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Abstract

The progression of many human neurodegenerative disorders is associated with an accumulation of alpha-synuclein. Alpha-
synuclein belongs to the homologous synuclein family, which includes beta-synuclein. It has been proposed that beta-
synuclein may be a natural regulator of alpha-synuclein. Therefore controlling beta-synuclein expression may control the
accumulation of alpha-synuclein and ultimately prevent disease progression. The regulation of synucleins is poorly
understood. We investigated the transcriptional regulation of beta-synuclein, with the aim of identifying molecules that
differentially control beta-synuclein expression levels. To investigate transcriptional regulation of beta-synuclein, we used
reporter gene assays and bioinformatics. We identified a region 21.1/20.6 kb upstream of the beta-synuclein translational
start site to be a key regulatory region of beta-synuclein 59-promoter activity in human dopaminergic cells (SH-SY5Y). Within
this key promoter region we identified a metal response element pertaining to a putative Metal Transcription Factor-1 (MTF-
1) binding site. We demonstrated that MTF-1 binds to this 59-promoter region using EMSA analysis. Moreover, we showed
that MTF-1 differentially regulates beta-synuclein promoter binding site, as well as beta-synuclein mRNA and protein
expression. This effect of MTF-1 on expression was found to be specific to beta-synuclein when compared to alpha-
synuclein. Understanding the regulation of synucleins and how they interact may point to molecular targets that could be
manipulated for therapeutic benefit. In this study we showed that MTF-1 differentially controls the expression of beta-
synuclein when compared to its homolog alpha-synuclein. This could potentially provide a novel targets or pathways for
therapeutic intervention and/or treatment of synucleinopathies.
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Introduction

Neurodegenerative disorders constitute a disease category that

the World Health Organization calculates will become the world’s

second leading cause of death by the year 2040, overtaking cancer.

The progression of many human neurodegenerative disorders is

associated with an accumulation of alpha-synuclein (a-Syn),

including Alzheimer’s disease (AD) and Parkinson’s diseases

(PD), dementia associated with Lewy body disease (DLB), diffuse

Lewy body disease (DLBD) and multiple system atrophy (MSA).

This group of diseases are now known as synucleinopathies and

are characterised by the presence of Lewy bodies (LB), the

intracytoplasmic inclusions/aggregates found in dopaminergic

neurons containing alpha-synuclein (a-Syn) [1]. Abnormal pro-

tein-protein interactions may allow the precipitation of a-Syn,

which facilitates the formation of these extracellular and

intracellular aggregates. The formation of these deposits can be

induced by a number of substances, including metal ions [2].

Indeed, high levels of metals have been identified in the substantia

nigra of PD brains [3]. Aggregated a-Syn potentially inhibits

proteasomal activity [4], which may be a cause of the observed

reduction in proteasome activity in the substantia nigra of PD

patients [5]. Studies in families affected by dementia, PD and

DLBD have genomic amplifications encompassing the a-Syn

gene, leading to a proportional increase in a-Syn mRNA and

protein in brain tissue [6–8]. These cases support the hypothesis

that increased expression of a-Syn causes disease.

a-Syn belongs to the homologous synuclein family, which

includes beta-synuclein (b-Syn). Expression patterns and levels of

a-Syn and b-Syn most closely overlap with highest levels

throughout the brain [9]. Although b-Syn is not detected in LB

or form fibrils like a-Syn [10], b-Syn mutants have been identified

in DLB patients [11] and b-syn protein is found to be abundant in

neurofibrillary lesions of patients with AD [12]. Moreover, in both

the mouse brain and the human substantia nigra, a-Syn mRNA

decreases and b-Syn mRNA increases with age [13]. In contrast to

control patients, there is a dramatic increase in a-Syn and decrease

in b-Syn mRNA levels in the substantia nigra of PD, DLBD and a

LB variant of AD patients [14]. These changes were specific for

the substantia nigra, the dopaminergic neuron-containing region

of the brain most severely affected in synucleinopathies. This

concentration reversal of synuclein transcript levels with disease

suggests the balance of a-Syn and b-Syn expression may be

important, which is supported by several studies [15,16]. This

suggests that b-Syn may be a natural negative regulator of a-Syn.
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Transcriptional Regulation of the synucleins has been reported.

Polymorphisms of the dinucleotide repeat complex NACP-Rep1

(10.7 kb upstream of the translational start site are associated with

AD and PD [17,18]. Different NACP-REP1 alleles have varying

repressive effects on a-Syn promoter driven reporter activity in

SH-SY5Y cells [19]. Assessment of regions of the a-Syn promoter

suggest the presence of activator sites between 21.5/21.9 kb and

repressor sites between 26.2/29.8 kb upstream of the transla-

tional start site [19]. Regulators of b-Syn expression have not been

reported. Since b-Syn may be a natural negative regulator of a-

Syn, identifying transcriptional regulators of b-Syn is essential. In

particular, b-Syn is a good target for disease therapies as there are

no apparent abnormalities when it is overexpressed in transgenic

mice [16]. Manipulation of transcriptional regulators of b-Syn

expression would increase b-Syn levels, inhibit aggregation of a-

Syn and potentially prevent disease progression. This study aimed

to investigate the regulation of the b-Syn promoter.

Materials and Methods

Tissue Culture
Two cell lines were used in our promoter analysis, SH-SY5Y

neuroblastoma cells (ATCC (VA, USA) # CRL-2266) and U-87

MG astrocytoma cells (ECACC (Sigma-Aldrich Company Ltd,

Poole, UK) # 89081402). All tissue culture reagents and plastic-

ware were obtained respectively from Lonza Biologics plc (Slough,

UK) and Greiner Bio-One Ltd (Stroudwater, UK) unless

otherwise specified. SH-SY5Y cells were maintained in a 50/50

mix of DMEM (#BE12-604F) and HAMS F12 (#BE12-615F)

with 10% fetal calf serum in 75 cm2 flasks at 37uC (5% CO2). U-

87 MG cells were maintained in EMEM (ATCC #30-2003) with

10% foetal calf serum in 75 cm2 flasks at 37uC (5% CO2).

PCR and Cloning
Several b-Syn promoter constructs of varying length and the

open reading frames of a-syn, b-Syn, c-Syn and MTF-1 were

cloned. Briefly, PCR products were generated using primers into

which restriction endonuclease sites were engineered (Table 1).

For the promoter constructs, PCRs were performed using a

genomic clone that contained the beta-synuclein gene (ImaGenes,

RZPDB737). For mammalian protein expression analysis, PCRs

were performed using cDNA generated from SH-SY5Y cells, these

methods have been previously described [20].

PCRs were carried out in a total volume of 50 ml, containing

200 mmol/L dNTPs, 0.4 mM of each primer, 1.5 mmol/L MgCl2,

1U of Phire Taq DNA Polymerase (Finnzymes, Labtech

International LTD, UK), 1 ml reaction buffer, and 20 to 100 ng

of DNA. Thermal cycling conditions were as follows: 2 min at

94uC (initial denaturation); 35 cycles of 30 s at 94uC, 30 s at 55–

65uC, 40 s at 72uC; and a final extension of 2 min at 72uC. PCR

products were cloned into either the luciferase promoter reporter

vector, pGL3-basic (Promega Corporation, UK) or the mamma-

lian expression vector, pcDNA3.1+ (Invitrogen, UK). Constructs

were confirmed by restriction endonuclease digestions and DNA

sequencing and large scale DNA preparations were made with

GeneJETTM Pasmid Miniprep Kit (Fermentas, UK).

Promoter Assays
Transfections into SH-SY5Y and U-87 MG cells were

performed in 24-well plates seeded at 56104 cells/well 24 h prior

to transfection. Transfections were performed using FuGENE6H
transfection reagent (Roche, Mannheim, Germany) as per

manufacturer’s instructions. To control for variation in transfec-

tion efficiency among replicates, promoter constructs were co-

transfected with the Renilla luciferase vector, pRL-TK, (Promega).

At 48 h post-transfection, SH-SY5Y and U-87 MG cells were

harvested and firefly and Renilla luciferase chemiluminescence

were measured using the Dual-LuciferaseH Reporter Assay System

(Promega) in a BMG FLUOstar Omega platereader (BMG

Labtech GmbH, Offenburg, Germany). Luciferase activity was

calculated as the ratio of firefly to Renilla luciferase activity. Each

construct was tested in triplicate with at least three independent

transfection experiments.

For experiments investigating copper, SH-SY5Y cells were

plated 24 hr prior to transfection in the presence of serum-free

media. To reduce copper levels we replaced fetal calf serum with

B27 supplement (Invitrogen). The concentration of copper in

defined medium is 0.1 mM [21]. Cells were then supplemented

with no copper, 10 mM or 50 mM at time of transfection.

Site-Directed Mutagenesis
Site-directed mutagenesis was used to introduce a point

mutation at 2774 bp of the putative b-Syn promoter, specifically

within a metal response element (MRE). PWO polymerase

(Roche) was used with the following oligonucleotides in PCR

reactions as per manufacturers instructions: Forward, 59-CC-

GGGCACTGCTGCGTTCCTGCTCAG-39; Reverse, 59-GTC-

CTGAGCAGGAACGCAGCAGTGC-39. MRE is shown in bold

with mutant base underlined. Thermal cycling conditions were as

Table 1. Oligonucleotides used for cloning.

Construct a Sequence (59 to 39) b RE

210.8/28.3 F - ATATCTCGAGCCACCCCAAACTCAGTGG XhoI

R - ATTTGGATCCGGGAGAACTGGTCATGGC BamHI

210.8/26 F - ATATCTCGAGCCACCCCAAACTCAGTGG XhoI

R - TAAAGGTACCCAAGATGGCTGCTGCAGC KpnI

26/20.9 F - ATATCTCGAGGCTGCAGCAGCCATCTTG XhoI

R - ATTTGGATCCCTTCGGCCTGACTGACAG BamHI

26/23.7 F - ATATCTCGAGGCTGCAGCAGCCATCTTG XhoI

R - TAAAGGATCCGAGACTACAGGTGCGTGC BamHI

23.7/ATG F - ATATCTCGAGGCACGCACCTGTAGTCTC XhoI

R - TAAAGGATCCGAACACGTCCATCCTGGC BamHI

23.7/20.9 F - ATATCTCGAGGCACGCACCTGTAGTCTC XhoI

R - ATTTGGATCCCTTCGGCCTGACTGACAG BamHI

21.1/20.6 F - ATATCTCGAGCAGCTGAGATTCGAGCCC XhoI

R - ATTTGGATCCGCCGCCTCACCTGGATGC BamHI

20.9/ATG F - ATATCTCGAGCTGTCAGTCAGGCCGAAG XhoI

R - TAAAGGATCCGAACACGTCCATCCTGGC BamHI

20.6/ATG F - ATATCTCGAGCTGTCAGTCAGGCCGAAG XhoI

R - TAAAGGATCCGAACACGTCCATCCTGGC BamHI

b-Syn F - GACGAGTAAGCTTGACGTGTTCATGAAGGG HindIII

R - AAATATGGATCCTTACTACGCCTCTGGCTCATAC BamHI

c-Syn F - GACGAGTAAGCTTGATGTCTTCAAGAAGGG HindIII

R - AAATATGGATCCTTACTAGTCTCCCCCACTCTG BamHI

a pEGFP-PrP (prion protein) was a gift from Dr Catia Sorgato and was subcloned
into pcDNA3.1+ using HindIII and EcoR1 restriction sites and is not listed.
pcDNA3.1+a-Syn, pcDNA 3.1+NRF2, pcDNA3.1+MTF-1 have been described
previously [50,51] and are not listed.
b Restriction endonuclease recognition sites are bolded and underlined; each
oligonucleotide has a 4–7 bp flanking tag.
RE = Restriction Endonuclease.
doi:10.1371/journal.pone.0017354.t001
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follows: 2 min at 94uC (initial denaturation); 35 cycles of 30 s at

94uC, 30 s at 55–65uC, 40 s at 72uC; and a final extension of

2 min at 72uC.

Electrophoretic Mobility Shift Assays (EMSAs)
MTF-1 transcription factor binding to the MRE was determined

by using EMSA. SH-SY5Y cells were stably transfected with empty

expression vector (pcDNA3+) or pcDNA3.1+MTF-1. Cells were

transfected as described above, except after 24 h transfection, cells

containing vectors were selected for using media containing

400 mg/ml geneticin (Sigma). After several rounds of selection

and maintenance, cells were washed in ice cold PBS and the protein

was extracted using the NE-PER Nuclear and Cytoplasmic

Extraction kit (Thermo Scientific, UK). Protein was quantified

using the Bradford assay (Bio-Rad Laboratories Ltd, Hercules, CA).

Synthetic biotin and non-biotin labelled probes (MWG, Germany)

for the MRE (shown in bold) for normal MRE (Forward, 59-

CCCGGGCACTGCTGCGCTCCTGCTCAGGACC-39; Re-

verse, GGTCCTGAGCAGGAGCGCAGCAGTGCCCGGG-39)

and mutant MRE (Forward, 59- CCCGGGCACTGCTGCG-
TTCCTGCTCAGGACC-39; Reverse, 59- GGTCCTGAGCAG-

GAACGCAGCAGTGCCCGGG-39) were obtained for EMSA

analysis. Binding reactions containing equal amounts of protein

(15 mg) and probes were performed using the LightShiftH
Chemiluminescent EMSA kit (Thermo Scientific, UK) as perma-

nufacturer’s instructions. Protein-DNA complexes were electropho-

resed on 6% non-denaturing polyacrylamide gels, and transferred to

Hybond-N+ (GE Healthcare, UK); signals were detected using

LightShiftH Chemiluminescent EMSA kit (Thermo Scientific). All

EMSA assays were performed for three sample replicates in each

group.

Quantitative PCR
Cells stably transfected with pcDNA3.1+ or pcDNA3.1+MTF-

1 were washed in ice cold PBS and RNA was obtained using TRI

reagent (Sigma) as per manufacturer’s instructions. Five micro-

grams of RNA was used from each sample for the synthesis of

cDNA in a 20 ml volume with oligo(dT)20 (Invitrogen) and

SuperScript III reverse transcriptase (Invitrogen). The reactions

were incubated at 50uC for 1 hr and then inactivated by heating

at 70uC for 15 min. RNaseH (Invitrogen) was added, 1 ml to each

preparation, and incubated for 20 min at 37uC. Six microlitres of

diluted cDNA was used as template in quantitative PCR (QPCR)

reactions in a 15 ml volume with 7.5 ml iTaq SYBR GreenTM

Supermix with ROX (Bio-Rad), 0.3 ml 100 nM of each primer

(Table 2). Primers were designed, where possible, to span exons

and to generate a fragment of between 80 and 130 bp. The

QPCR assays were performed on a the Step One PlusTM Real-

Time PCR System (Applied Biosystems, Foster City, CA) using

the following PCR conditions: 2 min at 95uC followed by 40

cycles of 15 s denaturing at 95uC and 1 min annealing at 60uC
and 15 s acquiring the fluorescence data (temperature dependent

on the gene being assayed). A RT-negative control was used to

assess whether any residual genomic DNA remained and a no-

template control was included to examine primer-dimer forma-

tion. QPCR experiments were excluded for analysis if the

reaction efficiency was outside the range of 0.9 – 1.1 or if the r2

value of the linear regression was less than 0.95. Furthermore, the

inter-experiment variability between replicates was assessed by

measuring sample coefficient of variation and excluding samples

if this was over 30%.

For the QPCR analysis, the relative quantification method was

used. Our approach incorporated a standard curve to allow

determination of the relative number of cDNA molecules of a

given gene by using serial dilutions of an arbitrary cDNA sample.

Expression of the gene of interest was normalised by the geometric

mean of expression from three reference genes (GAPDH, ACTB

and B2M). QPCR was performed with cDNA samples in triplicate

from five independent replicates of cDNA from SH-SY5Y cells

over-expressing various proteins.

Western Immunoblotting
Cells stably transfected with pcDNA3.1+ or pcDNA3.1+MTF-1

were washed in ice cold PBS and the protein was obtained as

described above. Thirty micrograms of cytosolic protein was used

for identifying a-Syn (Roche) and b-Syn (Millipore, UK) protein

levels. All experiments were performed in triplicate. Protein band

intensities were measured using Quantity One densitometry

software (Bio-Rad). Further details of Western immunoblot

analysis have been described previously [22].

Statistical Analysis
We evaluated statistical significance for the promoter assays,

QPCR and Western immunoblot analysis with paired t-tests on

GraphPad Prism software (GraphPad, San Diego, CA).

Results

Basal promoter activity
The putative b-syn promoter region was assessed using a Dual-

LuciferaseH reporter assay system. The genomic organisation of b-

Syn has previously been described [23]. A region spanning

,10.8 kb 5-prime of the translational start site, pertaining to nine

promoter fragments, were analysed (Figure 1A). Parallel reporter

gene assays of the nine constructs demonstrated a significant

difference in basal transcription rate, in SH-SY5Y cells, between

pGL3b 21.1/20.6 kb and the other b-syn promoter constructs,

which had minimal or negligible activity above background

(Figure 1B). Background is measured by empty pGL3basic vector.

All the b-Syn promoter constructs had minimal or negligible

activity in the U-87 MG astrocytoma cells (Figure 1C).

Transcription Factor regulation of the b-Syn promoter
To investigate the regulation of b-Syn 21.1/20.6 kb, we

performed a transcriptional binding site analysis using the

Transcription Element Search System (TESS) [24] and identified

Table 2. Oligonucleotides used for QPCR.

Gene Sequence (59 to 39) Amplicon Size (bp)

ACTB F - AGCAAGCAGGAGTATGACGAG 92

R - AAGAAAGGGTGTAACGCAACTAA

GAPDH F - AATCCCATCACCATCTTCCA 122

R - AAATGAGCCCCAGCCTTC

b2M F - ATTCTACTTTGAGTGCTGTCTCCA 101

R - ATTCTCTGCTCCCCACCTCT

SNCA F - CTGCCCCCACTCAGCATT 88

R - AAGCCACAAAATCCACAGCA

SNCB F - GGAGCCAGAAGGGGAGAGT 119

R - GCAGGGACAGGGACAGAA

SNCG F - AAAGAGGAAGTGGCAGAGGA 99

R - GATGGTGTCCAAGGCAGAG

doi:10.1371/journal.pone.0017354.t002
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a putative metal transcription factor-1 (MTF-1) binding site

pertaining to a metal response element (MRE-TGCGCTC). To

explore this further we looked at the effect of cells over-expressing

MTF-1 on the b-Syn 21.1/20.6 kb promoter fragment. Figure 2A

shows that in cells over-expressing pcDNA3.1+MTF-1 there was a

statistically significant increase in b-Syn 21.1/20.6 kb promoter

stably-transfected with the empty expression vector, pcDNA3.1+.

We also tested the affect of MTF-1 on 21.1/20.6 kb in U-87 MG

cells (Figure 2B) and although the basal activity of 21.1/20.6 kb

was only slightly above empty vector (pGL3basic), there was a

similar trend for that observed in the SH-SY5Y cells. We also

investigated whether MTF-1 affected two larger promoter con-

structs containing the MRE (23.7kb/ATG & -0.9 kb/ATG) and a

larger fragment without the MRE (26.0/20.9 kb) (Figure 2C). All

three constructs were not significantly affected by MTF-1 over-

expression, however, the two MRE-containing promoter fragments

did trend to the effect observed for the b-Syn 21.1/20.6 kb

construct. This less dramatic effect on the two larger MRE-

containing promoter fragments could be due to the presence of

repressor elements counteracting the effect of MTF-1 on the MRE,

which may also explain the initial lower basal activity observed for

these two promoter constructs (Figure 1B).

We investigated whether the addition of copper from a low basal

level affected the activity of the 21.1/20.6 kb promoter construct

and found that in serum-free media, where copper levels are 5.2 nM

[25], the activity of the 21.1/20.6 kb fragment was abolished,

even in the presence of over-expressed MTF-1 (Figure 2E). When

we added copper at 10 mM and 50 mM the basal activity was

restored, as well as MTF-1 induction of the promoter, although the

overall activity was not as high as in normal conditions (Figure 2A).

In normal serum media the concentration of copper is ,2 mM,

suggesting that other factors in normal serum, not present in the

B27 supplement, maybe important for normal promoter activity.

These results suggest that copper is important for proper b-syn

promoter function, as well as MTF-1 regulation of the promoter.

MTF-1 binding to the b-Syn promoter MRE
To assess whether this increase in promoter activity was specific

to the MTF-1 binding site or an indirect effect of MTF-1 over-

expression, we abolished the MRE binding site in b-Syn 21.1/

20.6 kb by site-directed mutagenesis. Figure 2D shows that the

inserted mutation at 2774 bp of the b-syn promoter, correspond-

ing to the putative MTF-1 binding site, abolishes promoter activity

to near basal levels, regardless of MTF-1 over-expression, as can

be seen when compared to pGL3basic. Therefore, it appears that

this binding site is critical for b-Syn promoter activity.

To determine whether the observed MTF-1 regulation of the b-

Syn promoter was a consequence of MTF-1 binding to the b-syn

Figure 1. b-Synuclein 59- genomic structure and basal promoter activity. (A) Depicts the 59-genomic structure of human b-Synuclein gene.
Exons are depicted as closed boxes, and 59-region and introns are black lines. Black box indicates the translational start site in exon 3. Lower panel,
luciferase constructs ranging across the 59-region. * Indicates metal response element (MRE- TGCGCTC). (B & C) Reporter gene assays using Dual-
LuciferaseTM shows the basal activity of b-Syn promoter fragments and empty pGL3basic vector in SH-SY5Y and U87 MG cells respectively. RLU =
relative luciferase units.
doi:10.1371/journal.pone.0017354.g001

Beta-Synuclein Promoter Regulation
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promoter MRE or an indirect effect of MTF-1 on the b-syn

promoter activity, we performed EMSAs. EMSA analysis showed

that in cells over-expressing the transcription factor MTF-1 there

was an increase in binding for the normal MRE-containing probe

compared to the mutant probe as indicated by the band intensity

shift when compared to unlabelled probe (Figure 3A & B). In

comparison to pcDNA3.1+ over-expressing cells, this effect was

less intense (Figure 3C), although more intense than the mutant

probe in cells over-expressing MTF-1, suggesting that endogenous

levels of MTF-1 are present. These results show that MTF-1 binds

to MRE located in the 21.1/20.6 kb region of the b-Syn 59-

promoter.

MTF-1 regulates b-Synuclein expression
We looked to see whether the observed interaction of MTF-1

with the b-Syn promoter, as well as the increase in promoter

activity due to over-expression of MTF-1, affected mRNA and

protein levels. QPCR analysis was performed to see whether over-

expression of MTF-1 affected b-Syn transcription levels. Figure 4A

shows that over-expression of MTF-1 has a statistically significant

effect on b-Syn gene expression when compared to control cells

stably transfected with the empty vector, pcDNA3.1+. This effect

of MTF-1 on gene expression is specific to b-Syn as shown when

compared to the effect on the other synucleins, a-Syn and c-Syn

(Figure 4A).

Western immunoblot analysis shows that in cells over-

expression of MTF-1 there was a significant effect on b-Syn

protein expression, with a 30-fold increase in protein abundance,

when compared to control cells (Figure 4B). For comparison, we

also looked at the effect of MTF-1 over-expression on a-Syn

protein levels and found no significant change in expression.

Discussion

We analysed the beta-Synuclein (b-Syn) putative 59-promoter

and identified a region 21.1/20.6 kb upstream of the transla-

tional start site to be important in the activity of a luciferase

reporter construct in human dopaminergic SH-SY5Y cells.

Moreover, we identified a metal response element (MRE) in this

promoter region and showed that it was regulated by metal

transcription factor-1 (MTF-1) binding. We also demonstrated

that MTF-1 regulates b-Syn expression at both the gene and

protein levels.

Human dopaminergic SH-SY5Y cells are commonly used as a

model system in the study of Parkinson’s disease (PD). SH-SY5Y

cells can either be undifferentiated or differentiated and it has been

Figure 2. b-Syn promoter regulation. The activity of b-Syn promoter fragment pGL3b 21.1/20.6 kb in cells stably transfected with pcDNA3.1+ or
pcDNA3.1+MTF-1 in (A) SH-SY5Y and (B) U87 MG cells. (C) The activity of b-Syn promoter fragments pGL3b 23.7 kb/ATG, 20.9 kb/ATG and 26.0/
20.9 kb in SH-SY5Y cells over-expressing pcDNA3.1+ or pcDNA3.1+MTF-1. (D) The activity of b-Syn promoter fragment pGL3b 21.1/20.6 kb with
mutation inserted at 2774 bp in SH-SY5Y cells over-expressing pcDNA3.1+ or pcDNA3.1+MTF-1. (E) The activity of b-Syn promoter fragment pGL3b
21.1/20.6 kb in the presence of 0 mM, 10 mM & 50 mM copper in cells stably transfected with either pcDNA3.1+ or pcDNA3.1+MTF-1 The pGL3basic
background activity is shown in graphs where the promoter activity is low. * = p,0.05, all the rest were non-significant. RLU = relative luciferase
units. Light grey bars = pGL3basic; dark grey bars = pcDNA3.1+; black bars = pcDNA3.1+MTF-1.
doi:10.1371/journal.pone.0017354.g002

Beta-Synuclein Promoter Regulation
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suggested that there are potential limitations in using the former as a

model system in for these studies [26]. However, we have previously

shown that undifferentiated SH-SY5Y cells express key dopami-

nergic markers [27], including the dopamine transporter, and were

therefore confident in using these cells for the current study.

MTF-1 is a zinc-finger protein transcription factor that induces

expression of metallothioneins and other genes involved in metal

homeostasis in response to heavy metals such as cadmium, zinc,

copper, and silver [28–31]. The protein is a nucleocytoplasmic

shuttling protein that accumulates in the nucleus upon heavy metal

exposure and binds to promoters containing a metal-responsive

element (MRE; core consensus sequence TGCRCNC) [32]. MTF-1

is also believed to be activated under other stressful conditions, other

than heavy metal load, including oxidative stress and hypoxia [33].

Emerging evidence now suggests that metal homeostasis is

strongly linked to the oxidative stress response in many cells types

[34]. PD is a progressive neurodegenerative disorder in which

oxidative stress and metal toxicity is implicated as a major

causative factor [35,36]. Parkin, a ubiquitin ligase, has been linked

to familial form of PD. A Drosophila disease model lacking Parkin,

given zinc-supplemented food showed improved condition,

including extended lifespan and improved motoric abilities [37].

As a zinc-sensing protein, MTF-1 could conceivably be a way

through which zinc-supplementation manifests its positive effects.

Moreover, overexpression of MTF-1 was found to improve the

life-span of Drosophila exposed to oxidative stress and metal

toxicity suggesting a common mechanism for protection against

both oxidative stress and metal toxicity [38]. Therefore, MTF-1

could potentially have beneficial effect in synucleinopathies.

There is currently no literature suggesting a role of b-Syn in

relation to metal homeostasis. However, b-Syn has been suggested

to bind copper [39,40]. A recent study has shown that it has

Figure 3. EMSA analysis. Nuclear extracts from SH-SY5Y cells were stably transfected with (A & C) pcDNA3.1+MTF-1 or (B) pcDNA3.1+. A & B are
probed with normal probe and C with mutant probe. Lane 1 is the migration of free-probe in the absence of nuclear extract and therefore no shift
observed. Lane 2 is either the MRE-containing double-stranded DNA probe (A & C) and shows a signal shift due to transcription factor binding or the
mutant MRE-containing probe (B) and shows a diminished signal shift. Lane 3 shows that the signal shift can be inhibited from excess non-labelled
probe.
doi:10.1371/journal.pone.0017354.g003

Figure 4. Expression analysis. (A) QPCR analysis. Normalised mean of differences in expression between control (grey bars) and MTF-1 (black bar)
over-expressing SH-SY5Y cell samples for a-Syn, b-Syn and c-Syn genes. Control = pcDNA3.1+ (empty expression vector). The mean expression ratios
6 standard error for triplicate experiments are as follows; a-Syn - pcDNA3.1+ (1.1760.04) & MTF-1 (1.4560.07), b-Syn - pc (11.2461.96) & MTF-1
(20.8461.26) and c-syn - pcDNA3.1+ (0.5260.08) & MTF-1 (0.2560.05). NS = non-significant; ** = p,0.01. (B) Western immunoblotting. Cytosolic
extracts from SH-SY5Y cells stably-transfected with pcDNA3.1+ (Lane 1) or MTF-1 (Lane 2) were probed with either a-Syn or b-Syn. Band intensity was
measured using Quantity One densitometry software (Bio-Rad). The mean intensity values 6 standard error and statistical significance for triplicate
experiments are as follows; b-Syn - Lane 1 (144623) & Lane 2 (42766216) (p = 0.0024), a-Syn - Lane 1 (202648) & Lane 2 (362644) (p = 0.1714).
doi:10.1371/journal.pone.0017354.g004
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similar affinity for copper as a-Syn and that the co-ordination of

copper binding is similar [40]. a-Syn not only binds copper but

copper binding increases its aggregation [41–43] and results in the

formation of toxic oligomeric species that kill cells both

exogenously and endogenously [22,27]. As b-Syn has been shown

to decrease the aggregation of a-Syn [44], it is conceivable that

this process might involve prevention of copper binding to a-Syn

by either binding copper itself or a physical interaction with a-Syn

that inhibits copper binding. Alternatively, b-Syn might out-

compete a-Syn for copper due to increased expression. In this

study we showed that copper appears necessary for b-syn

promoter function, as well MTF-1 induction of the b-Syn

promoter. Indeed, MTF-1 has been shown to act as a copper-

sensing transcriptional activator to regulate human prion gene

expression [45], a protein also relevant to neurodegeneration.

Increased expression/activity of MTF-1 in response to altered

copper levels in the cell could conceivably result in increased levels

of b-Syn, protecting the cell from adverse copper binding by a-Syn

that could lead to the formation of toxic copper binding oligomers.

MTF-1 altered b-Syn gene regulation and mRNA and protein

expression levels. As can be observed in Figure 4 there was a

marked increase in protein expression (,30-fold) when compared

to the increase in mRNA expression (,2-fold). Simply measuring

an mRNA expression change does not necessary reflect a change

in protein expression [46]. There is support in the literature for

discrepancies between mRNA and corresponding protein levels;

Pradet-Balade et al. (2001) suggested that the abundance of a

protein at a given mRNA expression level may vary 30-fold [47].

Furthermore, in Figure 4A the control level (no MTF-1) is already

relatively high but this doesn’t lead to protein expression that can

be detected in the western blot (Figure 4B). This is likely because

the turnover of b-Syn mRNA is quite rapid and the protein

synthesis machinery is unable to compete, but in the presence of

MTF-1 the rate of mRNA synthesis is greater which leads to

significant amounts of mRNA being utilised for protein expression.

Thus the apparent doubling of mRNA is not informative as to the

expected level of protein expression..

As previously highlighted, b-Syn may be a natural negative

regulator of the disease-associated a-Syn. Furthermore, transgenic

mice over-expressing b-Syn, showed a marked reduction in a-Syn

aggregation and protein expression [44]. The importance of the

balance between levels of the synucleins is highlighted by the

observation that b-Syn inhibits a-Syn aggregation in vitro and in

vivo [2,48,49]. It’s conceivable that due to cellular stresses, such as

heavy metal toxicity or oxidative stress, MTF-1 expression is

induced, which consequently alters the regulation of several genes,

including b-Syn. b-Syn, in turn, could potentially prevent a-Syn

aggregation and/or toxic species. This process may be disrupted in

patients with synucleinopathies, as in contrast to control patients,

there is a dramatic increase in a-Syn and decrease in b-Syn

mRNA levels in the substantia nigra of PD, DLBD and a LB

variant of AD patients [14]. Therefore MTF-1 could provide a

potential target for disease therapy and this needs to be explored

further.
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