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Abstract

Background: The myocyte enhancer factor 2 (MEF2) gene family is broadly expressed during the development and
maintenance of muscle cells. Although a great deal has been elucidated concerning MEF2 transcription factors’ regulation
of specific gene expression in diverse programs and adaptive responses, little is known about the origin and evolution of
the four members of the MEF2 gene family in vertebrates.

Methodology/Principal Findings: By phylogenetic analyses, we investigated the origin, conservation, and evolution of the
four MEF2 genes. First, among the four MEF2 paralogous branches, MEF2B is clearly distant from the other three branches in
vertebrates, mainly because it lacks the HJURP_C (Holliday junction recognition protein C-terminal) region. Second, three
duplication events might have occurred to produce the four MEF2 paralogous genes and the latest duplication event
occurred near the origin of vertebrates producing MEF2A and MEF2C. Third, the ratio (Ka/Ks) of non-synonymous to
synonymous nucleotide substitution rates showed that MEF2B evolves faster than the other three MEF2 proteins despite
purifying selection on all of the four MEF2 branches. Moreover, a pair model of M0 versus M3 showed that variable selection
exists among MEF2 proteins, and branch-site analysis presented that sites 53 and 64 along the MEF2B branch are under
positive selection. Finally, and interestingly, substitution rates showed that type II MADS genes (i.e., MEF2-like genes) evolve
as slowly as type I MADS genes (i.e., SRF-like genes) in animals, which is inconsistent with the fact that type II MADS genes
evolve much slower than type I MADS genes in plants.

Conclusion: Our findings shed light on the relationship of MEF2A, B, C, and D with functional conservation and evolution in
vertebrates. This study provides a rationale for future experimental design to investigate distinct but overlapping regulatory
roles of the four MEF2 genes in various tissues.
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Introduction

The myocyte enhancer factor 2 (MEF2) gene family, which belong

to the evolutionarily ancient MADS (MCM1, AGAMOUS,

DEFICIENS, and SRF)-box superfamily [1–4], has four members

referred to as MEF2A, B, C, and D located on different chromosomes

in vertebrate genomes [5,6]. Of the four MEF2 members, all can be

tissue-specific alternatively spliced, producing multiple isoforms

which have significant functional differences [1–4]. They recognize

and bind to the consensus DNA sequence CTA(A/T)4TAG/A as

homo- or heterodimers via a 56-amino acid domain (i.e. MADS-box)

[7,8]. Adjacent to the MADS-box is a 29-amino acid extension,

referred to as the MEF2-specific (MEF2s) domain, which contributes

to high-affinity DNA binding and dimerization with other homol-

ogous MEF2 proteins and facilitates interactions with other cofactors

[9,10]. The C-terminal of MEF2 proteins, which is subject to

complex patterns of alternative splicing, contains the transcriptional

activation domain to promote signal transduction and/or regulate

target gene transcription [9,11–13].

The four MEF2 proteins display distinct but overlapping

expression patterns and regulate the intricate temporal and spatial

pattern of gene expression in body development and maintenance

[14–16]. The well-established roles of MEF2 in muscle develop-

ment are to control myogenesis and morphogenesis by cooperating

with myogenic bHLH factors (e.g. MyoD, myogenin) [2,17,18],

homeobox proteins (e.g. tinman, Gax) [19,20], and/or GATA

factors (e.g. GATA4) [21,22]. Other important functions crucially

dependent on MEF2 factors have also been elucidated since their

discovery. Among these are the regulation of nervous system

during both development and injury repair [23,24], multiple roles

in the immune system [25,26], adipocytes [27], endothelium

[28,29], and chondrocytes and bones [30–32]. In the case of

MADS proteins in plants, a lot of studies have been focused not

only on the functional level, such as revealing ABCDE model for

flower organ identity (for review, see [33–35]) in Arabidopsis, but

also on MADS phylogeny [36–39] as well as on natural selection

with a particular focus on adaptive evolution [40–42].
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In contrast to the functions of MEF2 proteins in vertebrates and

evolutionary analyses of the MADS family in plants, which have

been the subject of extensive research, little is known about the

evolutionary relationship of the four MEF2 proteins. At present,

we only know that MEF2 proteins share over 65% amino acid

identity in the MEF2s domain, and over 90% similarity in the

MADS-box in contrast to only about 50% similarity with other

MADS factors such as SRF (serum response factor) [2,38,43–45],

which is closely associated with specific DNA binding [46].

Here, we investigate the duplication events and evolutionary

rates of the four MEF2 proteins, particularly Darwinian selection

on the four MEF2 branches and on the sites in MEF2 sequences

and in particular branches. The study strongly improves our

understanding of MEF2 conservation and evolution in vertebrates,

and the findings may be laid for future experimental dissection of

the function of the four MEF2 members.

Results

Phylogeny of MEF2 genes
The data set of 102 MEF2 protein sequences was aligned to

produce the phylogeny (see Figure 1) of MEF2 genes by using the

Neighbor-joining (NJ) method [47] (see Materials and methods),

and this NJ tree is broadly consistent with the tree constructed by

Bayesian method [48] (see Figure S1). The phylogeny shows that

MEF2B is the most distant from the other three MEF2 proteins in

vertebrates, and MEF2C and MEF2A are more closely tied to

each other than to MEF2D and MEF2B genes. In line with

MEF2A closely tied to MEF2C, some common types of alternative

splicing have been observed for MEF2A and MEF2C transcripts

[3,5,18]. For example, there have been found 16 and 17

transcripts, respectively, for MEF2A and MEF2C genes in Pan

troglodytes, and most of them have similar transcriptional splicing

patterns.

Interestingly, MEF2C and MEF2D had another independent

duplication event in the species Danio rerio and Xenopus laevis,

respectively, producing five paralogous MEF2 proteins in the two

species (see Figure 1). According to Sonnhammer’s new notion

[49] on paralogy and orthology, MEF2Ca and MEF2Cb can be

regarded as inparalogs to each other, outparalogs to the other

three MEF2 proteins in Danio rerio, and co-orthologs to MEF2C

protein in other vertebrates, as well as MEF2Da and MEF2Db in

Xenopus laevis. In contrast to gene duplication, gene loss presumably

occurred in some species, such as MEF2B loss in Oryctolagus

cuniculus (see Figure 1).

Pairwise estimates of natural selection on MEF2A-D in
humans and mice

Nucleotide changes in protein-coding regions of genes are of

importance to the conservation and evolution of protein function.

Dealing with nucleotide changes, it is necessary to discriminate

between changes that affect the amino acid sequence (nonsynon-

ymous substitution) from changes that do not affect amino acid

sequence (synonymous substitution). The ratio (v = Ka/Ks) of

nonsynonymous to synonymous substitution rate is a valid

measure of natural selection pressure at the protein level [50],

with v,1, v.1, and v = 1 representing purifying selection,

positive selection, and neutral evolution, respectively [51].

Synonymous and nonsynonymous substitution rates and their

ratios for MEF2A-D protein coding regions are presented in

Table 1. All the four v ratios are much lower than one (v,0.2),

indicating that MEF2A-D proteins are subject to strong purifying

selection to maintain protein function. However, among the four

proteins, MEF2B evolves at an even higher rate with much greater

Figure 1. The phylogeny of MEF2 proteins inferred by the
neighbor-joining method with Poisson-correction (PC) dis-
tance. The scale bar indicates the number of amino acid substitutions
per site. The four MEF2 branches in vertebrates are highlighted;
bootstrap percentages are indicated on branches supported by a
plurality of bootstrap replicates. Leaves are comprised of brief species
name and MEF2 type.
doi:10.1371/journal.pone.0017334.g001
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nonsynonymous and synonymous substitution rates than the other

three MEF2 proteins, and the other three proteins evolve at the

same order of magnitude level, though MEF2A has a twice bigger

v ratio compared to MEF2C.

One of the unresolved issues about the MEF2 family is whether

the increased v ratio of MEF2B reflects (i) simply a long-term

accumulation under a relaxed selection pressure, or (ii) an abrupt

increase in an episodic period for functional divergence following

the duplication event. The other question is whether or not some

sites in the MEF2 family or in some particular MEF2 branches are

under positive selection. In the following, we will focus on variable

natural selection among the four MEF2 branches, MEF2 sites, and

the sites along particular MEF2 branches to test these scenarios.

Natural selection among the four MEF2A-D branches
We assumed variable v evolutionary ratios among MEF2

branches in MEF2 phylogeny, and then tested for a significant

difference of the ratios based on Likelihood Ratio Test (LRT) (see

Materials and methods) [51,52]. The null hypothesis (H0) is that

the evolutionary ratios for the MEF2 family are all simply due to

underlying uniform mutation rates (i.e. v is identical across all the

branches of the MEF2 phylogeny). Under the H0 model (see

Table 2), the estimate of v is 0.012, indicating that the evolution of

all the MEF2 members was dominated by strong purifying

selection which is consistent with previous results (see Table 1).

Given that no significant difference of H1 versus H0 was detected,

the increased v rate of MEF2B is likely from a long-term

accumulation under a relaxed selection pressure on MEF2B. In

addition, among the six alternatives to H0, H5 and H6 for

MEF2A and MEF2C branches both with p-value,0.01 suggest

that selection pressure (v~0:001) on MEF2A and MEF2C is

significantly stronger than on the other two MEF2 branches

consistent with previous results (see Table 1).

Natural selection among MEF2A-D sites
Strong purifying selection dominates the four MEF2 branches

regardless of relative relaxed purifying selection on the MEF2B

branch, however, whether some sites in MEF2 sequences under

adaptive evolution or variable selection are still unknown. To test

these, we conducted the following pairs of models from PAML4

[51,53]: M0 versus M3, M1a versus M2a, and M7 versus M8, and

the results are presented in Table 3. For both pair models of M1a

versus M2a and M7 versus M8, none of the p-values by LRT are

less than 0.01, suggesting that no sites in MEF2 proteins are under

positive selection. However, for the pair model of M0 versus M3,

the LRT (2D‘~29:568,df ~4,p{valuev0:01) suggests that there

are indeed certain sites under highly variable selection pressures

across MEF2 proteins. In summary, the analyses show that

although none of sites in MEF2 proteins are under positive

selection, variable selection pressures exist among MEF2 sites.

Natural selection among sites along particular MEF2A, B,
C, and D branches

Given that positive selection often operates only on a few amino

acid sites along particular branches [53], we employed branch-site

specific Model A (see Materials and methods) to detect whether

some sites along particular MEF2 branches are under positive

selection, and the results are presented in Table 4. Along MEF2A

and MEF2C branches, there are no sites with v ratio greater than

1 demonstrating that none of the sites in the branches underwent

adaptive evolution. However, along MEF2B and MEF2D

branches, both of the LRTs are significant less than 0.05,

demonstrating that some sites along the MEF2B and MEF2D

branches underwent adaptive evolution. The sites are 53 and 64

under positive selection with the posterior probability .95% along

the MEF2B branch as well as 50 along the MEF2D branch (see

Discussion).

Evolution of type I and type II MADS factors
There are two types of MADS factors in plants and animals,

called type I (SRF-like) and type II (MEF2-like) MADS factors

[54]. To our knowledge, type I MADS factors evolve faster than

type II MADS factors in plants [55,56]. However, little is known

about the evolutionary rate of the two types in animals.

Substitution rates of SRF and MEF2A-D genes in the human

Table 1. Rates of synonymous (Ks) and nonsynonymous (Ka)
nucleotide substitutions (6 standard errors) and their ratios
(v) for MEF2 protein-coding regions.

Gene Codons k v Ka Ks

MEF2A 489 2.01 0.052 0.018460.0042 0.353360.0383

MEF2B 347 3.35 0.193 0.157860.0157 0.819360.1044

MEF2C 465 2.31 0.024 0.005960.0024 0.243560.0312

MEF2D 606 2.18 0.038 0.014660.0036 0.383260.0444

Note: All rates are based on comparisons between human and mouse MEF2
coding regions. k indicates the ratio of the transition to transversion rates.
doi:10.1371/journal.pone.0017334.t001

Table 2. Parameter estimates under branch-specific models among the four MEF2 branches for MADS and MEF2s coding regions.

Branch-specific Models vB vADC vD vAC vC vA 2D p-value

H0: vB =vADC =vD =vAC =vC =vA 0.012 0.012 0.012 0.012 0.012 0.012 21693.33

H1: vB?vADC =vD =vAC =vC =vA 0.073 0.013 0.013 0.013 0.013 0.013 21692.44 1.78 0.182

H2: vB =vD =vAC =vC =vA?vADC 0.013 0.073 0.013 0.013 0.013 0.013 21692.44 1.78 0.182

H3: vB =vADC =vAC =vC =vA?vD 0.012 0.012 0.051 0.012 0.012 0.012 21692.53 1.61 0.205

H4: vB =vADC =vD =vC =vA?vAC 0.013 0.013 0.013 0.012 0.013 0.013 21693.43 0.20 0.655

H5: vB =vADC =vD =vAC =vA?vC 0.012 0.012 0.012 0.012 0.001 0.012 21689.91 6.84 0.0089**

H6: vB =vADC =vD =vAC =vC?vA 0.018 0.018 0.018 0.018 0.018 0.001 21686.80 13.05 0.0003**

Note: The topology and branch-specific v ratios are presented in Figure S2. The degree of freedom (df) is 1 for the comparisons of null model H0 versus the alternative
model from H1 to H6.
**Significance with Pv0:01.
doi:10.1371/journal.pone.0017334.t002
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and mouse genomes are presented in Figure 2. From the figure,

mSRF (referred to as SRF in mice) evolves faster than its

corresponding orthologous hSRF (referred to as SRF in humans).

Likewise, the evolutionary rate of the MEF2 family also reveals the

same pattern that MADS factors evolve faster in mice than in

humans. When comparing paralogous genes, the substitution rate

of MEF2B is much higher than that of SRF, MEF2A, MEF2C,

and MEF2D, demonstrating that MEF2B evolves faster than SRF

as well as MEF2A, MEF2C, and MEF2D. In support of this result,

the analysis of indels revealed that MEF2B bears 7 short fragment

deletions and 1 fragment insertion, which is more than the other

MADS-box factors bearing in the mouse genome. Furthermore,

there are also slight differences in evolutionary rate among

MEF2A, MEF2C, MEF2D, and SRF between mice and humans.

Discussion

The four members of the MEF2 gene family are broadly

expressed in different but overlapping patterns during embryogen-

esis and postnatal development as well as throughout adulthood in

vertebrates [2,15,16]. Here, we analyzed the evolutionary relation-

ship of the four MEF2 proteins. Phylogenetic analysis shows that

MEF2B is the most distant from the other three MEF2 proteins in

vertebrates, and MEF2A and MEF2C originated from the latest

duplication event near the origin of vertebrates. Lineage-specific

analysis of the MEF2 gene family shows that a long-term

accumulation of substitutions after the duplication led to the

MEF2B branch evolving faster than the other MEF2 branches. In

addition, site-specific analysis of the MEF2 gene family shows that

although all the sites in MEF2 proteins are clearly constrained by

purifying selection, variable purifying selection appears in the

MADS and MEF2s regions of MEF2 proteins. In contrast to strong

purifying selection, branch-site analysis shows that sites 53 and 64

along the MEF2B branch and 50 along the MEF2D branch are

under positive selection. Furthermore, analysis of substitution rates

for SRF and MEF2A-D shows that SRF evolves as slowly as MEF2

proteins except for MEF2B.

Duplication of MEF2 genes
MEF2B is the most distant among the four MEF2 members in

vertebrates, which is mainly because of lacking the HJURP_C

region (see Figure 3), but also other sequential characters. In

support of this, the MEF2A-D phylogenetic tree (see Figure S2)

constructed by the alignment of only the MADS and MEF2s

regions also proves that MEF2B is the most distant. In addition, an

invertebrate animal called Nematostella vectensis has two MEF2-type

genes (see Figure 3) [57]: one has no HJURP_C region similar to

MEF2B in vertebrates; and the other has the HJURP_C region

similar to MEF2A, C, and D. To our knowledge, the origin of the

HJURP_C region is far much later than MADS/MEF2s domains

because that the HJURP was just found in higher eukaryotes [58].

Given that original MEF2 proteins have no such HJURP_C

region, we presume that the origin of MEF2B is more ancient than

the other three MEF2 proteins which include the HJURP_C

region, and the three MEF2 proteins should share a common

ancestor also including the HJURP_C region. According to the

presence of two MEF2-type genes in the invertebrate species

Nematostella vectensis: one has the HJURP_C region and the other

does not, we further presume that the first duplication event

occurred before the origin of vertebrates producing two copies of

MEF2 genes, and in the following evolutionary process, one finally

became extant MEF2B, the other was inserted by the HJURP_C

region which lies at C-terminal to the MADS/MEF2s regions and

this MEF2 gene might be the most recent common ancestor of

MEF2D, A, and C. Thereafter, such MEF2 gene had two

duplication events to produce MEF2D, A, and C near the origin of

vertebrates.

In relation to gene duplication patterns, MEF2A-D genes seem

to originate from interchromosomal duplications considering that

the four MEF2 genes are distributed on different chromosomes

[5,6].

Functional constraints on MEF2A-D
The pairwise approach proposed by Yang et al. [59] is an

efficient iterative means for computing synonymous and non-

synonymous substitution rates. By this approach, we found that, in

addition to MEF2A-D under purifying selection, MEF2B evolves

faster than the other three MEF2 proteins. A reasonable

explanation is that the functional constraint on MEF2B is lower

than on the other three MEF2 genes. This could be why few

mutant MEF2B phenotypes have ever been reported. In contrast,

many mutant phenotypes have been known for MEF2A, C, and D

Table 3. Parameter estimates under site pair models for the MADS and MEF2s coding regions.

Model v Parameter estimates PSS 2D

Model 0(one-ratio) 0.012 v= 0.077 none 21693.329 29.568**

Model 3(discrete) 0.024 p: 0.467 0.425 0.109 none 21678.545

v: 0.001 0.015 0.156

Model 1a 0.019 p: 0.989 0.011 not allowed 21689.428 0

(NearlyNeutral) v: 0.008 1.000

Model 2a 0.019 p: 0.989 0.011 0.000 none 21689.428

(PositiveSelection) v: 0.008 1.000 7.394

(note that p[2] is zero)

Model 7(beta) 0.015 p = 0.160 q = 9.200 not allowed 21674.351 0

Model 8(beta&v) 0.015 p0 = 0.999 p = 0.160 q = 9.200 none 21674.352

(p1 = 0.00001) v= 1.899

(note that p1 is nearly zero)

Note: The v represents for Ka/Ks that is the average of selection across all sites in the MEF2 coding regions. PSS represents the number of sites under positive selection.
**Significance with Pv0:01.
doi:10.1371/journal.pone.0017334.t003
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from mice [60]. For example, targeted inactivation of MEF2A, C,

and D in mice results in cardiac lethality [61], embryonic lethality

[62], and a failure of normal bone development [30], respectively.

Poor mutant phenotypes for MEF2B gene could be because of its

possible functional redundancy with other MEF2 genes and thus

MEF2B probably functions as a potential candidate for the other

MEF2 proteins. In support of this hypothesis, the alternative

splicing of MEF2B transcripts is altered in MEF2C mutant

embryos [63], and a significant upregulation of MEF2B expression

was observed [62]. However, double or multiple knockouts of

MEF2B and other MEF2 genes, such as inactivation of MEF2C

and MEF2B in embryos, will be especially interesting and would

provide more information on the roles of MEF2B.

Although all the MEF2 genes are subject to purifying selection,

different sites of MEF2 genes including MADS and MEF2s

regions are under variable purifying selection. Site model analysis

shows that none common sites in the four MEF2 branches are

under positive selection, whereas branch-site analysis shows that

sites 53 and 64 along MEF2B branch and 50 along MEF2D

branch are under positive selection. Of interest, at both sites 53

and 64, amino acid R is present in MEF2B branch in contrast to K

in the other MEF2 branches. Elegant studies from Alvarez-

Buylla’s group [41,42] presented that some positions in the K

domain of MIKC proteins in plants, which has similar functions

(e.g. dimerization) as MEF2s region in MEF2 proteins, are under

positive selection involved in both dimerization and a-b folding;

whereas functional differences between R and K on the two sites

(i.e. 53 and 64) are little known. In the case of site 50 along the

MEF2D branch, residue H is present in contrast to residue S in the

homologous site along the other MEF2 branches. However, the v
ratio for this site is 999 because of the rate of synonymous

substitution Ks = 0 and thus Ka/Ks is represented as 999.

Faster evolutionary rate of MADS factors in mice than in
humans

MADS factors evolve faster in mice than in humans. One

reasonable explanation is that mice with a shorter generation

length than humans would undergo more germ-line cell divisions

and thus accumulate a larger number of mutations in unit time,

which would lead to a larger number of substitutions in mice than

in humans [64,65]. However, a shorter generation length of about

80 times in mice than in humans [65] is largely inconsistent with

Table 4. Parameter estimates under branch-site models along particular MEF2 branch.

Branch-site models Parameter estimates PSS 2D

Foreground
MEF2A Branch

Model A H0 v0 = 0.008 P0 = 0.989 v1 = 1.000 P1 = 0.011 Not allowed 21689.428 0

(v2 = 1) v2a fore = 1.000 v2a back = 0.008 P2a = 0.000

v2b fore = 1.000 v2b back = 1.000 P2b = 0.000

Model A H1 v0 = 0.008 P0 = 0.989 v1 = 1.000 P1 = 0.011 None 21689.428

v2a fore = 1.000 v2a back = 0.008 P2a = 0.000

v2b fore = 1.000 v2b back = 1.000 P2b = 0.000

Foreground
MEF2C Branch

Model A H0 v0 = 0.008 P0 = 0.989 v1 = 1.000 P1 = 0.011 Not allowed 21689.428 0

(v2 = 1) v2a fore = 1.000 v2a back = 0.008 P2a = 0.000

v2b fore = 1.000 v2b back = 1.000 P2b = 0.000

Model A H1 v0 = 0.008 P0 = 0.989 v1 = 1.000 P1 = 0.011 None 21689.428

v2a fore = 1.000 v2a back = 0.008 P2a = 0.000

v2b fore = 1.000 v2b back = 1.000 P2b = 0.000

Foreground
MEF2B Branch

Model A H0 v0 = 0.011 P0 = 0.832 v1 = 1.000 P1 = 0.011 Not allowed 21686.781 3.062*

(v2 = 1) v2a fore = 1.000 v2a back = 0.011 P2a = 0.155

v2b fore = 1.000 v2b back = 1.000 P2b = 0.000

Model A H1 v0 = 0.011 P0 = 0.871 v1 = 1.000 P1 = 0.011 9 (0.851) 12 (0.862) 21685.250

v2a fore = 8.299 v2a back = 0.011 P2a = 0.155 14(0.795) 51(0.760)

v2b fore = 8.299 v2b back = 1.000 P2b = 0.002 53(0.996**) 64(0.964*)

73(0.647) 85(0.614)

90(0.694)

Foreground
MEF2D Branch

Model A H0 v0 = 0.007 P0 = 0.920 v1 = 1.000 P1 = 0.011 Not allowed 21682.317 3.360*

(v2 = 1) v2a fore = 1.000 v2a back = 0.007 P2a = 0.068

v2b fore = 1.000 v2b back = 1.000 P2b = 0.001

Model A H1 v0 = 0.011 P0 = 0.944 v1 = 1.000 P1 = 0.011 9(0.909) 50(0.963*) 21680.637

v2a fore = 999.000 v2a back = 0.011 P2a = 0.045

v2b fore = 999.000 v2b back = 1.000 P2b = 0.001

Note: Model A H0 is specified using fixed v2 = 1. The p-value of Model A H0 versus Model A H1 for the MEF2B and MEF2D branches is 0.040 and 0.033, respectively,
which are considered to be statistically significant.
doi:10.1371/journal.pone.0017334.t004
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only 1–3 times the substitution rates of MADS factors in mice than

in humans. Therefore, there should be other ways to affect the

accumulation of substitutions, such as mutation repair efficiency

[66], rate of cell division [67], and weight-specific metabolic rate

[68]. Furthermore, essential functions of MADS factors whether in

mice or humans, usually do not suffer deleterious mutations in

MADS factors and thus natural selection would eliminate such

mutations. Given these causes, MADS factors evolve just 1–3

times faster in mice than in humans. However, which one or more

causes play pivotal roles in constraining the evolutionary rate will

need to be evaluated with further research.

Similar functional conservation between type I and type
II MADS factors in animals

Based on evolutionary analysis of MADS-box genes in plants,

two groups [55,56] concluded that type I MADS genes evolve

much faster than type II MADS genes. Our findings in animals,

however, indicate that type I MADS genes, evolve as slowly as

type II MADS genes. Unlike, possibly, less functional importance

or functional redundancy of type I MADS factors in plants [69],

type I MADS factor usually represented as only one SRF-like

MADS factor in animals is expressed ubiquitous and plays

essential roles in cell differentiation and growth [70–72]. For

Figure 2. Substitution rates of SRF and MEF2A-D coding regions in the human and mouse genomes. SR on Y-axis represents for
substitution rate, that is, mutation rate per site across the corresponding coding region. Dog and cow are used as outgroups to identify substitution
sites.
doi:10.1371/journal.pone.0017334.g002

Figure 3. Domain regions in MEF2 proteins. N-terminal and C-terminal are marked on the left and right, respectively. Y-MEF2, D-MEF2, and
N-MEF2-1 and N-MEF2-2 represent for MEF2 proteins of yeast, Drosophila, and Nematostella, respectively, in invertebrates. MEF2A-D represents for
MEF2 proteins in vertebrates.
doi:10.1371/journal.pone.0017334.g003
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example, SRF-null mice die before gastrulation and do not form

mesoderm [73], demonstrating that SRF is an obligatory

transcription factor and thus mutation of SRF would lead to

injury, illness, and even death of the organism. In contrast to SRF,

the four members of the MEF2 family are mainly involved in

tissue-restricted gene expression of three muscle cells but also of

other cells, including T-lymphocytes, B-cells, chondrocytes, and

neural crest cells [26,30,31,74–77], and they also play essential

roles in gene regulation. These considerations explain quite well

why SRF evolves at nearly the same conservational level with

MEF2A, MEF2C, and MEF2D, except slower than MEF2B.

In summary, we have constructed the phylogeny of the MEF2

genes, and revealed that the function of MEF2B is somewhat less

important than the other three MEF2 members in vertebrates, which

is consistent with functional research from previous experimental

observations. To circumvent putative problems with redundancy

between MEF2B and other MEF2 proteins, generation of double or

multiple MEF2 knockouts is especially interesting and would provide

a deeper comprehension of the different and/or overlapping

functional roles of the four MEF2 members in vertebrates.

Materials and Methods

Data collection and alignment
Orthologous and paralogous MEF2 sequences (As a total of 102

sequences, see File S1) were obtained from The National Center for

Biotechnology Information (NCBI) using BLASTP, TBLASTN,

and key words searches [74]. The MEF2 amino acid sequences were

aligned by the program MUSCLE, and poorly aligned positions and

divergent regions (e.g. a number of indels and/or mismatches) were

eliminated by the program Gblocks in combination with manual

edition. The alignment result (see File S2) was used to construct the

MEF2 phylogeny. On the other hand, a Perl script was written to

capture the open reading frames (excluding 59-UTR and 39-UTR)

by using the corresponding MEF2 protein sequences against the

corresponding mRNA sequences (see File S3). Thereafter, MEF2

coding sequences were aligned according to the previous alignment

of MEF2 protein sequences by ClustalW as implemented in

MEGA4 [78]. Because the regions C-terminal to MEF2s domains

are two divergent among the four MEF2A-D branches, it is not

appropriate to calculate nonsynonymous and synonymous substi-

tution rates and their ratios (v = Ka/Ks) [79], therefore, just the

MADS and MEF2s domains were used for the analyses. The

alignment result (see File S4) of MADS and MEF2s coding regions

was used to calculate Ka, Ks, and their ratios by PAML4

(Phylogenetic Analysis by Maximum Likelihood, version 4).

Phylogenetic analysis
The MEF2 phylogenetic tree was constructed by Neighbor-

Joining (NJ) method with 500 bootstrap replicates, poisson-

correction (PC) distance, and pairwise deletion options as

implemented in MEGA 4 [78]. In addition, MrBayes 3.1 [48]

with default model and priors was used to construct MEF2

Bayesian phylogenetic tree. Searches were started from a random

tree (nruns = 1) with 4 heated chains (temp = 0.05) and 300,000

iterations, the initial 5,000 trees were discarded, and finally a

consensus tree using the Bayesian posterior probabilities (PPs) to

evaluate branch support was constructed. The consensus Bayesian

tree (see Figure S1) is broadly consistent with the former NJ tree.

Detection of evolutionary rates for MADS and MEF2s
coding regions

To test whether there were different evolutionary rates among

MEF2A-D proteins in vertebrates, the YN00 program [59] of

PAML4 [53] was used to estimate substitution rates of MEF2

coding sequences by pairwise calculation of Ka/Ks between mice

and humans (see Table 1). To our knowledge, a high evolutionary

rate is thought to originate from two possible ways: one is simply a

long-term accumulation of substitutions because of relaxed natural

selection; the other is an abrupt increase of substitutions in an

episodic period because of functional divergence. To test which

scenario brings the increase of MEF2B evolutionary rate, the

CODEML program of PAML4 [53] was used to implement

models that allow for different v parameters in different parts of

the MEF2A-D phylogeny (see Figure S2). The simplest model,

referred to as null hypothesis H0, assumes the same v ratio for all

branches in the phylogeny. Other models, referred to as

alternatives, specify independent v ratio for the corresponding

branch in the phylogeny (see Table 2). The likelihood ratio test

(LRT) [52] was applied to measure the statistical significance of

each pair of nested models.

Since positive selection is likely to act on a small subset of sites in

a protein and thus averages of substitution rates across a protein

with lower than 1 may not represent that all the sites in the protein

are under negative selection. Besides, even though all the sites in a

protein are under negative selection, various negative selection

pressures still may appear in different domains in a protein. To test

whether some sites in MADS and MEF2s regions are under

positive selection, we used two pair models from the CODEML

program [53]: M1a (Nearly Neutral) against M2a (Positive

Selection); and M7 (beta) against M8 (beta & v). M1a allows

two classes of v sites: negative sites with v0,1 estimated from our

data and neutral sites with v1 = 1, whereas M2a adds a third class

with v2 possibly .1 estimated from our data. M7 allows ten

classes of v sites between 0 and 1 according to a beta distribution

with parameters p and q, whereas M8 adds an additional class with

v possibly .1 as M2a does. In both comparisons, degree of

freedom (df) is 2. In addition, to test whether variable selection

pressures exist among MADS/MEF2s sites, we used a pair model

also from the CODEML program [53]: M0 (one ratio) against M3

(discrete). M0 specifies a single v ratio for all MEF2 coding sites,

whereas M3 specifies MEF2 coding sites into 3 discrete classes.

Degree of freedom for this comparison is 4.

In addition, to reveal whether there are some sites along

particular MEF2 branches, we also did branch-site analyses

employing the Test 2 [80] of the null model A H0 (model = 2

NSsites = 2) with v2 fixed to 1 in comparison to alternative model

A H1 with v2 to be estimated [53]. In contrast to 3.84 for 5% and

6.63 for 1% for x2
1
, the critical values are 2.71 at 5% and 5.41 at

1% [53] given that the null distribution (the branch-site model we

used here) is the 50:50 mixture of point mass 0 and x2
1
.

To compare evolutionary rate between type I and type II

MADS factors in animals, substitution rates (see Figure 2) of SRF

and MEF2A-D were calculated in humans and mice by using dogs

and cows as outgroups. Here, substitution rate was simply

determined as mutation rate per site [81] across coding sequences.
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