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Abstract

Background: Tobacco smoke predisposes humans and animals to develop lung tumors, but the molecular events
responsible for this are poorly understood. We recently showed that signaling mechanisms triggered by smoke in lung cells
could lead to the activation of a growth factor signaling pathway, thereby promoting hyperproliferation of lung epithelial
cells. Hyperproliferation is considered a premalignant change in the lung, in that increased rates of DNA synthesis are
associated with an increased number of DNA copying errors, events that are exacerbated in the presence of tobacco smoke
carcinogens. Despite the existence of DNA repair mechanisms, a small percentage of these errors go unrepaired and can
lead to tumorigenic mutations. The results of our previous study showed that an early event following smoke exposure was
the generation of oxygen radicals through the activation of NADPH oxidase. Although it was clear that these radicals
transduced signals through the epidermal growth factor receptor (EGFR), and that this was mediated by TACE-dependent
cleavage of amphiregulin, it remained uncertain how oxygen radicals were able to activate TACE.

Principal Findings: In the present study, we demonstrate for the first time that phosphorylation of TACE at serine/threonine
residues by tobacco smoke induces amphiregulin release and EGFR activation. TACE phosphorylation is triggered in smoke-
exposed lung cells by the ROS-induced activation of PKC through the action of SRC kinase. Furthermore, we identified PKCe
as the PKC isoform involved in smoke-induced TACE activation and hyperproliferation of lung cells.

Conclusions: Our data elucidate new signaling paradigms by which tobacco smoke promotes TACE activation and
hyperproliferation of lung cells.
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Introduction

Smoke exposure is the principal risk factor for the development

of lung cancer [1], [2], but details of the pathogenesis are

unknown. In general, tumor progression occurs in temporally and

spatially overlapping stages consisting of premalignant hyperplasia,

dysplasia, carcinoma in situ and invasive cancer [3].

We previously reported that hyperplasia of lung cells was

elicited by smoke-induced phosphorylation of the epidermal

growth factor receptor (EGFR) [4], [5]. This suggested that an

understanding of the mechanism by which smoke activates EGFR

might elucidate lung cancer pathogenesis and prompted us to

identify mechanisms linking EGFR activation to tobacco smoke.

In our previous study [4] we identified a cascade of smoke-induced

signaling events, the earliest of which was the generation of

intracellular reactive oxygen species, ROS. In principle, this could

have occurred either by release of ROS from mitochondria or by

the generation of ROS de novo by NADPH oxidase. Inhibitor

studies showed that the increased ROS levels in smoke-exposed

cells were due to activation of NADPH oxidase and we were able

to link smoke-induced ROS to EGFR activation by the

observation that smoke caused the ROS-dependent release of a

soluble EGFR ligand, amphiregulin.

Amphiregulin is one of a family of EGFR ligands (EGF, beta-

cellulin, HBEGF, TGFa, etc) that begin life as transmembrane

proteins and are eventually cleaved (‘‘shed’’) from the cell surface,

enabling them to bind to, and thereby activate EGFR [6], [7], [8],

[9]. The cleavage event is commonly mediated by one of a family

PLoS ONE | www.plosone.org 1 March 2011 | Volume 6 | Issue 3 | e17489



of cell surface metalloproteinases called ADAMs (A Disintegrin

and Metalloproteinase) [10], [11]. ADAM metalloproteinases are

a branch of the metzincin metalloproteinase superfamily that are

related to snake venom metalloproteinases and integrin ligands

[11], [12], [13]. They comprise more than 40 cell surface

transmembrane proteins whose functions run the gamut from

proteolytic processing or "shedding" of cell surface protein

ectodomains to cell adhesion, membrane fusion, and intracellular

signaling [11], [13]. They contain modular metalloproteinase,

disintegrin, and cysteine-rich, epidermal growth factor-like

domains, followed in most cases by a transmembrane region and

cytoplasmic domain [11], [13]. One of the best characterized is

tumor necrosis factor-convertase (TACE, ADAM17) [14]. Our

experiments confirmed that a metalloproteinase was required for

smoke-induced amphiregulin release and identified the specific

metalloproteinase as TACE/ADAM 17 [4].

The signaling pathways controlling ADAM function are

presently unclear. Elucidation of the mechanisms that govern

TACE activation and cleavage of EGF family shedding is critical

for the understanding of the regulation of EGFR. The cytoplasmic

tail of TACE contains serine, threonine and tyrosine residues that

represent potential phosphorylation sites. The phosphorylation of

one or more of these sites has been observed in response to diverse

extracellular stimuli [15], [16], [17], [18], but the issue of whether

or not there is a functional link between phosphorylation and

catalytic activity remains controversial. Intriguingly, Grandis and

colleagues have demonstrated that Gastrin releasing peptide

(GRP)/GRP receptor autocrine pathway can transactivate EGFR

head and neck cancer cell lines. This EGFR transactivation is

mediated through GRP-induced TACE phosphorylation (on

serine and threonine residues) and amphiregulin release [19].

Another stimulus known to cause protein shedding by ADAMs is

TPA, a phorbol ester [20], [21]. TPA is a known tumor promoter,

which perturbs intracellular signaling by activating PKC. It has

been shown that PKCe activation is an initial signal in TPA-

induced TACE activation and shedding of TNFa from epidermal

keratinocytes [22]. Taken together, these reports suggest that

phosphorylation by PKC may control TACE activity.

Here we show that TACE phosphorylation is induced by

tobacco smoke in a PKCe-dependent manner and that this is

associated with enhanced TACE activity. In this context, PKC

activation is dependent upon ROS and their downstream effector,

SRC.

Our data identify a novel mechanism regulating TACE

sheddase activity, which may have important implications for

the known roles of TACE in the release of EGFR ligands, cell

hyperplasia and carcinogenesis.

Results

Smoke induces TACE phosphorylation and activation
As described previously, we exposed lung epithelial (NCI-H292)

cells to tobacco smoke condensate for 10 minutes, at which time

TACE-dependent amphiregulin cleavage and phosphorylation of

EGFR was maximal [4]. Our aim in the first set of experiments

was to determine whether TACE activation by smoke was

accompanied by TACE phosphorylation. Figure 1A shows that

smoke induces TACE phosphorylation on serine and threonine

residues, but not tyrosine. TACE phosphorylation was not effected

by exogenous EGF or purified LTA from S. aureus which induces

cleavage of HBEGF in a ADAM-10 dependent manner in lung

cells [23]. We next investigated the possibility that phosphoryla-

tion affected TACE function. Figure 1B shows that the activity of

TACE, immunoprecipitated from smoke-exposed cells, increased

by 3-fold compared to TACE immunoprecipitated from non-

smoke-exposed cells. Moreover, when immunoprecipitated TACE

was dephosphorylated (by alkaline phosphatase) prior to assay, it

lost much of its activity. Thus, tobacco smoke elicits TACE

phosphorylation, which is required for smoke-induced TACE

activity against a synthetic substrate.

Smoke exposure activates PKC
How does smoke induce TACE phosphorylation? Clues can be

found in evidence showing that TPA is a potent activator of TACE

[21], [24] and that TPA exerts its major effects via the activation

of protein kinase C (PKC) [25]. This led us to ask whether PKC

might be part of the signaling cascade initiated by smoke. As

shown in Figure 2A, PKC activity was indeed stimulated by smoke

exposure. Moreover, the PKC inhibitor Bisindolylmaleimide (BIS)

abrogated smoke-induced TACE phosphorylation (Fig. 2B) and

inhibited smoke induced TACE activity (Fig. 2C). In addition,

smoke failed to induce amphiregulin release into the medium in

the presence of BIS (Figs. 2D–E). Thus, activation of PKC is

required for smoke-induced TACE activation and amphiregulin

shedding. In keeping with this data, PKC inhibitor BIS also

blocked smoke-induced phosphorylation of EGFR (Fig. 2F). Of

note, Vehicle control for BIS treatment (i.e., medium containing

0.1% DMSO) was without effect on smoke-induced TACE

phosphorylation/activation, EGFR phosphorylation, PKC activity

or amphiregulin release (Fig. S1).

ROS are required for PKC activation
The PKC superfamily includes six isoforms with regulatory and

catalytic domains that can be activated by 1,2-diacylglycerol

(DAG) produced from receptor-mediated hydrolysis of inositol

phospholipids [26]. However, it has been shown that lipid

hydrolysis and DAG are dispensable for the activation of several

PKC isoforms [27]. These could be activated, instead, by H2O2-

induced tyrosine phosphorylation [26]. Our data in Figure 3A

shows that smoke-induced PKC activation was inhibited by ROS

scavenger dimethylthiourea (DMTU), suggesting that it may be

under regulation from ROS. Consistent with the latter observa-

tion, exogenous ROS also stimulated PKC activity in NCIH292

cells (Fig. S2).

SRC is required in smoke activation of PKC, TACE and
EGFR

The results above suggest that PKC is positioned between ROS

and TACE in the smoke-triggered signaling network, but leaves

open two important questions. First, how do ROS actually

stimulate PKC and secondly, how does PKC stimulate TACE? It

has been shown that H2O2 can stimulate tyrosine phosphoryla-

tion (activation) of PKC via the action of SRC family kinases [28].

In light of our observation that smoke can activate SRC kinase in

an ROS-dependent manner [5] we wondered whether PKC might

be activated by smoke-induced ROS via SRC. Supporting this

hypothesis, we show that the presence of SRC inhibitor PP2

blocked activation of PKC by smoke (Fig. 3A). Consistent with this

was the ability of the PKC inhibitor to block smoke-induced

phosphorylation of EGFR (Fig. S1) and the ability of SRC

inhibitor PP2 to block smoke-induced PKC activation (Fig. 3A).

Furthermore, mouse embryonic fibroblasts (MEFs) null for the

three SRC family members SRC, Yes and Fyn, (SYF cells) did not

phosphorylate EGFR in response to smoke. In contrast, SYF cells

stably transfected with c-SRC showed a robust response (Fig. 3B).

Taken together, the results shown in Figure 3 implicate SRC in

the signaling pathway linking smoke to the phosphorylation of
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EGFR through PKC. The functional importance of PKC, ROS

and SRC to smoke- induced TACE phosphorylation/activation is

evident from the ability of their respective inhibitors to block this

smoke response (Fig. 3C–D). Additionally, these inhibitors

abrogated smoke- induced release of amphiregulin into the

medium (Figs. 3E–F).

Next, we sought to further elucidate the signaling hierarchy

linking ROS, SRC and PKC in the smoke-induced PKC

activation. We observed that SRC phosphorylation on tyrosine-

418 (a reflection of SRC activation) in response to smoke exposure,

was inhibited in the presence of the oxygen radical scavenger

DMTU as well as in the presence of the SRC inhibitor PP2 but

not by the PKC inhibitor BIS (Fig. 4A). This data further supports

that SRC is positioned between ROS and PKC in a smoke-

triggered signaling network. In line with these observations that

smoke-induced ROS generation is SRC independent, we also

show that smoke exposure raised the levels of ROS in the MEFs

cells null for the three SRC family members (SYF cells) (Fig. 4B).

In accordance with these results, exogenous ROS-induced PKC

activation was also abrogated in the presence of the SRC inhibitor

PP2 (Fig. S2).

PKCe isoform is required for smoke-induced activation of
TACE and EGFR

The PKC family of proteins includes 6 isoforms with both a

regulatory and catalytic domain (a, b{1 and 2}, d, e, h, and g)

[29]. Each isoform, when stimulated, transiently binds substrate.

We examined the protein expression pattern of these PKC

isoforms in NCIH292 lung cancer cells and were able to confirm

expression of PKCa, b1, b2, d, e, and h, but not PKCg (Fig. 5A).

We also show that 10 min exposure to smoke or recombinant EGF

had no effect on the protein expression level of the PKC isoforms

or TACE (Fig. 5A). To test whether TACE and these PKC

isoforms can associate either constitutively or upon smoke

Figure 1. Smoke stimulates phosphorylation and activation of TACE. (A) NCIH292 cells were incubated with SFM, smoke containing SFM
(SMK), EGF (10 ng/ml)-containing SFM, or LTA (50 mg/ml)-containing SFM for 10 min. Cell lysates were immunoprecipitated (IP) with anti-TACE
antibody, immunoblotted (IB) with anti-phosphoserine, antiphosphothreonine, anti-phosphotyrosine and anti-TACE antibodies, and visualized by
chemiluminescence. P and M indicate the Pro- and Mature forms of TACE, respectively. (B) TACE activity was measured using the fluorescent
InnoZymeTM TACE activity Kit. NCIH292 cells were incubated with SFM, smoke containing SFM (SMK) for 10 min then harvested. Total cell lysates
were prepared and TACE activity was measured according to the manufacturer’s recommended protocol. RFU is reported per mg protein. To assess
the relevance of phosphorylation on TACE catalytic activity, NCIH292 cells were incubated with phosphatase at the indicate concentrations for 2 h
prior to stimulation with smoke (SMK) for 10 min. Double asterisks indicate significantly different from SFM (p,0.01).
doi:10.1371/journal.pone.0017489.g001
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Figure 2. Protein Kinase C (PKC) is required for Smoke-induced TACE activation. (A) PKC activity was detected by using PepTag(H) assay, a
non-radioactive detection method of Protein Kinase C. NCIH292 cells were incubated with SFM, EGF (10 ng/ml)-containing SFM, or smoke containing
SFM (SMK) for 10 min then harvested. Cell extracts samples for PKC assay were prepared following the protocol recommended by the manufacturer.
Detection of PKC activity in cell extract was carried out according to the manufacturer’s recommended protocol. (+) indicates anode and (2) indicates
cathode. (B) NCIH292 cells were incubated with 5 mM of the general PKC inhibitor, bisindolylmaleimide (BIS), for 2 h prior to stimulation with smoke
(SMK) for 10 min. Cell lysates were immunoprecipitated (IP) with anti-TACE antibody, immunoblotted (IB) with anti-phosphoserine, antipho-
sphothreonine, and anti-TACE antibodies, and visualized by chemiluminescence. (C) To assess the relevance of PKC activity on TACE catalytic activity,
NCIH292 cells were incubated with BIS at the indicate concentrations for 2 h prior to stimulation with smoke (SMK) for 10 min. Total cell lysates were
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exposure, we stimulated NCIH292 cells with either medium or

smoke followed by co-immunoprecipitation and immunoblotting

with antibodies directed against either TACE or each of the six

PKC isoforms (a, b1, b2, d, e, and h). As shown in Figure 5B,

smoke exposure induced TACE and PKCe association, Where

only a PKCe specific antibody stained a protein band in the

immunoprecipitated TACE derived from smoke exposed cells and

only PKCe immunoprecipitates, derived from smoke exposed

cells, stained for TACE (Fig. 5C).

Many PKC isoforms including PKCe are mainly localized in

the cytosolic fraction of unstimulated cells and undergo translo-

cation to the cell membranes in activated cells [30]. Treatment of

cultured NCIH292 with smoke for 10 min resulted in increased

membrane associated PKCe, accompanied with a decreased

cytosolic concentration of PKCe. However, smoke was without

effect on the subcellular localization of PKCa or PKCd (Fig. 5D).

As positive control, cells were stimulated for 10 min with phorbol

12-myristate 13-acetate (PMA) [31]. PMA induced changes in the

subcellular localization of PKCe and PKCa but was without effect

on the subcellular localization of PKCd and PKCh (Fig. 5D).

These results strongly suggest that PKCe is the PKC isoform

required for smoke-induced activation of TACE. More convinc-

ingly, PKCe, but not PKCd or PKCa knockdown cells failed to

show phosphorylation of TACE following smoke exposure

(Figs. 5E–F). This decrease in TACE phosphorylation also

coincided with a drastic reduction in TACE activity in smoke

induced PKCe knockdown cells (Fig. 5G). Furthermore, PKCe
knockdown inhibited smoke-induced EGFR phosphorylation

(Fig. 5H). PKCd or PKCa knockdown had no effect on smoke-

induced TACE activity or EGFR phosphorylation (Figs. 5G–H).

PKCe knockdown suppressed smoke-induced cell growth
We have previously shown that EGFR phosphorylation

mediates smoke-induced lung cell hyperplasia in a TACE

dependent manner [4], we therefore sought to investigate the role

of PKCe in this response to smoke exposure. We employed a

previously validated morpholino-antisense siRNA strategy [4] to

achieve knockdown of TACE or ADAM10 in H292 cell lines

(Fig. 6A). We found that the broad range PKC inhibitor, BIS

reduced smoke-induced cell hyperproliferation in lung cells to a

level comparable to that induced by TACE knockdown (Fig. 6B).

ADAM-10 knockdown was without effect on this smoke response

(Fig. 6B). Consistent with our previous data PKCe knockdown

inhibited smoke- induced cell hyperproliferation in lung cells

whereas no difference in smoke- induced proliferation was

observed between PKCa or PKCd knockdown cells and control

cells (mock shRNA knockdown or parental non transduced cells)

(Fig. 6B). These findings demonstrate that PKCe promotes cell

growth in smoke- exposed lung cells.

Importantly, the addition of the PKC general inhibitor (BIS) to

the culture medium of TACE knockdown H292 cells produced no

additive inhibition of smoke- induced cell growth (Fig. 6C),

consistent with a model in which PKC directly regulates

activation. In agreement with these results, pretreatment of PKCe
knockdown cells with the MMP and TACE inhibitor (TAPI)

produced no further inhibition of smoke- induced cell growth

(Fig. 6C). Conversely, TAPI inhibited smoke-induced cell growth

in PKCa and PKCd knockdown cells (data not shown).

Smoke exposure induces TACE phosphorylation in a
PKC-dependent manner in human primary bronchial
epithelial cells

Since H292 are carcinoma cell line, we then asked whether the

changes observed in H292 cells following 10 minutes exposure to

smoke extract could be reproduced in differentiated normal

primary human bronchial epithelial cells (HBE). As shown in

Figure 7A, TACE phosphorylation was indeed stimulated by

10 min smoke exposure of differentiated HBE cells in air-liquid

interface cultures. Moreover, smoke ability to stimulate TACE

phosphorylation in HBE cells was also inhibited by the PKC

inhibitor (BIS) (Fig. 7A). In addition, 10 min smoke exposure also

induced EGFR phosphorylation which was blocked by PKC

inhibitor Bis (Fig. 7B). Furthermore, smoke induced amphiregulin

release into the medium of cultured HBE cells. This Smoke-

induced amphiregulin shedding was also abrogated in the presence

of Bis (Fig. 7C). Therefore, activation of PKC is also required for

smoke-induced TACE and EGFR activation as well as amphir-

egulin shedding in HBE cells. In keeping, 10 min smoke exposure

stimulated PKC activity in HBE cells (Fig. 7D). In agreement with

the observations shown above with H292 cells, the smoke-induced

PKC activity in HBE cells was also inhibited in the presence of the

oxygen radical scavenger DMTU as well as in the presence of the

SRC inhibitor PP2 (Fig. 7C). Finally, as observed with H292 cells,

10 min smoke exposure also induced TACE and PKCe
association in HBE cells (Fig. 7E). Taken together, these data

show that in primary human bronchial epithelial cells, tobacco

smoke exposure also elicits TACE activation in a PKC dependent

manner.

Discussion

Previously, we reported that hyperproliferation of lung cells

occurs in response to smoke exposure and that this hyperplasia of

lung cells is elicited by smoke-induced activation of EGFR [4]. We

identified cytoplasmic signaling events induced by tobacco smoke

in lung epithelial cells that included oxygen radical-induced

cleavage of amphiregulin by TACE and transactivation of EGFR.

Smoke-induced binding of amphiregulin to EGFR stimulated

epithelial cell proliferation and changes in gene expression within a

period of minutes to hours. In addition, previous reports have

confirmed that TACE-mediated transactivation of EGF receptors

by amphiregulin is important for tumor cell growth and migration

[32]. However, to date, the mechanisms underlying the activation

of ADAMs are unknown. Understanding these mechanisms are

not only important for a basic understanding of ‘‘sheddases’’, but

could also explain smoke-induced TACE activation in the early

stages of lung cancer.

The regulation of ADAMs function is complex, involving

intracellular proteolytic maturation as well as trafficking to and

from the cell membrane [8], [10]. Recent reports have speculated

that the cytoplasmic domains of ADAMs might be involved in

regulating function or localization to specific sub-cellular struc-

prepared and TACE activity was measured as described in Fig. 1. Double asterisks indicate significantly different from SFM (p,0.01). (D) Following
incubation with SFM, smoke containing SFM (SMK), cell culture medium was collected and incubated with heparin-Sepharose to precipitate EGFR
ligands. Immunoblot was carried out with amphiregulin specific antibody. (E) An amphiregulin ELISA was performed on cell culture media according
to the manufacturer’s instructions. Cumulative results are shown from 3 independent experiments. (F) To assess the relevance of PKC activity on SMK-
induced EGFR activation, cell lysates were immunoprecipitated (IP) with anti-EGR antibody, immunoblotted (IB) with anti-phosphotyrosine, and anti-
EGFR antibodies, and visualized by chemiluminescence.
doi:10.1371/journal.pone.0017489.g002
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tures. Although there is great sequence variability between the

cytoplasmic domains of different ADAMs [14], sequences for

specific family members are similar across species, arguing that

they have important conserved functions. The cytoplasmic domain

of many ADAM contains serine, threonine and tyrosine residues,

which could be substrates for cytoplasmic kinases. Several studies

have suggested that phosphorylation of ADAM cytoplasmic tails

may (directly or indirectly) modulate the ability of ADAMs to

cleave physiological substrates [16], [17], [19], [33].

In the present study, we demonstrate for the first time that

smoke induces TACE phosphorylation at serine/threonine

residues in its cytoplasmic domain, and that TACE phosphory-

lation is required for TACE to cleave EGFR ligands and induce

cell hyperproliferation. Phosphorylation of the cytoplasmic tail

may induce a conformational change resulting in the exposure of

the catalytic zinc ion and the active site pocket making them

accessible for substrate binding and thus regulating catalytic

activity.

Taking into consideration that the cytoplasmic tail of ADAMs

contains PxxP motifs that are binding sites for SH3 domain-

containing proteins [34], it is also possible that structural changes

induced by phosphorylation, could also lead to changes in the

presentation of SH3-binding domains and TACE interaction with

SH3 domain-containing proteins. Such interactions have been

previously suggested to affect maturation of ADAMs and their

localization to a specific membrane domain at the cell surface [35].

Moreover, a phosphorylated cytoplasmic tail could also impact the

association of TACE with cytoplasmic proteins by forming SH2

attachment sites for SH2 domain-containing proteins [18].

Consequently, TACE may serve adaptor functions to assemble

complexes of proteins at critical sites of functional activity.

However, this appears not to be a general mechanism, because

Figure 4. Activation of SRC kinase by smoke is dependent on ROS. (A) NCIH292 cells were incubated for 2 h with oxygen radical scavenger
dimethylthiourea (DMTU) (50 mM), or SRC kinase inhibitor (PP2) (10 mM) or PKC inhibitor (BIS) (5 mM), prior to stimulation with smoke (SMK) for
10 min. Cell extracts samples were immunoprecipitated (IP) with anti-SRC antibody, immunoblotted (IB) with anti-phosphotyrosine-418 SRC(py418)
reflecting SRC activation, and anti-SRC antibodies, and visualized by chemiluminescence. (B) SYF cells and SYF+SRC cells were loaded with 10 mM
H2DCFDA for 30 min prior to stimulation with SFM, smoke containing SFM (SMK), or H2O2-containing SFM (H2O2) for 10 min. Fluorescence indicates
the presence of ROS.
doi:10.1371/journal.pone.0017489.g004

Figure 3. Reactive Oxygen Species (ROS) and SRC kinase are required for both Smoke-induced Protein Kinase C (PKC) activation
and TACE activation. (A) NCIH292 cells were incubated for 2 h with oxygen radical scavenger dimethylthiourea (DMTU) (50 mM), or SRC kinase
inhibitor (PP2) (10 mM) or PKC inhibitor (BIS) (5 mM), prior to stimulation with smoke (SMK) for 10 min. Cell extracts samples were assessed for PKC
activity as described in Fig. 2. (B) SYF cells and SYF+ SRC cells were incubated with SFM, smoke containing SFM (SMK), or EGF (10 ng/ml)-containing
SFM for 10 min. Cell lysates were immunoprecipitated (IP) with anti-EGR antibody, immunoblotted (IB) with anti-phosphotyrosine, and anti-EGFR
antibodies, and visualized by chemiluminescence. (C) NCIH292 cells were incubated for 2 h with antioxidants dimethylthiourea (DMTU) (50 mM), or
SRC kinase inhibitor (PP2) (10 mM) or PKC inhibitor (BIS) (5 mM), prior to stimulation with smoke (SMK) for 10 min. Cell extracts samples were assessed
for TACE phosphorylation and (D) TACE catalytic activity as described in Fig. 2. Cell culture medium was collected from the latter cells and assayed for
amphiregulin release by (E) immunoblotting assay and (F) ELISA assay as described in Fig. 2.
doi:10.1371/journal.pone.0017489.g003
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the cytoplasmic tail of TACE is dispensable for stimulated

shedding of other substrates, such as TNF-a [36], [37]. Although,

it is possible that the deletion of the TACE cytoplasmic domain

and overexpression of this mutated form may result in its

mislocalization. Mislocalized TACE may act in the processing of

pro-amphiregulin.

Furthermore, our data show that TACE phosphorylation

triggered in smoke-exposed cells is ROS-dependent. This is in

agreement with our earlier work demonstrating that ROS

production was an early event in smoke-exposed cells and that

ROS were required for smoke’s TACE-dependent ability to

stimulate amphiregulin shedding and thereby phosphorylate

EGFR [4]. Although it has been shown that ROS can activate

TACE directly via oxidation of a cysteine sulfhydryl group in the

prodomain, [24] such a mechanism would not be expected to

affect the function of TACE at the cell surface, whose prodomain

would have been removed by furin in the Golgi apparatus prior to

membrane translocation. Instead, our data shows that ROS are

required for protein kinase C (PKC) activation by smoke. This

ROS-induced activation of PKC is required for TACE-dependent

amphiregulin shedding. It has been speculated that PKC helps to

recruit ADAMs to specific sites on the plasma membrane, and

upon phosphorylation/activation of the ADAMs, EGFR ligands

shedding occurs. In addition we show that smoke-induced PKC

activation is mediated by SRC kinase, a finding consistent with a

recent report linking H2O2 with SRC kinase [38]. Moreover,

another study has shown that the tyrosine phosphorylation of PKC

by ROS is mediated by SRC kinase [26], [39], [40]. One possible

scenario by which SRC kinase is activated is by the activation of

Protein tyrosine phosphatases (PTP) as they carry, highly reactive

cysteine residues in their catalytic domains and are sensitive to

ROS [41]. Inactivation of PTP leads to elevated levels of protein

tyrosine phosphorylation on cellular proteins such as SRC kinases

and their subsequent activation. Activated SRC kinase could

phosphorylate/activate PKC kinase which in turn activates TACE

protein. However, a most recent report revealed that mitochon-

drial ROS regulate ATP-induced TACE activation and TGFa
shedding in CHO cells [42]. In contrast to our findings, this ATP-

induced TGF-a shedding was independent of the cytoplasmic

NADPH oxidase complex, Src, PKC, and MAPK signaling.

Our present findings provide evidence that the PKC isoform

involved in TACE activation is PKCe and that this regulation

requires a direct interaction between PKCe and TACE. In

agreement with this, TACE activation is suppressed by the

selective inhibition of PKCe, but not of PKCd or PKa. One

possible role for PKCe in the triggering of the TACE activation

and the shedding of EGFR-ligand is the recruitment of TACE to

pro-amphiregulin. If these proteins localize at different membrane

domains under steady-state conditions, the movement of TACE to

a site that allows interaction with other proteases or with pro-

amphiregulin itself might be essential for shedding. The binding

and the subsequent phosphorylation of TACE by PKCe may

trigger this spatial change in TACE.

The results of the present study, taken together with our

previous results [4] (Fig. 8), provide a missing link into the

understanding of how smoke stimulates TACE, EGFR and

hyperplasia in lung cells. By analogy with previous work showing

that PKCe overexpression and activation by PMA mediates

TACE induced-EGFR ligand release and promotes development

of skin tumor in mice [22] and also based on the fact that

enhanced PKCe activation and expression are required for non

small cell lung cancer survival [43], [44], it is conceivable that the

stimulation of PKCe by ROS in the smoke-exposed lung may be a

major factor in the step of predisposing smokers to develop lung

cancer.

Materials and Methods

Materials
NCI-H292 cells (mucoepidermoid lung carcinoma), SV40 large

T antigen Immortalized embryonic mouse fibroblasts SYF

(deficient for SRC, Yes, and Fyn) cells, and SYF+SRC (SFY cells

reintroduced with c-SRC) were obtained from American Type

Culture Collection (ATCC) (Manassas, VA). All Cell lines were

cultured under conditions recommended by the vendor. All tissue

culture media and antibiotics were obtained from Invitrogen

(Carlsbad, CA) or the University of California, San Francisco, cell

culture facility. General PKC (classical and novel) inhibitor

bisindolylmaleimide (BIS), SRC kinase inhibitor (PP2) were

purchased from Calbiochem (San Diego, CA). Reactive oxygen

species (ROS) inhibitor N.N’-dimethylthiourea (DMTU) was

purchased from Sigma (St. Louis, MO). MMPs and TACE

inhibitor (TAPI-1) was purchased from Santa Cruz Biotechnology

(Santa Cruz, CA). Antibodies to EGFR ligands were purchased

from R&D Systems, Inc. (Minneapolis, MN). Validated siRNAs to

human PKCe (Cat # sc-36251) [45], human PKCa (Cat# sc-

36243) [46], and human PKC d (Cat# sc-36253) [47] were

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 2,7

Dichlorodihydrofluorescein diacetate, H2DCFDA, a cell-perme-

able substrate for fluorimetric detection of ROS was purchased

from Molecular Probes (Eugene, OR). Antibody directed against

the cytoplasmic domain of tumor necrosis factor a-converting

enzyme (TACE) was from Imgenex (San Diego, CA). All other

antibodies were purchased from Santa Cruz Biotechnology (Santa

Cruz, CA). LipofectAMINE was purchased from Invitrogen.

Purified lipoteichoic acid (LTA) from Staphylococcus aureus and

all other reagents (Unless indicated otherwise) were purchased

from Sigma.

Figure 5. PKCe mediates SMK-induced TACE and EGFR phosphorylation. Smoke stimulates phosphorylation and activation of TACE. (A)
NCIH292 cells were incubated with SFM, smoke containing SFM (SMK), or EGF (10 ng/ml)-containing SFM for 10 min. (A) Cell lysates were separated
by electrophoresis and immunoblotted with anti-TACE or anti-isoformspecific PKC antibodies as indicated. Actin was used as protein level loading
control. (B) Cell extracts samples were immunoprecipitated (IP) with anti-TACE antibody, and immunoblotted (IB) with anti-isoformspecific PKC or
anti-TACE antibodies as indicated. (C) Cell extracts samples were immunoprecipitated (IP) with anti-isoformspecific PKC, and immunoblotted (IB) with
anti-TACE or anti-isoformspecific PKC antibodies as indicated. (D) Cultured NCIH292 cells were treated for 10 min with SFM, SMK or PMA (400 nM).
Cell lysates were fractionated into a membrane and a cytosolic fractions then separated by electrophoresis and immunoblotted with anti-
isoformspecific PKC antibodies as indicated. (E) NCIH292 cells were transfected with isoformspecific PKC siRNAs as indicated prior to stimulation with
smoke-containing SFM, and immunoblotted with anti-isoformspecific PKC antibodies. Actin is immunoblotted as a loading control. NCIH292 cells or
NCIH292 knockdown for PKCe or PKCa or PKCd were incubated with SFM, smoke containing SFM (SMK), or EGF (10 ng/ml)-containing SFM for
10 min. Cell extracts samples were either (F) immunoprecipitated (IP) with anti-TACE antibody, and immunoblotted (IB) with anti-phosphoserine or
anti-TACE antibodies, or (G) prepared and TACE activity was measured as described in Fig. 1. (Double asterisks indicate significantly different from
SFM (p,0.01)), or (H) immunoprecipitated (IP) with anti-EGFR antibody, and immunoblotted (IB) with anti-phosphotyrosine or anti-EGFR antibody,
antibodies as indicated.
doi:10.1371/journal.pone.0017489.g005
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Figure 6. Smoke stimulates PKCe and TACE-dependent proliferation in NCIH292 cells. NCIH292 cells were transfected with 2 mM solutions
of morpholino antisense oligonucleotides as indicated prior to stimulation with smoke-containing SFM. (A) Cell lysates were immunobloted with anti-
TACE or anti-ADAM10 antibodies. Actin was immunoblotted as a loading control; p indicates pro-enzyme and m indicates mature enzyme. (B)
NCIH292 cells (Control) or NCIH292 knockdown for TACE or ADAM10 or PKCe or PKCa or PKCd were incubated with SFM, smoke containing SFM
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Smoke Exposures
Smoke particulates were generated in specially designed animal

exposure chambers operated by Dr. Kent Pinkerton at the

University of California, Davis [48]. Pall Gelman PallflexH
borosilicate filters (Fisher) were inserted in line during the

operation of the chambers. The total suspended smoke particles

deposited on each filter were calculated by weighing filters before

and after smoke exposure. Filters were mailed to our laboratory at

the University of California, San Francisco, where they were

stored at 4uC until use. Prior to each experiment, we incubated

filters in a volume of SFM to provide a final concentration of

1.0 mg of smoke particulate per ml of SFM. The filters were

rotated in this medium at 4uC for 3 days prior to use.

Immunoprecipitation and Immunoblotting
Immunoprecipitation assays were performed as described

previously [4], [23]. Briefly, following treatment with serum free

medium containing cigarette smoke extract (SMK), LTA, EGF or

control serum free medium (SFM), cells were lysed in 20 mM Tris-

HCl, 150 mM NaCl, 0.5% Triton X-100, 0.1% SDS, 1 mM

EDTA, and 1 mM sodium orthovanadate. The samples were pre-

cleared by centrifugation at 10,000 rpm for 10 min at 4uC, and

total protein concentrations were determined using the Bradford

protein assay (BioRad, Hercules, CA). For detection of ADAM (a

disintegrin and metalloproteinase) proteins, we used lysates from

cells that had or had not been transfected with morpholino

antisense oligonucleotides. Lysis buffer contained 10 mM 1,10-

ortho-phenanthroline to prevent autolysis of the ADAMs. For

detection of amphiregulin (AR) shed into cell culture medium, we

concentrated the medium 10X using Amicon Centriplus filters

with a cutoff of 3 kDa as previously described [4]. For

determination of the phosphorylation state of TACE or EGFR,

we incubated equal amounts of lysate with anti-TACE or EGFR

antibodies and Protein A-agarose beads overnight at 4uC. The

lysate-antibody-bead complex was spun down and washed three

times with lysis buffer. Following the final wash, 40 ml of SDS gel-

loading buffer was added, the mixture was heated at 100uC for

3 min, and proteins were resolved by SDS-PAGE. For immuno-

blot analysis of the samples listed above, proteins were transferred

to nitrocellulose membranes using the Bio-Rad Mini Trans-Blot

electrophoretic transfer cell. Membranes were blocked for 1 h at

room temperature in phosphate-buffered saline containing 0.1%

Tween 20 (PBS/Tween) and supplemented with 5% BSA, then

washed with PBS/Tween and incubated with the appropriate

antibody overnight at 4uC. After removing primary antibody with

several washes of PBS/Tween, the blot was placed in the

appropriate horseradish peroxidase-conjugated secondary anti-

body for 1 hr. After several washes, the antibody-antigen

complexes were visualized using the ECL chemiluminescence

detection system (GE healthcare Piscataway, NJ).

Cell-free, TACE catalytic activity assay
NCIH292 cells were grown to semiconfluence in T75 tissue

culture flask then starved in serum free medium for 24 h followed

by stimulation with SMK for 10 min. The medium was then

removed and cells were washed in PBS. Total cell lysates were

prepared using CytoBusterTM Protein Extraction Reagent (Cat.

No. 71009) in the absence of protease inhibitors. The enzymatic

activity of TACE was quantified using the InnoZyme TACE

activity kit (Calbiochem), a specific and sensitive assay for

measuring human TACE activity in cell lysates and biological

samples [49]. The enzymatic activity of TACE in 1 mg protein of

SMK or SFM treated cell lysate was measured following the

detailed protocol recommended by the manufacturer for assessing

activity in biological samples. The effect of phosphatase on cell-

free TACE catalytic activity was tested according to the

manufacturer recommended protocol modifications for inhibitor

screening also [49]. Phosphatase was added to the solution at the

indicate concentrations. Fluorescence emission (excitation

320 nm/emission 395 nm) upon cleavage of the quenched

fluorogenic peptide (TACE substrate) was monitored with a

FLUOstar OPTIMA plate reader. The results are displayed in

relative fluorescence units (RFU) and the fluorescence from each

sample is corrected by subtracting the fluorescence of the Blank.

The mean fluorescence for each sample is calculated from

triplicate readings to obtain the final RFU.

ADAM10 and TACE knockdown by Morpholino Antisense
Oligonucleotides

NCIH292 cells were transfected according to the manufactur-

er’s instructions with 2 mM solutions of morpholino antisense

oligonucleotides (Gene Tools LLC, Philomath, OR) correspond-

ing to ADAM10, 59 AATTAACACTCTCAGCAACACCATC-

39; or ADAM 17, 59 TCAGGAATAGGAGAGACTGCCT-39.

Thirty h later, cells were lysed for ADAM immunoblot or

stimulated with SMK or EGF. ADAMs immunoblots were

normalized for loading differences using b-actin. Stimulated cells

were used for immunoprecipitation and phospho-EGFR immu-

noblot as described above.

Protein kinase C (PKC) activity assay
PKC activity was detected by using PepTag(H) Assay (Promega,

WI, USA), a non-radioactive detection method of Protein Kinase

C. Cell extracts samples for PKC assay were prepared following

the protocol recommended by the manufacturer. The reaction

mixture, in a final volume of 25 ml, consisted of 5 ml reaction

buffer, PepTag C1 (PKC substrate) 5 ml (0.4 mg/ml), PKC

activator solution (DG) 5 ml, peptide protection solution 1 ml and

cell extract sample 9 ml. Phosphorylation reaction was allowed to

continue for 30 minutes, then 25 ml reaction mixture was

subjected to electrophoresis on a 0.8% agarose gel at 100 V for

about 20 minutes. After electrophoresis, the PepTag C1 peptides

which were phosphorylated and non-phosphorylated were sepa-

rated, phosphorylated PepTag C1 peptide with negative electricity

migrated toward the anode (+), but nonphosphorylated PepTag

C1 peptide with positive electricity migrated toward cathode (2),

the gel was photographed. Electrophoresis bands on anode

represented PKC activity and were analyzed quantitatively.

PKC isoforms knockdown with siRNAs
H292 cells were cultured in RPMI-1640 medium with 10%

FBS, to a 60% density then transfected with PKC isoforms (PKCe,
PKCa or PKCd) siRNAs according to the manufacturer’s

instructions (Santa Cruz Biotechnology, Santa Cruz, CA). Before

(SMK) for 10 min. Control cells were incubated for 2 h with PKC inhibitor (BIS) (5 mM), prior to stimulation with smoke (SMK). All cells were assayed for
cell growth, using cell Titer assay, 48 h after incubation with SFM or smoke-containing SFM. (C) NCIH292 cells (Control) or NCIH292 knockdown for
TACE or PKCe were incubated for 2 h with PKC inhibitor (BIS) (5 mM), or TACE and metalloprotease inhibitor (TAPI) (10 mM) as indicated prior, to
stimulation with smoke-containing SFM. Cells were assayed for cell growth, using cell Titer assay, 48 h after incubation with SFM or smoke-containing
SFM. Each point in (B) and (C) represents the mean 6 S.D of 6 replicates. Double asterisks indicate significantly different from SFM (p,0.01).
doi:10.1371/journal.pone.0017489.g006

ADAM-17 Mediates Smoke-Induced Cell Hyperplasia

PLoS ONE | www.plosone.org 11 March 2011 | Volume 6 | Issue 3 | e17489



Figure 7. TACE and EGFR activation by smoke in normal primary human bronchial epithelial cells (HBE) is dependent on PKC.
Differentiated, pseudostratified HBE cells cultured under air-liquid interface (ALI) were incubated for 2 h with PKC inhibitor (BIS) (5 mM) or medium
containing vehicle control (0.1% DMSO), prior to stimulation with SFM or smoke containing SFM (SMK) for 10 min. Cell extracts samples were
assessed for (A) TACE phosphorylation and (B) EGFR phosphorylation as described in Figs. 2 and 3. (C) Cell culture medium was collected from the
latter cells and assayed for amphiregulin release by ELISA assay as described in Fig. 2. Double asterisks indicate significantly different from SFM
(p,0.01). (D) HBE cells in air-liquid interface cultures were incubated for 2 h with oxygen radical scavenger dimethylthiourea (DMTU) (50 mM), or SRC
kinase inhibitor (PP2) (10 mM), or medium containing vehicle control (0.1% DMSO) prior to stimulation with smoke (SMK) for 10 min. Cell extracts
samples were assessed for PKC activity as described in Fig. 2. (E) HBE cells in air-liquid interface cultures were incubated with SFM or smoke
containing SFM (SMK) for 10 min. Cell extracts samples were immunoprecipitated (IP) with anti-TACE antibody or anti-PKCe and immunoblotted (IB)
with anti-PKCe or anti-TACE antibodies as indicated.
doi:10.1371/journal.pone.0017489.g007
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the transfection, medium was changed, and new RPMI-1640

medium without FBS and antibiotics was added. The optimal

transfection method was the same as previously described [45],

[46], [47]. 6 hours after transfection, the medium was changed to

new medium with 10% FBS. Thirty hr later, cells were lysed for

PKC isoforms immunoblot or stimulated with SMK. PKC

isoforms immunoblots were normalized for loading differences

using b-actin.

Effect of SMK treatment on distribution of PKC isoforms
To determine translocation or distribution of PKC, particulate

and cytosol fractions were prepared. Cultured H292 cells were

treated for 10 min with SFM, SMK or PMA (400nM), upon

termination of the experiment, cells were placed on ice, scraped

into homogenization buffer (10 mM Tris} HCl, pH 7.4, 250 mM

sucrose, 5 mM MgCl2, 50 mg/ml aprotinin, 50 mg/ml leupeptin)

(modified from [50], [51]). Cells were homogenized using a

Dounce tissue grinder. Cell homogenates were centrifuged at

1,0006g for 10 min at 4uC to discard unbroken cells and nuclei.

Supernatants were subjected to additional centrifugation at

10,0006g for 25 min at 4uC. The resulting pellets were

resuspended in homogenization buffer and designated as the

heavy-membrane fraction. The supernatants were further centri-

fuged at 150,0006g for 90 min at 4uC and collected as the

cytosolic fraction. The protein concentrations in the cytosol

(supernatant) and membrane fractions were determined using a

Bradford assay. Samples were concentrated using the deoxycho-

late/trichloroacetic acid precipitation method and reconstituted in

Laemmli sample buffer to yield 3 mg/ml protein. A 200 mg

aliquot of total protein (cytosolic or membrane fractions) was

subjected to SDS/PAGE; proteins were transferred to a PVDF

membrane, incubated with anti-PKC isoforms antibodies and

developed as described above.

Enzyme-linked immunosorbent assay (ELISA) for
Amphiregulin Shedding

H292 cells were seeded into T75 flask and incubated for 18 h.

Upon serum deprivation for 24 h, the medium was then removed

and cells were washed intensively in PBS and culture medium

followed by stimulation with fresh serum-free medium (SFM) or

SMK-containing medium for 10 min. The cell medium was then

collected for analysis. As a control, cell medium was collected

immediately after it was added (t = 0). In some experiments cells

were subjected to pre-incubation with TACE/MMP inhibitor

(GM6001, 20 mg/ml), PKC inhibitor (BIS), SRC kinase inhibitor

(PP2) or ROS inhibitor (DMTU, mm) or the appropriate vehicle

control 2 hours prior to stimulation with SMK-containing

medium. The release of amphiregulin (AR) into the culture

medium was measured by sandwich ELISA (R&D Systems) using

monoclonal anti-AR capture antibody (MAB262) and biotinylated

polyclonal detection antibody (BAF262). Plate preparation and

assay procedure were performed according to the manufacturer’s

recommendations using tetramethyl benzidine as a substrate.

The absorbance at 455 nm was read with a reference wavelength

of 650 nm using an ELISA plate reader. AR concentrations

for each sample were calculated after generating a standard

curve using the dilution series of human recombinant AR

protein.

Detection of Reactive Oxygen Species (ROS) Production
Mouse embryonic fibroblasts (MEFs) null for the three SRC

family members SRC, Yes and Fyn, (SYF cells) were grown on

coverslips were incubated for 30 min prior to SMK or SFM

exposure with 10 mM 2,7-Dichlorodihydrofluorescein diacetate,

H2DCFDA (Molecular Probes, Eugene, OR) as previously

described [4]. Fluorescent images were captured using a Nikon

Eclipse E600 microscope equipped with epifluorescence optics and

a Zeiss Axiocam digital camera.

SRC kinase activation
NCIH292 cells were grown to semiconfluence in 35 mm culture

dishes then starved in serum free medium for 24 h then cells were

preincubated with PP2 (10 mM), BIS or DMTU for 2 h prior

followed by stimulation with SMK for 10 min. The medium was

then removed and cells were washed in PBS. Total cell lysates

were prepared as described above. The lysates were subjected to

12% polyacrylamide gel electrophoresis (SDS-PAGE), transferred

to a PVDF membrane and blotted with specific antibody for

phosphorylated SRC at Tyr-416. Blots were then stripped and

reprobed using specific antibodies directed total SRC.

Figure 8. Model for the tobacco smoke-induced transactivation of EGFR via TACE activation. This model combines our earlier results on
Smoke-induced signaling in epithelial cells [4] with results from this study. EGFR undergoes phosphorylation in response to tobacco smoke. TACE
phosphorylation/activation is triggered in smoke-exposed lung cells by the ROS-induced activation of PKCe through the action of SRC kinase. Smoke
–induced TACE activation leads to amphiregulin release, EGFR activation and cell hyperproliferation.
doi:10.1371/journal.pone.0017489.g008
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Cell growth assays
Cell growth was determined by Cell Titer Blue cell viability

assay (Promega, Madison, WI). Briefly, 3000 cells of H292 control

or H292 Knockdown for TACE, PKCe or PKCd, were seeded per

well of a 96 well plate. Cultures were maintained in a 37uC
incubator in a humidified atmosphere of 5% CO2. Medium was

removed and replaced with fresh medium every 2 days. PKC

inhibitor BISindolylmaleimide (BIS) was added on day 0, 2 Hr

prior to a 2 Hr treatment with serum-free medium (SFM) or

smoke-containing medium and replenished at the time of medium

change every 2 days. After 48 Hr of incubation at 37uC, counts of

viable cells were determined with the Cell Titer Blue assay

according to the manufacturer’s instructions.

Culture of HBE Cells
Primary human airway epithelial cells (HBE) were obtained

from Clonetics (San Diego, CA) and were cultured under

conditions recommended by the vendor. Primary HBE cells were

plated 16105 cells/cm2 onto Transwell polycarbonate mem-

branes, 0.4-mm pore diameter; Corning, Inc., NY, precoated with

human placental collagen (15 mg/cm2; Sigma-Aldrich, St. Louis,

MO). Cells were grown in defined ALI medium at an air liquid

interface producing highly differentiated and functional replicas of

the airway epithelium for approximately 15 days [52], [53]. As

described above for NCIH292 cells, following a 10 min treatment

of HBE cells with serum-free medium (SFM) or smoke-containing

medium (SMK), cell extract were assessed for TACE and EGFR

phosphorylation, PKC activity and co-localization of TACE with

PKCe. Also, cell culture medium was collected from the latter cells

and assayed for amphiregulin release as described above.

Statistical analysis
Student’s t-test was used to compare data between two groups.

Values are expressed as mean 6 SD of at least triplicate samples.

P,0.05 was considered statistically significant.

Supporting Information

Figure S1 Smoke-induced changes of PKC activity and
TACE activity in NCIH292 are not affected by a 2-hr

incubation with vehicle (0.1% DMSO) used for inhibi-
tors (DMTU, PP2 and BIS) studies. (A) NCIH292 cells were

incubated or not with vehicle control (0.1% DMSO) for 2 h prior

to stimulation with smoke (SMK) for 10 min. Cell extracts samples

were assessed for TACE phosphorylation, EGFR phosphorylation

and PKC activity as described in Figs. 2 and 3. (B) NCIH292 cells

were incubated with 5 mM of the general PKC inhibitor,

bisindolylmaleimide (BIS) or vehicle control (0.1% DMSO) for

2 h prior to stimulation with smoke (SMK) for 10 min. Total cell

lysates were prepared and TACE activity was measured as

described in Fig. 1. (C) Cell culture medium was also collected

from the latter cells and assayed for amphiregulin release by

ELISA assay as described in Fig. 2. Double asterisks indicate

significantly different from SFM (p,0.01).

(TIFF)

Figure S2 Exogenous Reactive Oxygen Species (ROS)
stimulate PKC activity in SRC dependent manner.
NCIH292 cells were incubated for 2 h with SRC kinase inhibitor

(PP2) (10 mM) or vehicle control (0.1% DMSO), prior to

stimulation with SFM, or H2O2-containing SFM (H2O2) for

10 min. Cell extracts samples were assessed for PKC activity as

described in Fig. 2.

(TIFF)
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