J2

(Fig. 3b). All four composite methods show consistently low RMSE

values at the three recombination rates tested (r in Fig. 3b).

Maximum likelihood methods are more accurate for estimating

migration rates when the true migration rate is large (lower RMSE

and higher Factor 2, Fig. 3a). Overall, our eight methods estimate

gene flow better when the rates are high.

4. Robustness and comparisons of methods
Our maximum likelihood methods are not sensitive to

recombination, while MIMAR shows higher RMSE values in

estimates of divergence time as recombination increases (Figs. 3a

and 4a). Likewise, the RMSE increases for estimates of divergence

time using our composite likelihood methods as r increases

(although not significantly based on the ANOVA analysis; Table

S1). Sensitivity to recombination is not found for estimates of

migration rate (Fig. S7).

The hahi method tends to overestimate divergence time

compared to other methods (Table 1). Relative error for estimates

of very recent divergence times (t,0.1) is high, although the median

of the relative error rates is similar to results of popABC (Table 1).

Compared to popABC, hahi is more accurate in estimating

migration rates, demonstrating the statistical power gained by

considering the maximum amount of information from the JSFS

(Table 2, Fig. S5). However, the overall performance of hahi in

estimating divergence time and migration rates is worse than that of

our composite-likelihood methods (higher RMSE in Fig. 4, Fig. S5).

5. Advantage of using more than four JSFS based
summary statistics and more loci

We demonstrate the benefit of using more than four statistics of

the JSFS for estimating divergence time and migration rates.

Methods relying on relatively few classes within the JSFS such as

MIMAR and our maximum likelihood method D1 (with only 7

classes of the JSFS) tend to over- or underestimate divergence time

and migration rates more often than the other maximum

likelihood methods (D2–4; Figs. 1, 2 and 3). In fact, RMSE values

for divergence time are higher for D1 and MIMAR compared to

D2–4 (Fig. 2a), and higher for migration rate under D1 compared

to D2–4 (Fig. 3a). Second, estimates from composite-likelihood

methods show RMSE values that are several orders of magnitude

lower for divergence time than those obtained with popABC,

which relies on very limited information from the JSFS (Fig. 4).

Running popABC with six statistics was the most accurate method

to estimate divergence time, compared to using more statistics (11

and 14; Fig. 4). Third, JSFS-based summary statistics provide

more accurate estimates (i.e. lower RMSE and higher Factor 2) of

unequal migration rates between populations (M12?M21) than do

popABC statistics (Fig. 4, Tables 1 and 2).

Finally, our comparison of the different JSFS coarsenings using

the composite likelihood method shows that estimates of migration

rates are more accurate when considering the vectors D0, D* or D̆

Table 1. Relative error for estimates of divergence time with our composite likelihood methods, hahi, and popABC for 100
randomized datasets of 7 loci.

Composite methods hahi popABC

J1 J2 J3 J4

6 summary
statistics

11 summary
statistics

14 summary
statistics

Minimum 20.959 20.953 20.958 20.959 20.693 20.875 20.998 20.998

Quartile 25% 20.074 20.157 20.083 20.094 0.107 0.569 20.040 20.770

Median 0.217 0.121 0.166 0.172 2.685 2.562 2.825 1.105

Quartile 75% 0.653 0.523 0.564 0.439 99.504 8.646 11.045 6.764

Maximum 30.404 11.894 7.001 8.59 957.562 139.88 775.128 578.51

Mean 0.747 0.434 0.454 0.498 96.953 8.146 23.170 15.635

doi:10.1371/journal.pone.0018155.t001

Table 2. Relative error for estimates of the migration rate from population 1 to 2 (M12) with composite likelihood methods, hahi,
and popABC for 100 randomized datasets of 7 loci.

Composite methods hahi popABC

J1 J2 J3 J4

6 summary
statistics

11 summary
statistics

14 summary
statistics

Minimum 20.996 20.983 20.998 20.996 20.968 20.910 20.989 20.990

Quartile 25% 20.509 20.504 20.56 20.565 20.072 20.163 20.797 20.855

Median 20.084 20.07 20.031 20.101 0.371 9.175 20.016 20.201

Quartile 75% 0.801 0.69 0.464 0.499 3.883 57.874 20.738 17.902

Maximum 660.63 61.39 418.4 510.6 951.11 729.420 959.534 959.534

Mean 11.633 2.07 5.41 14.44 37.406 67.407 40.28 39.919

doi:10.1371/journal.pone.0018155.t002
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compared to vectors W, D and D9 (Fig. 5b). The vectors D0, D*

and D̆ contain 12 or 23 summary statistics from the JSFS, whereas

W and D have only four and six. Note, however, that the RMSE

for estimating divergence time is not affected by the choice of

summary statistics (Fig. 5a). For datasets with seven loci, the

composite likelihood method J2 performs better for all coarsenings

of the JSFS, as shown by the dramatic decrease of the RMSE for

migration rates in Figure 5b. For datasets with 100 loci, estimates

of divergence time and especially migration rates are improved

compared to the seven loci case (RMSE values in Fig. S11 and

Fig. 5). However, note that for 100 loci, the best estimates of

migration rates are obtained with our composite likelihood

methods J3–4 using coarsenings with 23 statistics (D* or D̆; Figure

S11b).

Discussion

There is growing interest in speciation models and the

estimation of the parameters of these models from DNA sequence

data. To perform such statistical inferences requires the use of

efficient sets of summary statistics to apply to the increasing

amount of sequence data [34]. Recent theoretical studies have

focused on examining the biases in estimating parameters of the

isolation-migration model [5,9] when some key assumptions are

violated, such as constant levels of post-divergence gene flow, the

absence of population structure, and no migration from an

unsampled species [4,18]. Following the approach pioneered by

the authors of the MIMAR software, we developed methods to

tackle two limitations of existing estimation procedures: the

pervasive problem of intra-locus recombination and the often

limited number of loci sequenced (around 10) and individuals

sampled. These two factors typically represent severe limitations

for studying recent speciation in non-model species, such as wild

tomatoes [6,23].

The JSFS is a summary of polymorphism data that contains

information about the parameters of the isolation-migration model

[5,7,19]: the divergence time (t), the population sizes of the two

extant populations (h1 and h2), the ancestral population size (hA),

and the migration rates between populations (M12 and M21). The

likelihood methods of Nielsen and Wakeley [7] and Becquet and

Przeworski [4] use four classes of the JSFS to estimate parameters.

In addition to these four classes, our coarsenings D9, D0, D* and D̆

take low-frequency polymorphisms that are shared between

populations into account. We show that this provides a significant

improvement for estimating the divergence time and gene flow

between populations under recent divergence and across a range

of intra-locus recombination rates.

Reliable estimates of migration rate and divergence time are

linked to variances in the four classes of the JSFS [4,7]. Thus, data

sets with many sequences are needed [8]. When only a few loci are

sampled, estimates of divergence time and gene flow are correlated

[5]. Our novel sets of JSFS-based summary statistics allow to

improve the joint estimates of these two parameters, especially

when only a small number of loci and SNPs are sampled. In other

words, when the information content of the data is limited, one

should avoid using a small part of the JSFS and a few summary

statistics, because too much information is disregarded (see Fig. 1).

Especially in the case of recent divergence, our methods are more

accurate than previous ones to disentangle migration from

divergence by considering more summary statistics for low-

frequency shared polymorphisms. Indeed, if gene flow occurs

between diverging species, the rate of gene flow should be low, and

this would be reflected by a higher number of shared low-

frequency polymorphisms. The use of a more complex summary

of the JSFS thus enhances the accuracy of joint parameter

estimates of the IM model for any number of sampled loci (for

example 7 or 100). Note that in our examples, the simulated 7 loci

contain approximately 350 SNPs to emulate date sets obtained

from Drosophila and wild tomatoes [14,23,24]. This number of

SNPs in combination with high recombination rates explains the

improvement of statistical accuracy shown by our methods

compared to previous ones, except for very recent divergence

(where all methods fail).

Our results show in addition that the coverage of the maximum

likelihood methods (varying from 64 to 86%) is higher than that of

the composite likelihood methods (50%) and MIMAR (around

10%). These results indicate that the MIMAR runs may have

converged on local optima and confirm that the chi-square

approximation for confidence intervals is applicable to our

composite likelihood method [37]. However, even for our

maximum-likelihood method, coverage stays below the target

value of 95%. We thus advocate that general approaches like

parametric bootstrapping would have to be applied for hypothesis

testing and to compute confidence intervals in our newly proposed

estimation methods [38].

A second quantitative improvement is achieved by developing a

simulation-based composite likelihood method that considerably

reduces the time of computation compared to MIMAR and our

maximum likelihood methods. These methods, as well as full

likelihood procedures such as IM [5], require extensive search of

the parameter space, which is very time-consuming. Typically, our

maximum likelihood methods and MIMAR must run for three to

four weeks for a single data set on a standard desktop computer.

On a similar machine, popABC can be run for three to four days

to generate a table of 300,000 simulations. The rejection and

regression steps are then instantaneous. Our composite-likelihood

methods require three to four days to generate the JSFS grid of

parameter combinations. However, an advantage is that this grid

can be used for multiple analyses with the same type of model and

identical sample sizes. Note also that our priors can be used for any

number of loci, so that the runtime of our composite-likelihood

methods does not scale with the number of loci. ABC methods

(e.g., popABC) can also re-use a given simulated parameter space if

the data sets to be analyzed have identical prior distributions.

Our methods J2–4 (with coarsenings D* or D̆) provide the most

accurate estimates of migration rate. The assumption of

independence of sites does not affect the power of these methods

over a range of recombination rates (hahi shows a similar

behavior). This indicates that methods which take intra-locus

recombination into account are also valid when rates of

recombination are low [4]. However, the converse is not true.

Methods based on the full likelihood analysis of haplotypic data

which assume no intra-locus recombination [5,9] are biased if

recombination is present [4,18,31]. Another advantage of our

composite-likelihood method is that unequal rates of gene flow

between diverging species can be estimated (as does hahi, [22]).

Unequal migration rates introduce an asymmetry in the JSFS

between the expected numbers of shared low-frequency polymor-

phisms in each species [22]. Thus, unequal rates of gene flow

between species can only be estimated by using a more complex

summary of the JSFS than the four Wakeley-Hey summary

statistics included in our W vector (W1, W2, W3, W4).

Estimates of divergence time and migration rates with the ABC

method clearly suffer from large overestimates (relative error .50).

For popABC extreme overestimates of the divergence time occur

when the true value is very low (t,0.1 in Tables 1 and 2, Fig.

S10), independent of the migration rate. Similarly, M12 (or M21) is

biased under low migration (M12 or M21,0.1), independent of the
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divergence time. In contrast, when using the composite likelihood

methods (J1–4), large relative errors are observed for estimates of

the migration rate M12 if the true migration rate is low (M12,0.1)

and the divergence time is very recent (t,0.1, Figs. S8 and S9).

This means that the summary statistics (whether all 22 or a subset)

used in the ABC framework of popABC are not sufficiently

sensitive to obtain precise joint estimates of gene flow and

divergence time. Furthermore, note as well that popABC does not

incorporate an outgroup, which might also explain the reduced

information contained in the summary statistics.

We also notice that inaccurate estimation of parameters with

popABC following the regression is due to wide posterior

distributions. The mode of the posterior estimated by ABCreg

[32] was always contained in the posterior calculated by the

rejection algorithm in popABC (also based on the best 1% of the

simulations; [21]). However, when posterior distributions have

wide 95% credibility intervals, the mode computed after the

regression step overestimates the true value, especially for

migration rates. Wide posterior distributions for divergence time

and migration rate estimates occurred when either of these

parameters was small (recent divergence t,1 or small migration

M,0.1). Estimates obtained with 14 summary statistics are more

accurate than those obtained with 11, although they differ only by

the inclusion of haplotype diversity in each population and over

pooled populations (Fig. 4). This highlights the fact that

information contained in haplotype structure helps to disentangle

the effects of migration and divergence on genetic diversity. We

suggest that an ABC method using more classes of the JSFS such

as our vectors D* or D̆ (in addition to haplotype diversity), would

show better inference of recent divergence times and gene flow,

and might be robust over a range of recombination rates.

Finally, we find less accurate estimates of divergence time and

gene flow with hahi than with our composite likelihood methods

(J1–4; Fig. 4). This is surprising since hahi is also a composite

likelihood approach, in which the expected values of the full JSFS

are computed numerically via a diffusion approximation [22].

This method overestimates divergence time, especially for very

recent divergence events (t,0.1), but estimations of migration rate

are in line with results from our composite methods and popABC

(Table 1 and 2). In other words, when only a few loci are sampled

and divergence is recent, the amount of information contained in

the JSFS appears to limit the precision of the inferred gene flow

parameters. We suggest that our composite-likelihood method

based on local regression is more robust to the violation of the

assumption that all SNPs are independent than are methods based

on diffusion approximations. This would explain the lower

accuracy of hahi compared to our methods. Details of the

behavior of hahi when estimating parameters are, however,

beyond the scope of this paper.

In conclusion, we have shown that existing statistical methods to

infer speciation parameters in the isolation-migration framework

based on the JSFS are improved by more extensive partitioning of

the JSFS classes. We have developed a composite-likelihood

method that allows to distinguish the signatures of young

divergence from those of older divergence time but with recurrent

gene flow between populations; these methods are particularly

suitable for species with intra-locus recombination and a limited

amount of data (less than 20 loci). When analyzing data from two

or more diverging populations or species, it should be kept in mind

that departures from the stringent model assumptions [5,12,19],

such as drawing inference from coding sequences or introns with

different selection regimes between species [24], may bias

estimates of divergence time, gene flow, and population sizes

[18,31].
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Figure S1 Relative error for estimates of (a) the diver-
gence time (t) and (b) the migration rate (M = M12 = M21),
for the maximum likelihood methods (D1–D4), MIMAR
and the composite-likelihood methods (J1–J4). Relative

error is calculated as (test2tsim)/tsim where test is the estimated

value and tsim is the simulated value. Groups with significant

differences between means following multiple comparisons (Tukey

HSD test at 0.05) are indicated by letters for each method (group a

for the smallest mean). Values that are more than 1.5 times the

nearest interquartile range (25% or 75%) are displayed as

diamonds, those more than 3 times are displayed as stars.

(TIF)

Figure S2 Analysis of regression between errors in
estimates of migration rate (M12 = M21) and divergence
time t for the 9 methods tested. (a) D1–4 for the maximum

likelihood methods, (b) J1–4 for the composite likelihood methods

and (c) for MIMAR. Positive (negative) relative error indicates

over (under)-estimation of the parameter. Regression coefficients

and p-values are calculated using the lm function in the R software.

P-values indicate the significance of the test whether the slope of

the linear regression is zero.

(TIF)

Figure S3 Factor 2 as a percentage of the estimates of
divergence time (t) in the range tsim/2,test,tsim62 as a
function of the population mutation rates (h), values of
simulated migration rates (M12 = M21) and population
recombination rates (r). The Factor 2 (F2) is the proportion of

data sets for which the estimated value (of t or M) is at least half

and at most twice the simulated value: (a) for the four maximum

likelihood methods (D1–D4) and MIMAR, (b) for the four

composite-likelihood methods (J1–J4) and MIMAR.

(TIF)

Figure S4 Factor 2 as a percentage of the estimates of
migration rate (M = M12 = M21) in the range Msim/
2,Mest,Msim62 as a function of the population muta-
tion rate (h), values of simulated migration rates
(M12 = M21) and population recombination rates (r). (a)

For the four maximum likelihood methods (D1–D4) and MIMAR,

(b) for the four composite-likelihood methods (J1–J4) and MIMAR.

(TIF)

Figure S5 Factor 2 for estimates of the divergence time
and migration rates (M12, M21) for the four composite-
likelihood methods (J1–J4), hahi and for popABC with 6,
11 and 14 summary statistics (computed over 100
datasets).

(TIF)

Figure S6 Distribution of relative error for (a) divergence
time and for (b) migration rate depending on the population
mutation rate (h) for composite-likelihood method J4. For

clarity, only relative errors lower than 15 are shown in (b).

(TIF)

Figure S7 Distribution of the relative error of (a)
divergence time and of (b) migration rate depending
on the population recombination rate (r) for composite-
likelihood method J4. For clarity, only relative errors lower

than 15 are shown in (b).

(TIF)
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Figure S8 Relative error for estimation of migration
rate depending on the simulated value of the migration
rate (M12 in blue and M21 in red) for composite method
J2. (a) For simulated divergence times less than 0.5, and (b) for

simulated divergence times greater than 1. Note the difference in

scale of the y-axes between (a) and (b).

(TIF)

Figure S9 Relative error in the estimation of the
migration rate (M12 in blue and M21 in red) depending
on the simulated value of the migration rate for
composite likelihood method J4. (a) For simulated divergence

times smaller than 0.5, and (b) for simulated divergence times

greater than 1. Note the difference in scale of the y-axes between

(a) and (b).

(TIF)

Figure S10 Relative error in the estimation of migration
rate depending on the simulated value of the migration
rate (M12 in blue and M21 in red) for popABC estimates
with 6 summary statistics. (a) For simulated divergence times

smaller than 0.5, and (b) for simulated divergence times greater

than 1.

(TIF)

Figure S11 Power analysis of the various JSFS coarsen-
ings to estimate divergence time and migration rates for
100 datasets of 100 loci. RMSE are computed for estimates of

the (a) divergence time (t) and (b) migration rates (M12?M21) for

the four composite-likelihood methods (J1–J4) based on six vectors

of summary statistics with different numbers elements. The vector

W is defined by the Wakeley-Hey 4 classes from Eq. 2, and other

vectors D, D9, D0, D* and D̆ are refined decompositions of the JSFS

with higher number of classes.

(TIF)

Table S1 ANOVA table of analysis of error in the
estimation of divergence times (t).

(PDF)

Table S2 ANOVA table of analysis of error in the
estimation of migration rates (M12 = M21).

(PDF)
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