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Abstract

Ubiquitin (Ub) is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is
majorly conjugated on the lysine residue of protein by Ub-ligating (E3) enzymes. Three major enzymes participate in
ubiquitin conjugation. They are – E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin,
respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a
protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in
biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF)
network to identify protein ubiquitin conjugation (ubiquitylation) sites. This work not only investigates the amino acid
composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids
around ubiquitylation (Ub) sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3
recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size
(220,+20) revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary
information), which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate
Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination
of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The
prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid
sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that
the integration of distant sequence features of Ub sites can improve predictive performance. Additionally, the independent
test demonstrates that the proposed method can outperform other ubiquitylation prediction tools.
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Introduction

Ubiquitin (Ub) is a small protein that consists of 76 amino acids

about 8.5 kDa. Ubiquitin conjugation sites of protein (Ubiquityla-

tion), which is an essential post-translational modification, is a

sequential process that involves a group of enzymes known as E1

(activating enzyme), E2 (conjugating enzyme) and E3 (ubiquitin

ligase). The ubiquitylation system is well-known for the selective

degradation of serveral short-lived proteins in eukaryotic cells [1].

The attachment of a ubiquitin or poly-ubiquitin chains to proteins

influences serveral cellular processes, including transcriptional

regulation, signal transduction, development, apoptosis, endocytosis,

and cell proliferation [2]. Ubiquitin is mostly conjugated on the lysine

residue of a protein by Ub-ligating (E3) enzymes. The E3 ligase must

be sufficiently specific and must act only on a defined subset of cellular

targets to ensure signal fidelity [3]. Another enzyme, E4, has that can

stabilize and extend a poly-ubiquitin chain, has also been found [4].

With the development of high-throughput tandem mass

spectrometry-based proteomics, the number of studies of the

comprehensive identification ubiquitylated proteins and their

conjugated sites is increasing [5]. UbiProt [6] identified all

experimentally verified ubiquitin-conjugated sites from the

publicly literature. Some of the entries include information about

enzyme data obtained by enzyme purification and isolation. The

entries supply annotations of the ubiquitin-conjugated and the

exact positions of the ubiquitin-conjugation sites. UniProtKB/

Swiss-Prot [7] is a comprehensively annotated protein database.

Both experimentally validated and putative ubiquitin-conjugated

annotations can be obtained from the post-translation modifica-

tion annotations in the database.

Experimental identifications of ubiquitin-conjugation sites on

ubiquitylated proteins in vivo and in vitro are the foundation for

understanding the mechanisms of ubiquitination dynamics.

However, these experiments are commonly time-consuming,

labor-intensive and expensive. the in silico prediction of ubiqui-

tin-conjugated sites with high predictive performance could be

promising for preliminary analyses and could greatly reduce the

number of potential targets that require further in vivo or in vitro
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confirmation. UbiPred [8] used an algorithm for mining

informative physicochemical properties from protein sequences

to train SVM-based ubiquitylation site prediction system. Based

on leave-one-out cross-validation, the SVM model that is trained

with 31 physicochemical properties was evaluated. It was found to

improve the predictive accuracy from 72.1% to 84.4%. Recently,

Radivojac et al. [9] have investigated that the sequence biases and

structural preferences around known ubiquitination sites are

similar to those of intrinsically disordered protein regions.

Additionally, Radivojac et al. developed a random forest predictor

of ubiquitination sites, UbPred, that could reach a balanced

accuracy of 72%.

Given the importance of ubiquitin conjugation in biological

processes, this investigation presents a method, UbSite, in which

an efficient radial basis function (RBF) network is utilized to

identify protein ubiquitin conjugation (ubiquitylation) sites. The

experimentally verified ubiquitylated proteins and ubiquitylation

sites are collected from UbiProt [6] and UniProtKB/Swiss-Prot

[7]. Not only amino acid composition, but also structural

characteristics, physicochemical properties, and evolutionary

information of amino acids around the ubiquitylation (Ub) sites

are investigated. With reference to the pathway of ubiquitin

conjugation, which is by sequential process that involves a group of

enzymes, E1 (activating enzyme), E2 (conjugating enzyme) and E3

(ubiquitin ligase), the distant sequence features of ubiquitylation

sites for E3 recognition are investigated. A position specific scoring

matrix (PSSM), which is generated by PSI-BLAST [10] search

against a non-redundant database of protein sequences, is utilized

to study the evolutionary information surround the ubiquitin

conjugation sites. The constructed PSSM is regarded as a measure

of residue conservation in a window of a given length. Based on

the measurement of F-score in a large window size (220,+20),

the statistically significant amino acid composition and evolution-

ary information, which are mainly located at positions distant from

the ubiquitylation sites, can be utilized effectively to differentiate

ubiquitylation sites from non-ubiquitylation sites. An evaluation of

the trained models based on five-fold cross-validation revealed,

that the prediction sensitivity, specificity and accuracy were

65.5%, 74.8%, and 74.5%, respectively. The independent test

demonstrates shows that UbSite outperform previous ubiquityla-

tion prediction tools.

Materials and Methods

As shown in Fig. 1, the proposed approach, UbSite, is composed

of three major analytical steps - data collection and preprocessing,

feature extraction, and model training and evaluation. This

investigation comprehensively analyzes the structural characteris-

tics and physicochemical properties that surround the ubiquitin

conjugation sites. The details of the analysis are described as

follows.

Data collection and preprocessing
Experimentally confirmed ubiquitin conjugation sites are

collected from UbiProt [6] and UniProtKB/Swiss-Prot [7].

UbiProt consists of 158 experimentally confirmed ubiquitin-

conjugation sites. Then, we extracted the sequences from release

57.0 of UniProtKB/Swiss-Prot if the sequences are annotated as

‘ubiquitin’ in the ‘MOD_RES’ fields. We also removed the sites

that are annotated as ‘‘by similarity’’, ‘‘potential’’ or ‘‘probable’’. A

total of 337 entries are annotated as ubiquitin-conjugated proteins

in UniProtKB/Swiss-Prot, and they include 416 ubiquitylation

sites. After removing the redundant data from UbiProt and

UniProtKB/Swiss-Prot, a total of 442 experimental ubiquitylation

sites associated with 350 ubiquitylated proteins are obtained. In

this work, the 442 experimental ubiquitylation sites are regarded

as the positive dataset.

To prevent overestimation of the predictive performance,

homologous sequences are removed from the training data by

using a window size of 2n+1 for ubiquitylation sites. With reference

to the reduction process in MASA [11], two ubiquitylated protein

sequences with more than 30% identity were defined as

homologous sequences. Then, two homologous sequences were

specified to re-align the fragment sequences using a window length

of 2n+1, centered on the ubiquitylation sites using BL2SEQ [12].

For two fragment sequences with 100% identity, when the

ubiquitylation sites in the two proteins are in the same positions,

only one site was kept. The homologous negative data were also

reduced by using the same approach.

With respect to classification, the predictive performance of the

trained models may be overestimated because of the over-fitting of

a training set. To estimate the real predictive performance, the

experimental ubiquitylation sites, whose annotated dates are after

April 4 2006, are selected as the independent test set. As shown in

Table 1, the data in the non-homologous training set include 385

positive sites (ubiquitylation) and 12582 negative sites (non-

ubiquitylation) in 301 ubiquitylated proteins. The data of the

non-homologous independent test set include 57 positive sites and

3502 negative sites in 49 ubiquitylated proteins. Following the

evaluation by five-fold cross-validation, the trained model with the

highest accuracy was further evaluated based on independent test

data. The independent test sets were utilized to test not only the

proposed method but also the previously proposed ubiquitylation

prediction tools, UbiPred [8] and UbPred [9].

Feature extraction and coding
Coding of amino acid sequences. Fragments of amino

acids are extracted from positive and negative training sets using a

window of length 2n+1 that is centered on ubiquitylation sites.

Various values of n are used to determine the optimal window

length. The BLOSUM62 matrix is adopted to represent the

protein primary sequence information as the basic feature set for

learning radial basis function networks. A matrix of m6n elements

is used to represent each residue in a training dataset, where n

denotes the window size and m = 21, which elements comprise 20

amino acids and one terminal signal. Each row of the normalized

BLOSUM62 matrix is adopted to encode one of 20 amino acids.

Compositions of amino acids and amino acid pairs. A

total of n vectors {xi, i = 1, …, n} were used, to represent all n

proteins in the training data. Each vector is labeled with the group

of its corresponding protein (e.g. ubiquitylated or non-

ubiquitylated). The vector xi has 20 elements for the amino acid

composition and 400 elements for the amino acid pair

composition. The 20 elements specify the numbers of

occurrences of 20 amino acids normalized with the total number

of residues in the protein, and the 400 elements specify the

numbers of occurrences of 400 amino acid pairs normalized with

the total number of residues in the protein. In this investigation,

amino acid composition and amino acid pair composition are

combined, yielding, 420 elements in each vector.

Position Specific Scoring Matrix Profiles. In the point of

view of structure, several amino acid residues of a protein can be

mutated without changing its structure, and two proteins may

have similar structures with different amino acid compositions.

Position Specific Scoring Matrix (PSSM) profiles, which have been

extensively utilized in protein secondary structure prediction,

subcellular localization and other bioinformatics problems are

adopted herein with significant improvement [13,14,15]. The

Identify Ubiquitin Conjugation Sites
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PSSM profiles were obtained by PSI-BLAST against non-

redundant fragment sequences of Ub sites.

Figure 2 displays in detail how to generate the 400D PSSM

features for each ubiquitylation and non-ubiquitylation site. The

matrix of m620 elements has rows centered on ubiquitylation or

non-ubiquitylation site, extracted from the PSSM profile, where m

represents the window size and 20 represents the position specific

scores for each type of amino acid. Thereafter, the m620 matrix is

transformed into a 20620 matrix by summing up the rows that are

associated with the same type of amino acid. Finally, every

element in 20620 matrix is divided by the window length m and

then is normalized using the formula:
1

1ze{x
.

Structural characteristics. Since most of the experimental

ubiquitylated proteins do not have corresponding protein tertiary

structures in PDB [16], an effective tool, RVP-Net [17], was used

to compute the ASA value based on the protein sequence. The

computed ASA value is the percentage area of each amino acid on

the proteins that is accessible to the solvent. RVP-net applies a

neural network to predict real ASA values of the residues based on

neighborhood information, with a mean absolute error of 18.0–

19.5%, defined as the absolute difference between the predicted

and experimental values of relative ASA per residue [17]. Full-

length protein sequences with experimental ubiquitylated sites are

input to RVP-Net to compute the ASA value for all residues. The

ASA values of amino acids that surround the ubiquitylation site

were extracted and scaled from zero to one.

PSIPRED [18] was utilized to compute the secondary structure

that surrounds the ubiquitylation sites from the protein sequence.

PSIPRED is a simple and reliable method for predicting

secondary structure, which applies two feed-forward neural

networks to analyze the output obtained from PSI-BLAST [19].

PSIPRED 2.0 achieved a mean Q3 score of 80.6% across all 40

submitted target domains without obvious sequence similarity with

structures that are present in PDB; accordingly, PSIPRED has

been ranked as the best of 20 evaluated methods [20]. The output

of PSIPRED is ‘‘H,’’ ‘‘E’’ or ‘‘C’’, which stand for helix, sheet and

coil, respectively. The full-length protein sequences with ubiqui-

tylation sites are inputted to PSIPRED to determine the secondary

structure of all residues. The orthogonal binary coding approach is

adopted to transform the three terms that specify the secondary

structure into numeric vectors. For instance, helix is encoded

‘‘100;’’ sheet is encoded ‘‘010,’’ and coil is encoded ‘‘001.’’

F-score measurement. To study further the specificity of the

substrate sites, the features that statistically differ between

ubiquitylation sites and non-ubiquitylation sites are identified,

based on a statistical measurement of F-score [21]. The F-score of

the ith feature is defined as,

F� score ið Þ~

x
zð Þ

i {xi

� �2

z x
{ð Þ

i {xi

� �2

1

nz{1

Xnz

k~1

x
zð Þ

k,i {x
zð Þ

i

� �2

z
1

n{{1

Xn{

k~1

x
{ð Þ

k,i {x
{ð Þ

i

� �2

ð1Þ

where xi, xi
zð Þ and xi

{ð Þ are the average value of the ith feature

in whole, positive, and negative data sets, respectively. nz denotes

the number of positive data, n{ denotes the number of negative

data, x
zð Þ

k,i denotes the ith feature of the kth positive instance, and

x
{ð Þ

k,i denotes the ith feature of the kth negative instance [21]. F-

score supports a simple approach for measuring features that are

more discriminative. If the i-th feature has a high F-score, then this

feature effectively discriminates between positive and negative

datasets.

Training and evaluation of model
In this work, the QuickRBF package [22] has been employed to

construct radial basis function network (RBFN) classifiers. As

presented in Fig. S1 (See Supplementary Materials), the general

architecture in an RBFN consists of three layers, namely the input

layer, the hidden layer, and the output layer. The input layer

broadcasts the coordinates of the input vector to each of the nodes

in the hidden layer. Each node in the hidden layer then produces

an activation based on the associated radial basis kernel function.

Finally, each node in the output layer computes a linear

combination of the activations of the hidden nodes. The general

mathematical form of the output nodes in RBFN is as follows:

cj xð Þ~
Xk

i~1

wjiw x{mik k; sið Þ; ð2Þ

where cj xð Þ denotes the function corresponding to the j-th output

node and is a linear combination of k radial basis functions w()
with center mi and bandwidth si; Also, wji denotes the weight

associated with the correlation between the j-th output node and

the i-th hidden node. In this work, we adopted a fixed bandwidth

(s) of five, and used all input nodes as centers (k = n). With its

several bioinformatics applications, classification based on radial

basis function network has been extensively adopted to predict

factors such as the cleavage sites in proteins [23], inter-residue

contacts [24], protein disorder [25], discrimination of b-barrel

proteins [15], and identification of O-linked glycosylation [26].

Predictive performance of the constructed RBFN classifier is

evaluated by performing k-fold cross validation. The original data

(training data in Table 1) is divided into k subgroups by splitting

each dataset into k approximately equal sized subgroups. In one

round of cross-validation, a subgroup is regarded as the test set,

and the remaining k-1 subgroups are regarded as the training set.

The cross-validation process is repeated k rounds, with each of k

subgroups used as the test set in turn. Then, the k results are

combined to produce a single estimation. The advantage of k-fold

cross-validation is that all original data are regarded as both

Table 1. The statistics of non-homologous training data
and independent test data for ubiquitylation and
non-ubiquitylation sites.

Training dataa Independent datab

Number of proteins 301 49

Number of ubiquitylated lysines 385 57

Number of non-ubiquitylated lysines 12,582 3,502

aTraining data: the annotation date of experimental ubiquitylation site is before
April 4 2006.

bIndependent data I: the annotation date of experimental ubiquitylation site is
between April 4 2006 and January 1 2008.

doi:10.1371/journal.pone.0017331.t001

Figure 1. The analytic flowchart of UbSite.
doi:10.1371/journal.pone.0017331.g001
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training set and test set, and each data is used for test exactly once

[27].The following measures of predictive performance of the

trained models are defined. Precision (Pr) = TP/(TP+FP), Sensi-

tivity (Sn) = TP/(TP+FN), Specificity (Sp) = TN/(TN+FP), and

Accuracy (Acc) = (TP+TN)/(TP+FP+TN+FN), where TP, TN, FP

and FN represent the numbers of true positives, true negatives,

false positives and false negatives, respectively.

Results and Discussion

Amino acid composition of ubiquitin conjugation sites
This investigation focuses on the analysis of ubiquitin conju-

gated lysine. In ubiquitin conjugation, the region of the ubiquitin-

conjugated lysine residues is in directly contact with the E3 ligase

catalytic center. Since E3 ubiquitin ligase enzymes have a

substrate binding specificity, whether the region of ubiquitin-

conjugated lysine conserved amino acid motifs for E3 ubiquitin

ligase recognition must be explored. After the duplicated

sequences of experimental ubiquitylation sites are removed, as

shown in Fig. 3, the amino acids composition that flanked the

ubiquitin-conjugated lysines (ubiquitylation site centered at

position 0) are graphically visualized as a 41-mer sequence logo.

WebLogo [28,29] is adapted to generate the graphical sequence

logo for the relative frequency of the amino acid at each position

around the ubiquitylated sites. The conservation of amino acids

around the ubiquitylation sites can then be easily investigated.

Based on the sequence logo representation, the most abundant

residues of the ubiquitylation sites are the charged and polar

amino acids, including Aspartic acid (D) and Glutamic acid (E).

The amino acids around the modified sites are not obviously

conserved, a slight difference between the preferences of amino

acids for the ubiquitylation and non-ubiquitylation sites.

Since the representation of sequence logos involves different

preferences of amino acids for ubiquitylated and non-ubiquitylated

sites, the statistical difference in the distribution of amino acids

around ubiquitylated (Ub) and non-ubiquitylated (non-Ub) lysines

is calculated. Figure S2 (See Supplementary Materials) displays the

compositional differences between Ub and non-Ub sites. The

more abundant amino acids at the Ub sites are Alanine (A),

Aspartic acid (D), Glycine (G) and Isoleucine (I), and the depleted

hydrophobic residues around these sites include Cysteine (C) and

Leucine (L) around Ub sites. Moreover, the Lysine (K) and Serine

(S) are less abundant around Ub sites. The amino acid sequences

around the ubiquitin-conjugated sites can be alternatively grouped

Figure 3. The position-specific amino acid composition, accessible surface area and secondary structure of ubiquitin conjugated
lysines and non-ubiquitin conjugated lysines.
doi:10.1371/journal.pone.0017331.g003

Figure 2. The detailed process of generating position specific scoring matrix (PSSM) and encoding the fragment of amino acid
sequence by generated PSSM.
doi:10.1371/journal.pone.0017331.g002
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by various methods to generalize the sequence feature because

amino acid classification is hierarchical. As presented in Table S1

(See Supplementary Materials), the three-class grouping method

and the eight-class grouping method are used to 20 amino acids

into subgroups that capture their chemical properties. Three-class

grouping methods can be based on hydrophobicity [30], polarity

[31], normalized van der Waals volume [32] and polarizability

[33]. Additionally, a Two Sample Logo [34] of 41-mer

compositional biases around Ub conjugation sites compared to

non-Ub conjugation sites is presented in Fig. S3 (See Supplemen-

tary Materials). The amino acid residues that significantly enriched

and depleted (P-value ,0.05; t-test) around Ub conjugation sites

are shown. With the investigation of position-specific difference of

amino acid composition in 41-mer window length, Figure S3

indicates the positions that are distant from Ub sites have

statistically significant differences of amino acid composition.

Structural characteristics of ubiquitin conjugation sites
A side-chain of an amino acid that undergoes post-translational

modification preferentially accesses the surface of a protein [35].

To investigate the preference of the solvent accessible surface area

[36] that surrounds ubiquitin conjugation sites in protein tertiary

structures, the experimentally identified ubiquitylation sites are

mapped to the corresponding positions of the protein entries in the

Protein Data Bank (PDB) [16]. The preference of the secondary

structure around the ubiquitylation sites is also considered. Since

most of the experimentally confirmed ubiquitylated proteins do

not have corresponding protein tertiary structures in PDB [16],

RVP-Net [17] and PSIPRED [18] are adopted to compute the

ASA value and secondary structure, respectively, from the protein

sequence. Figure 3 presents the sequence logo of the secondary

structure and the average percentage of ASA in the 41-mer

window (220,+20) of the ubiquitylation (Ub) and non-ubiquity-

lation (non-Ub) sites. In the investigation of secondary structure

around the Ub sites, Catic et al. [37] has found the preference for

coil structure. In this work, the observations reveal that Ub ligase

(E3) prefers to recognize the regions that are located in coil (loop)

or helix structures. In contrast to Ub sites, non-Ub sites don not

have an obviously preferred secondary structure. In the study of

solvent accessibility, most of the Ub or non-Ub lysines are located

in the highly accessible surface area. However, the mean solvent-

accessible surface area that surrounds the Ub sites slightly exceeds

that around non-Ub sites.

Investigation of distant sequence features for
ubiquitylation sites

Owing to the direct interaction between the enzyme and the

substrate site, most of the proposed PTM prediction methods

investigate amino acid sequences close to the modified sites. The

ubiquitin conjugation pathway, which involves a sequential process

with a group of enzymes known as E1 (activating enzyme), E2

(conjugating enzyme) and E3 (ubiquitin ligase) [1] motivates an

investigation of the distant sequence features that are distant from

ubiquitylation sites. In Fig. 4, a graphical model represents the

hypothesis that contains a substrate site that is distant from

ubiquitylated lysine for E3 recognition. Ubiquitin is mostly

conjugated on the lysine residue of a protein by substrate

recognition of Ub-ligating (E3) enzymes [2]. E3 enzymes function

as the substrate recognition modules of the system and are capable

of interaction with both E2 and substrate. Thus, the E3 ligase must

be sufficiently specific and must act only on a defined subset of

cellular targets to ensure signal fidelity [3]. Based on the

measurement of the F-score in a large window size (220,+20),

Fig. 5 displays the statistically significant composition of amino acids

at positions 216, 210, 23, 21, +1, +5, +10, +13, and +17. The

surrounding positions that have high F-scores are (significant for

differentiating the ubiquitylation sites from the non-ubiquitylation

sites. Additionally, Tables S2 and S3 (See Supplementary Materials)

present the significant amino acids and di-peptides in the

surrounding region (220,+20), which have a higher F-score value.

Position specific scoring matrix (PSSM), which is generated by

PSI-BLAST [10] search against a non-redundant database of

protein sequence, is utilized to obtain evolutionary information

about amino acids around the ubiquitin conjugation sites. The

constructed PSSM includes the probability that each amino acid is

present at each position. Therefore, PSSM is regarded as a measure

of residue conservation in a window of a particular length. Figure 6

displays statistically significant evolutionary information concerning

amino acids at each position in the window from 220 to +20. Based

on the measurement of F-scores, the positions 219, 217, 215,

Figure 4. The hypothetic model of identifying the distant sequence features for E3 recognition.
doi:10.1371/journal.pone.0017331.g004
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212, 210, 24, 21, +5, +9, +13, +15 and +18, where the F-scores

are highest, are significant for differentiating the ubiquitylation sites

from the non-ubiquitylation sites. In the investigation of distant

sequence features that are distant from ubiquitylation sites, the

length of the training data window for learning the predictive model

is set to 41-mer (220,+20).

To demonstrate the distant sequence features are informative for

the identification of ubiquitylation sites, herein, five-fold cross-

validation is performed to evaluate the models trained with various

window sizes 2n+1, where n varies from five to twenty. The

predictive models (RBFN classifiers) are trained with the feature of

amino acid composition. Figure 7 presents the sensitivity, specificity,

and accuracy of cross-validation based on various window lengths.

As different window sizes from 11-mer to 41-mer are applied, the

predictive accuracy improves from 63.1% to 73.7%, the sensitivity

and specificity increase as well. Especially for the window length

which is longer than 35-mer, the predictive power is apparently

improved with the accuracy that is higher than 70.0%. As the

investigation of distant sequence features in Figures 5 and 6, the

model that was trained with a large window length performs better

than that without the distant sequence features.

Predictive performance of cross-validation using various
training features

Most predictive models are based on the features of amino acid

sequences. To determine which features can be utilized to construct

Figure 5. The statistically significant composition of amino acids for each position in the window length from 220 to +20. Based on
the measurement of F-score, the positions 216, 210, 23, 21, +1, +5, +10, +13, and +17, containing higher value of F-score, are significant for
differentiating the ubiquitylation sites from non-ubiquitylation sites.
doi:10.1371/journal.pone.0017331.g005

Figure 6. The statistically significant evolutionary information of amino acids for each position in the window length from 220 to
+20. Based on the measurement of F-score, the positions 219, 217, 215, 212, 210, 24, 21, +5, +9, +13, +15 and +18, containing higher value of F-
score, are significant for differentiating the ubiquitylation sites from non-ubiquitylation sites.
doi:10.1371/journal.pone.0017331.g006
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models that differentiate between ubiquitylation sites and non-

ubiquitylation sites, various features, including the sequence of amino

acids, amino acid composition, accessible surface area, and

physicochemical properties are evaluated by k-fold cross-validation.

The amino acids (AA) and accessible surface area (ASA) around the

ubiquitylated sites are encoded using a BLOSUM62 matrix and the

RVP-Net-computed ASA values, respectively. Table 2 presents the

predictive performance achieved using various training features,

based on five-fold cross-validation. Of the models trained using

individual features, those that are trained using amino acid

composition slightly outperform those that are trained using amino

acids, ASA, the secondary structure, or PSSMs. In particular, the

model trained with the PSSM profile of non-redundant ubiquitylated

protein sequences achieves an accuracy of 70%. However, the model

that is trained with the secondary structure underperforms prediction

based on ubiquitylation sites. According to the F-score of distant

sequence features, the amino acid composition and evolutionary

information (PSSM) at several flanking positions are statistically

differently distributed between ubiquitylation sites and non-ubiqui-

tylation sites. Therefore, the effects of combining informative features

are evaluated. As presented in Table 2, the model that is trained using

the combination of amino acid composition and PSSM profile of

non-redundant fragment sequences of Ub sites performs best, with

the best-balanced predictive sensitivity and specificity.

Predictive performance of independent testing
To determine whether the models (are over-fitted to their

training data, independent sets of data concerning Ub sites and

non-Ub sites are constructed and used to test the model that was

trained with the combination of amino acid composition and the

PSSM profile of non-redundant fragment sequences of Ub sites,

which have the highest predictive accuracy. Independent test sets

Figure 7. The predictive performance of the models trained with different window length varying from 11-mer to 41-mer.
doi:10.1371/journal.pone.0017331.g007

Table 2. The predictive performance of cross-validation using various training features.

Training features Sensitivity (%) Specificity (%) Accuracy (%)

AA (Blosum62) 54.3 67.9 67.5

AA composition 63.6 74.1 73.7

AA pair composition 59.2 74.4 74.0

Accessible Surface Area 59.3 69.7 68.6

Secondary structure 58.4 59.7 59.1

PSSM 1 60.0 66.2 66.0

PSSM 2 50.9 69.3 68.7

PSSM 3 54.3 68.9 68.5

AA composition + PSSM 1 62.3 73.5 73.1

AA composition + PSSM 2 61.8 74.6 74.2

AA composition + PSSM 3 65.5 74.8 74.5

AA: amino acid; PSSM 1: The PSSM profiles were obtained by using PSI-BLAST against UniProt NR database; PSSM 2: The PSSM profiles were obtained by using PSI-BLAST
against non-redundant Ub protein sequence database; PSSM 3: The PSSM profiles have been obtained by using PSI-BLAST against non-redundant fragments of Ub site
sequ2ences.
doi:10.1371/journal.pone.0017331.t002
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include 57 ubiquitylation sites and 3502 non-ubiquitylation sites,

According to Table 3, are used to determine the predictive sensitivity,

specificity, and accuracy of the proposed method, which were 57.9%,

72.4%, and 72.2%, respectively. Generally, the performance in an

independent test approaches that of cross-validation. Whereas cross-

validation outperforms independent testing, the performance of the

trained model may be overestimated. The independent test

establishes that the constructed RBF model does not over-fit the

training data. The independent test sets were used to test other

ubiquitylation predictors. The predictive sensitivity and specificity of

UbiPred [8] were 52.6% and 52.6%, respectively, indicating

balanced predictive performance. However, the independent test

also indicates that UbiPred does not perform as well as its developers

claimed. The predictive sensitivity and specificity of UbPred [9] were

42.1% and 68.7%, respectively, indicating poor sensitivity for an

independent test set. In UbiPred and UbPred, the data source of

experimental ubiquitylation sites is collected from UbiProt [6], which

mainly stored the yeast ubiquitylation data. However, UbSite

integrates the experimental ubiquitylation sites from UbiProt and

UniProtKB/Swiss-Prot [7], which accumulated the ubiquitylation

data from multiple species. This could partially explain the low

sensitivities of UbPred and UbiPred on these independent test data

which come from multiple species.

Conclusion
This investigation proposes a method, UbSite, which incorpo-

rates the efficient radial basis function (RBF) network to identify

ubiquitin conjugation sites on protein sequences. Not only the

amino acid composition but also the structural characteristics,

physicochemical properties, and evolutionary information of amino

acids around the ubiquitylation (Ub) sites are explored. With

reference to the pathway of ubiquitin conjugation, which involves a

sequential process with a group of enzymes known as E1 (activating

enzyme), E2 (conjugating enzyme) and E3 (ubiquitin ligase), the

substrate sites for E3 recognition, which are distant from

ubiquitylation sites, are examined. According to the measurement

of F-score in a large window size(220,+20), most of the statistically

significant amino acids and evolutionary information (PSSM),

which can be used effectively to differentiate Ub sites from non-Ub

sites, are located at large distances from Ub sites. To prevent any

overestimation of predictive performance, duplicated sequences are

removed using a window size determined by the collected data sets.

Although the amino acid sequences around the ubiquitin

conjugated sites do not contain a conserved motif, cross-validation

results indicate that the integration of the evolutionary information

around the sites can improve predictive performance. Table 3

compares proposed method with other ubiquitylation prediction

tools, in terms of materials, method, training features, number of

training data, window length, and proposed predictive performanc-

es. Furthermore, the independent test demonstrates that UbSite can

outperform other ubiquitylation prediction tools.

Although the proposed method is accurate and robust, according

to independent tests, some issues remain to address in the future.

Firstly, the structural preferences of ubiquitin conjugation sites

preferred structures at ubiquitin conjugation sites must be examined

in greater detail because flanking residues are not conserved. In

addition to the solvent-accessible surface area and the secondary

structure, the B-factor, intrinsically disordered region, protein linker

region, and other factors should be explored experimentally at

ubiquitylation sites in the protein regions with PDB entries.

Following work done previously on phosphorylation [38], the local

3D structure of ubiquitylation sites may be extracted for further

analysis. Secondly, with reference to the pathway of ubiquitin

conjugation, the ubiquitylated proteins may contain a substrate site

is distant from ubiquitylation lysine and useful in E3 recognition.

Therefore, the distant sequence features of ubiquitylation sites

should be investigated in more detail. For instance, using the motif

discovery tool, like MEME [39], to explore the significant motifs

which may be the substrate sites of E3 recognition.

Supporting Information

Figure S1 The general architecture of RBFN consisting
of input layer, hidden layer, and output layer.

(TIF)

Figure S2 The compositional differences of amino acids
around ubiquitylation sites compared to non-ubiquity-
lation sites.

(TIF)

Table 3. Comparison between our method (UbSite) and other ubiquitylation prediction tools.

Tools UbSite UbiPred UbPred

Materials UbiProt + Swiss-Prot UbiProt UbiProt

Method Radial basis function network Support vector machine Random forest

Training features AAC + PSSM Physicochemical properties AAC + PSSM + disordered
regions + physicochemical
properties

Training data Number of positive data 385 151 272

Number of negative data 12,582 3,424 4,651

Window length 220,+20 210,+10 212,+12

Proposed performance Sensitivity (%) 65.5 83.44 -

Specificity (%) 74.8 85.43 -

Accuracy (%) 74.5 84.44 72.0

Independent test Sensitivity (%) 57.9 52.6 42.1

Specificity (%) 72.4 52.6 68.7

Accuracy (%) 72.2 52.6 68.3

Abbreviation: AAC, amino acid composition; PSSM, position-specific scoring matrix.
doi:10.1371/journal.pone.0017331.t003
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Figure S3 A Two Sample Logo of the compositional
biases around Ub conjugation sites compared to non-Ub
conjugation sites. The amino acid residues that significantly

enriched and depleted (P-value,0.05; t-test) around Ub conjuga-

tion sites are shown.

(TIF)

Table S1 The graphical representation of chemical
properties surrounding ubiquitylation sites using dif-
ferent grouping method.
(DOC)

Table S2 F-score of amino acid composition for 40
positions around Ubi site.
(DOC)

Table S3 Top 20 di-peptides with high value of F-score
in the 41-mer window size (220,+20) around Ub site.

(DOC)
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