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Abstract

Despite the successes provided by vaccination, many challenges still exist with respect to controlling new and re-emerging
infectious diseases. Innovative vaccine platforms composed of adaptable adjuvants able to appropriately modulate immune
responses, induce long-lived immunity in a single dose, and deliver immunogens in a safe and stable manner via multiple
routes of administration are needed. This work describes the development of a novel biodegradable polyanhydride
nanoparticle-based vaccine platform administered as a single intranasal dose that induced long-lived protective immunity
against respiratory disease caused by Yesinia pestis, the causative agent of pneumonic plague. Relative to the responses
induced by the recombinant protein F1-V alone and MPLA-adjuvanted F1-V, the nanoparticle-based vaccination regimen
induced an immune response that was characterized by high titer and high avidity IgG1 anti-F1-V antibody that persisted
for at least 23 weeks post-vaccination. After challenge, no Y. pestis were recovered from the lungs, livers, or spleens of mice
vaccinated with the nanoparticle-based formulation and histopathological appearance of lung, liver, and splenic tissues
from these mice post-vaccination was remarkably similar to uninfected control mice.
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Introduction

Natural infections with pathogens stimulate protective and
lasting antibody responses because they induce affinity maturation
of B cells, a process by which B cells produce antibodies with an
increased affinity for antigen during the course of an immune
response [1]. Vaccines have been designed to mimic the immune
response associated with an active infection yet avoid the
undesirable effects of disease. By employing a priming dose
followed by two to three booster doses, modern vaccine regimens
facilitate the process of affinity maturation, which occurs with
repeated or sustained exposure to the same antigen [1]. Vaccines
also utilize adjuvants to improve immunogenicity by providing
pro-inflammatory signals and prolonging the persistence of
vaccine antigens [2]. Unfortunately, current adjuvants approved
for human use are not tunable and, as many pathogens have
evolved to evade the host immune response, currently available
vaccine strategies may not provide adequate induction of long-
lived protective immunity. Development of single-dose, tailored
nano-adjuvant platforms will not only provide an effective means
to induce protective immunity, but will also allow production of
cost-effective vaccines that can reduce the need for multiple
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injections and result in greater patient compliance. Moreover,
these novel technologies will obviate the need for hypodermic
needles and professionals to administer the vaccine. In this regard,
implementation of vaccine delivery systems based on biodegrad-
able polymers offers significant advantages for immunization
regimens.

In order to enhance vaccine efficacy and induce long-term,
protective immunity, the choice of route (intramuscular [3,4],
subcutaneous [5,6] or intranasal [4,7]), adjuvant (Alhydrogel [5,6],
viral vectors [3], polyester microparticles [4], or lipid A mimetics
[7]), and vaccination schedule (single-dose [4,5,7] or multiple-
doses [3,6]) must all be considered. For respiratory pathogens such
as Yersima pestis, intranasal vaccination offers many advantages
over parenteral vaccination, including ease of administration and
ability to enhance both mucosal and systemic immune responses
[8]. While the rapid induction of protection is critical, the ability of
vaccine formulations to induce long-lasting protection character-
ized by high-avidity antibody is equally important [1]. 1. pestis, the
causative agent of pneumonic plague, is a Category A agent
(http://www.bt.cdc.gov/agent/agentlist-category.asp) to which
there is no vaccine currently in production. The pursuit of a
protective plague vaccine has evolved from the use of killed whole-
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cell [9] and live-attenuated bacteria [10] to recombinant proteins
such as cafl (i.e., F1) and LerV (ie., V) [3,5,7]. Previous studies
have shown that F1 and V antigen-specific IgG1 facilitates antigen
presenting cell phagocytosis and blocks the Y. pestis type III
secretion system, respectively, leading to protection [11]. In
addition, immunization with the fusion protein, F1-V, provides
protection in mice [5] and cynomolgus macaques [6]; however, it
has been less successful in other non-human primate models such
as the African green monkey [12]. To date, only lipid A mimetic
adjuvants have been shown to provide long-term, protective
immunity against lethal 7. pestis challenge [7].

Multiple biodegradable polymers, including polyesters, have
been studied as vaccine delivery vehicles [4,13]. By comparison,
the controlled release and adjuvanticity provided by novel
polyanhydride carriers, first pioneered by Robert Langer of
MIT in the 1980s [14,15], allows for immune system activation,
reduction of antigenic dose, prolonged antigen exposure, stability
of the encapsulated protein antigen, and immune modulation
[16-25]. The results presented herein demonstrate that encapsu-
lation of F1-V into polyanhydride nanoparticles administered as a
single intranasal dose successfully induced long-term protection
against 1. pestis that correlated with a high titer, high avidity F1-V-
specific antibody response.

Results

Polyanhydride Nanoparticle Design

We have previously shown that encapsulation of F1-V into
amphiphilic polyanhydride particles based on 1,6-bis(p-carbox-
yphenoxy)hexane (CPH) and 1,8-bis(p-carboxyphenoxy)-3,6-diox-
aoctane (CPTEG) successfully preserved the antigenicity of F1-V
upon release [26]. Scanning electron photomicrographs of blank
and 2% F1-V loaded 50:50 CPTEG:CPH nanoparticles (Figure 1A
and 1B, respectively) show similar spherical morphology and size,
which was confirmed by QELS analysis (Figure 1C), demonstrat-
ing that antigen encapsulation did not change nanoparticle size
(204 nm versus 196 nm). The release kinetics of encapsulated F1-
V was monitored for 70 days and was characterized by an initial
burst (9%), an approximate zero order release through 28 days,
and near complete release (93%) by 70 days (Figure 1D).

Nanovaccine Protection Against Live Challenge

To study the effectiveness of antigen-encapsulated nanoparticles
to provide protection against pneumonic plague, C57BL/6 mice
were intranasally vaccinated (Table 1) and subsequently chal-
lenged at 6 weeks or 23 weeks post-vaccination with 850 CFU of
Y. pestis CO92. At 6 weeks post-vaccination, none of the mice
vaccinated with 50 pg of soluble F1-V (S5¢) survived the challenge,
whereas 80% of mice treated with S5y + MPLA and 40% of mice
treated with S5 adjuvanted with blank nanoparticles (S5o + Eo)
survived (Figure 2A). In contrast, 100% of mice treated with 40 pg
of soluble F1-V and 10 ug of encapsulated F1-V (S4 + E;0)
survived. At 23 weeks post-vaccination, only 12.5% of mice
treated with S50 + MPLA and 25% of mice treated with S5 + Eg
survived challenge, in comparison to 100% survival of the mice
vaccinated with Syo + Eqo (Figure 2B).

Nanovaccine Prevents Pathological Damage Following
Y. pestis Intranasal Challenge

At 72 h post-infection, bacteriological burdens and histopath-
ological lesions of lungs, livers, and spleens were assessed. The Ssq
+ MPLA vaccine regimen prevented bacterial replication in lungs,
livers, and spleens at 6 weeks post-vaccination (Figure 2C).
However, these mice were not protected at 23 weeks post-
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vaccination (Figure 2B), suggesting an inability to effectively
control bacterial burden. No bacteria were recovered from the
lungs, livers, or spleens of mice vaccinated with the Su + Ej
regimen (Figure 2C). Histopathological appearance of lung, liver,
and splenic tissues from mice immunized with Sy + Ejo was
remarkably similar to uninfected control mice at both 6 and 23
weeks post-vaccination (Figures 2D and 3). The histopathology
data of the liver and splenic tissues in Figure 3 indicates that the
single intranasal vaccination not only protected the lungs but also
other systemic organs from damage by 1. pestis. In contrast,
extensive edema and neutrophilic and lymphocytic infiltration
were observed in lung, liver, and spleen recovered from mice
vaccinated with Ssq, S50 + MPLA, or S5 + E,.

A Nanovaccine Regimen Composed of Soluble and
Encapsulated F1-V Stimulates Enhanced Antibody
Production

Prior work has shown that high antibody titers correlate with
protection against live . pestis challenge [3-5,7]. Consistent with a
previous report [7], the soluble protein alone failed to provide
protection against a lethal challenge, and mice vaccinated with S5
generated low FI1-V-specific antibody titers. All adjuvanted
vaccines (Sso + MPLA, S5 + Eg, and S4¢ + E}¢) induced enhanced
anti-F1-V titers in comparison to 50 pg of I'1-V alone (Figure 4A).
By 6 weeks post-vaccination, anti-F1-V IgG titers began to wane
in mice vaccinated with S5g + MPLA or S5 + E. In contrast, the
F1-V-specific IgG titer in Sy + Ej9 vaccinated mice was
maintained for the duration of the study. Analysis demonstrated
that IgG1 was the dominant serum antibody isotype produced
(Figure 4B). These studies indicate that anti-F1 and anti-V
responses are protective and are consistent with previous work
[11].

Protection induced by most vaccines has been shown to be
primarily antibody-dependent in nature [l]. In addition to
antibody titer, the quality of the antigen-specific antibody,
including avidity, also determines vaccine efficacy [1]. For
example, poor antibody avidity correlated to a lack of protection
against a lethal challenge with the bacterial pathogen Streptococcus
pneumoniae [27]. In the present study, mice immunized with S5,
Ss0 + MPLA, or S5, + Eq formulations developed a low avidity F1-
V-specific IgG response (Figure 4C). In contrast, mice vaccinated
with Sy + E; generated a higher avidity anti-F1-V specific IgG
antibody by 3-weeks post-vaccination that was maintained
throughout the 23-week experiment (Figure 4C).

These results demonstrate that single-dose intranasal adminis-
tration of a vaccine formulation consisting of soluble FI1-V
together with I'1-V encapsulated into polyanhydride nanoparticles
(S40 + E10) was able to induce high antibody titers with high avidity
that correlated to long-term protection against a lethal 1. pestis
challenge. When compared to vaccination with soluble FI1-V
administered with blank nanoparticles (Ssq + Eg), it is clear that the
combination of encapsulated and soluble antigen is critical to the
induction and maintenance of long-term, high avidity IgGl
antibody and protection against lethal challenge. With regards to
long-term antigen presentation, we have preliminary evidence that
demonstrated that 50:50 CPTEG:CPH nanoparticles persisted in
the lungs of mice for at least 28 days after intranasal
administration (data not shown). This evidence is also consistent
with previous research that has demonstrated that particles in the
same size range as used in the current study were predicted to
deposit deep within the lung making them ideal for intranasal
vaccination [28]. Nanovaccine formulations containing both
soluble and encapsulated antigen facilitated the initiation of a
primary immune response [29] and sustained antigen delivery that
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Figure 1. Material properties of 50:50 CPTEG:CPH nanoparticles. Representative scanning electron photomicrographs of (A) blank and (B)
2% F1-V loaded 50:50 CPTEG:CPH nanoparticles (scale bar = 1 um). (C) Particle size distribution as determined by QELS for blank (204+62) and 2%
F1-V loaded 50:50 CPTEG:CPH nanoparticles (19677) with n = 3. (D) In vitro cumulative release of F1-V from 50:50 CPTEG:CPH nanoparticles in pH
7.4 PBS analyzed by micro bicinchoninic acid assay (n = 2, representative of two separate nanoparticle batches).

doi:10.1371/journal.pone.0017642.9001

resulted in the induction of long-lived, high antibody titers with
affinity maturation of B cells to generate high avidity antibody
[30].

Discussion

The success of modern vaccines has depended largely upon the
inclusion of an adjuvant to promote immunogenic responses by
activating antigen presenting cells (APCs) and by protecting the
antigen from rapid degradation, thereby creating a depot effect for
extended immune stimulation [2]. While the & vivo mechanisms
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that govern nanoparticle-mediated enhancement of immune
responses have yet to be elucidated, recent research has
demonstrated that activation of both complement and APCs plays
a key role in how some nanoparticles augment an immune
response [31]. Previous work from our laboratories has shown that
polyanhydride nanoparticles of various formulations activate
dendritic cells (DCs) m witro [18]. It is likely that the adjuvant
properties of the polyanhydride nanoparticles activate DCs in vivo.
These activated DCs would then traffic to the draining lymph
node where they facilitate the induction of an adaptive immune
response [29]. Clonal expansion of antigen-specific lymphocytes
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Table 1. Vaccination regimens.

Single-Dose Intranasal Nanoparticle-Based Vaccine

Experimental Group Soluble F1-V (ug) Encapsulated F1-V (ug) 50:50 CPTEG:CPH Nanoparticles (ng) MPLA (ug)
Sso 5 = = =

Sso + MPLA 50 10

Sso + Eo 50 0

Sa0 + Ero 40 10 107 H R —

doi:10.1371/journal.pone.0017642.t001

would involve the interaction with injection-site DCs and (soluble)
antigen presented by lymph node resident DCs [29]. The
importance of adequate soluble antigen during the initiation of
the primary immune response and the subsequent processing and
presentation by resident DCs may explain why vaccine regimens
employing 100% F1-V encapsulated nanoparticles with no soluble
F1-V failed to elicit antibody titers over background levels (data
not shown). Additionally, the adjuvant activity observed with the
use of nanoparticles agrees with our previous research showing the
capacity for nanoparticles to increase soluble protein uptake by
APCs wn vitro [20]. We have also shown that serum proteins adsorb
to polyanhydride particles, so it is likely that some F1-V protein
does adsorb to the nanoparticles [32]. However, it is currently
unknown whether antigen adsorption to the nanoparticle or
nanoparticle interactions with antigen presenting cells induces
more efficient uptake, processing, and presentation of soluble
antigen.

Previous work has shown that single-dose, subcutaneous
immunization against 1. pestis is not sufficient to induce protection
against pneumonic plague [33] while adjuvanted vaccines
administered in multiple doses induce high avidity antibody
associated with affinity maturation of B cells [34-36]. The ability
to persist within the body coupled with the delayed degradation of
F1-V loaded polyanhydride nanoparticles likely enhanced mech-
anisms that facilitated extended antigen release and induction of
high titer and high avidity antibody responses associated with
antigen-specific affinity maturation of B cell responses. While
nanoparticles are readily internalized by APCs i witro [18,20],
some particles are not taken up by professional phagocytes.
Delayed APC internalization, gradual polymer degradation, and
release of antigen would allow for extended presence of antigen.
With this in mind, we vaccinated mice intranasally with 200 nm
nanoparticles, thus enhancing the potential for these particles to
remain in the lung tissue and provide extended antigen delivery
[26]. The potential for extended antigen delivery by 50:50
CPTEG:CPH nanoparticles can be attributed to their presence
in the lungs 28 days post-intranasal vaccination as observed using
in situ fluorescence imaging (data not shown).

To our knowledge, the work presented herein is the first report
of a single-dose, synthetic particle-based vaccine to provide long-
term protection against lethal challenge of an infectious agent.
Moreover, this protective response was characterized by a high
titer, high avidity antibody response. Other work from our
laboratories has shown that mice vaccinated intramuscularly with
a single dose comprised of both soluble tetanus toxoid (T'T) and
TT encapsulated in polyanhydride microparticles also demon-
strated a high titer, high avidity antibody, providing another
example of polyanhydride particle-based vaccines enhancing the
quality of antibody responses that maximize vaccine efficacy [18].
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*Quantities indicate the amounts of immunogen or adjuvant delivered to each mouse in the indicated group. S = soluble protein; E = encapsulated protein. Subscripts
indicate amount of soluble or encapsulated protein (in pug) administered per dose.

We propose that the nanoparticle technology described herein can
function as an effective delivery platform for a wide range of
antigens due to the versatility of the polyanhydride chemistries to
stabilize encapsulated proteins, activate APCs, and provide
extended release of antigens. Moreover, the scalability of the
particle fabrication process enables the design of combination
vaccines with customized cocktails of microparticles and nano-
particles of tailored chemistries to be delivered in a single
administration. Together, these attributes make polyanhydride
particles an attractive platform for development of highly
efficacious vaccines.

Materials and Methods

Polymer Synthesis and Characterization

Synthesis of 1,6-bis(p-carboxyphenoxy)hexane (CPH) and 1,8-
bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) diacids was
performed as described previously [37]. Gel permeation chroma-
tography and differential scanning calorimetry were utilized to
measure molecular weight and glass transition temperature,
respectively. The 50:50 CPTEG:CPH copolymer had a M, of
8,500 Da, PDI of 1.70, and a T, of 13°C, consistent with previous
work [37].

Nanoparticle Design

Both FI-V encapsulated and blank nanoparticles were fabri-
cated by the polyanhydride anti-solvent nanoencapsulation (PAN)
method modified from the protocol reported in Ulery et al [21].
For encapsulated nanoparticles, recombinant F1-V (NIH Biode-
fense and Emerging Infections Research Resources Repository,
Manassas, VA) was used. This procedure yielded a fine powder
with at least 70% recovery and protein encapsulation efficiency
greater than 94%. Nanoparticle morphology was investigated
using scanning electron microscopy (SEM, JEOL 840A, JEOL
Ltd., Tokyo, Japan). Quasi-elastic light scattering (QELS) was
employed to determine nanoparticle size (Zetasizer Nano,
Malvern Instruments Ltd., Worchester, UK).

To measure F1-V release kinetics i wvitro, nanoparticles
(12.5 mg) were suspended in 0.1 M phosphate buffer (pH 7.4) at
37°C and agitated. Sodium azide was added to prevent microbial
contamination. Aliquots of supernatant were collected at indicated
time points and replaced with fresh buffer. Supernatant concen-
trations were quantified via micro bicinchoninic acid (micro BCA)
assay. Total protein encapsulated was determined by adding the
quantity of protein released during the experiment to the quantity
of protein extracted from remaining nanoparticles as described
previously [20]. Cumulative release profiles were generated by
normalizing the data against the total amount of encapsulated
protein and reported as fractional protein release.
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Figure 2. Single-dose, intranasally administered nanovaccines induced protection against lethal Y. pestis challenge. C57BL/6 mice
were intranasally challenged with 850 CFU (LD ) Y. pestis CO92 at (A) 6 weeks post-vaccination (n=5 per group) or (B) 23 weeks post-vaccination
(n=7 per group) with each challenge a representation of two independent experiments. * = p<<0.007, # = p<0.001 and + = p<<0.0001. (C) CFU of
Y. pestis CO92 at 72 h post-infection in the lungs, livers, and spleens of mice (n=3 per group) that were vaccinated 6 weeks prior to challenge.
Treatments with different letters are significantly different from one another at p<<0.05. (D) Photomicrographs of lung sections from mice: uninfected
and unvaccinated (i) and challenged 6 (ii, iii, and iv) and 23 (v) weeks post-vaccination. Sso vaccinated mice, 72 h post-challenge (ii) showed severe
pathology and loss of tissue architecture due to overwhelming bacterial replication in lungs (arrows), neutrophilic infiltration (arrowhead),
hemorrhage (+), edema (asterisks), and necrosis. Bronchioles had bacteria clumped with fibrin deposits and neutrophils. Absence of lung pathology
was seen in Syo + Eq vaccinated mice at 72 h (iii), 14 days (iv), and 21 days post-challenge (v). Av - alveolus, Br - bronchiole, Pa - pulmonary artery, Pv -
pulmonary vein. Objective lens magnification is 40X. Scale bar =50 um.

doi:10.1371/journal.pone.0017642.g002

Bacteria

Y. pestis GO92 (NR-641, Biodefense and Emerging Infections
Research Resources Repository, NIAID, NIH) was grown
overnight at 37°C in heart-infusion broth supplemented with
0.2% D-galactose.

Mice

Eight-week-old female C57BL/6 mice were obtained from the
Jackson Laboratory (Bar Harbor, ME) and maintained under SPF
conditions. The Institutional Committees on Animal Care and
Use at either Towa State University or Albany Medical Center
approved all procedures involving animals.

Vaccinations and Challenge

Prior to vaccination, mice were deeply anesthetized via
intraperitoneal injection of a ketamine/xylazine cocktail. Mice
were vaccinated intranasally with regimens described in Table 1 in
a volume of 40 pL. Whole blood was collected from mice via the
saphenous vein at the indicated times post-vaccination and serum
was assessed for anti-F1-V specific antibodies. For challenge
studies, vaccinated mice were anesthetized and challenged
intranasally with 850 CFU (LDjoo) of 7. pestis in 20 pl. PBS/
mouse at 6 or 23 weeks post-vaccination. These experiments were
conducted in duplicate with a different batch of nanoparticles used
for each experiment.

Uninfected

Figure 3. Histopathological analysis of lungs, spleens, and livers 6 weeks post-vaccination at 72 h post-challenge from mice
vaccinated six weeks earlier. Lungs of Sy + E;( vaccinated mice (v) were free of any histopathological lesions and bacteria and were similar to
lung tissue from unimmunized and uninfected control mice (i). No bacteria, necrosis or edema were present in spleens of the S, + E;o vaccinated
mice (x) and histology was similar to healthy spleen tissue (vi). The livers of the S, + E;o vaccinated mice (xv) did not show any lesions similar to
control mice (xi). Av - Alveoli, F - Follicle, Mz - Marginal zone, and RP - Red pulp. Arrow - bacteria, black arrowhead - neutrophilic infiltration, yellow
arrowhead - lymphocytic infiltrations, * - edema, and + - necrotic cells. Objective lens magnification is 100X. Scale bar =20 pum.
doi:10.1371/journal.pone.0017642.g003
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Figure 4. Single-dose administration of nanovaccines induced long-term antibody titers with high avidity. (A) Kinetics of IgG antibody
titer throughout 23 weeks post-vaccination. (B) Antibody isotype induced by various immunization regimens. Optical density was determined by
ELISA at a 1:1000 dilution. (C) IgG antibody avidity throughout 23 weeks post-vaccination. Avidity was determined via ELISA at a 1:200 dilution. Data

is presented as the mean = SEM (n=7 per group) and is representative of two independent experiments. * =

p<<0.0001 (compared to Sso + MPLA).
doi:10.1371/journal.pone.0017642.9g004

Quantification of Bacterial Burden and Histopathology

To assess bacterial organ burdens at 72 h post-infection, lungs,
livers, and spleens were collected at 6 weeks post-vaccination,
homogenized in PBS, diluted ten-fold, and plated on to Congo red
agar plates. Y. pestis colonies were enumerated after 48 h of
incubation at 28°C. Bacterial burdens were expressed as logj
means of CFU = standard errors of the means for three mice per
group. Bacterial organ burdens were assessed at 14 days post-
infection at both 6- and 23-weeks post-vaccination.

For histopathological studies, vaccinated and infected mice were
sacrificed using pentobarbital sodium and lungs, livers, and spleens
were collected at indicated time points post-infection and fixed in
10% buftered formalin. Tissues were paraffin-embedded, sec-
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p<0.02, # = p<0.005 and + =

tioned, and stained with hematoxylin and eosin. Photomicro-
graphs of tissue sections were acquired and analyzed using
cellSens™! standard software (version 1.3, Olympus Corporation,
Japan) on an Olympus BX-41 light microscope equipped with
Olympus microscope digital camera DP72. Tissues were analyzed
histopathologically for evidence of inflammation, hemorrhage,
edema, necrosis, changes in tissue architecture, and bacteria.

F1-V Specific Enzyme-Linked Immunosorbent Assay
(ELISA)

Microtiter plates were coated overnight with 0.5 pg/mL F1-V,
blocked for 2 h at room temperature with 2.5% skim milk in PBS

March 2011 | Volume 6 | Issue 3 | e17642



containing 0.05% Tween 20 (PBS-T), and then washed with PBS-
T. Sera samples were diluted 1:200, then serially diluted three-fold
in PBS-T with 1% goat serum, and incubated overnight at 4°C.
Plates were washed before adding alkaline phosphatase-conjugated
goat anti-mouse IgG(H&L) for 2 h. Plates were washed and
developed with phosphatase substrate (Sigma 104, Sigma-Aldrich,
St. Louis, MO) in 50 mM sodium carbonate and 2 mM
magnesium chloride buffer (pH 9.3) for 30 min. Optical density
(OD) of each well was measured at 405 nm. Endpoint titers were
defined as the greatest dilution where OD was at least twice that of
the average OD of normal mouse serum (1:1,800).

Antibody avidity analysis was performed as described previously
[18]. Serum samples (1:200) were added to microtiter plates coated
with F1-V as described above. Avidity index was defined as the
concentration of sodium thiocyanate necessary to reduce the OD
by 50% compared to wells treated with 0.1 M sodium phosphate.

Statistical Analysis
Comparisons between treatment groups were made using two-
tailed t-tests. Survival data were analyzed using a Log rank
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