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Abstract

Establishing the neurological basis of behavioural dysfunction is key to provide a better understanding of Parkinson’s
disease (PD) and facilitate development of effective novel therapies. For this, the relationships between longitudinal
structural brain changes associated with motor behaviour were determined in a rat model of PD and validated by post-
mortem immunohistochemistry. Rats bearing a nigrostriatal lesion induced by infusion of the proteasome inhibitor
lactacystin into the left-medial forebrain bundle and saline-injected controls underwent magnetic resonance imaging (MRI)
at baseline (prior to surgery) and 1, 3 and 5 weeks post-surgery with concomitant motor assessments consisting of forelimb
grip strength, accelerating rotarod, and apormorphine-induced rotation. Lactacystin-injected rats developed early motor
deficits alongside decreased ipsilateral cortical volumes, specifically thinning of the primary motor (M1) and somatosensory
cortices and lateral ventricle hypertrophy (as determined by manual segmentation and deformation-based morphometry).
Although sustained, motor dysfunction and nigrostriatal damage were maximal by 1 week post-surgery. Additional volume
decreases in the ipsilateral ventral midbrain; corpus striatum and thalamus were only evident by week 3 and 5. Whilst
cortical MRI volume changes best predicted the degree of motor impairment, post-mortem tyrosine hydroxylase
immunoreactivity in the striatum was a better predictor of motor behaviour overall, with the notable exception of
performance in the accelerating rotarod, in which, M1 cortical thickness remained the best predictor. These results highlight
the importance of identifying extra-nigral regions of damage that impact on behavioural dysfunction from damage to the
nigrostriatal system.
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Introduction

Region-specific loss of dopaminergic neurons in the substantia

nigra pars compacta (SNc) is the pathological hallmark of

Parkinson’s disease (PD), a progressive neurodegenerative move-

ment disorder [1]. Neuronal loss is accompanied by formation of

intraneuronal inclusions, Lewy bodies, composed primarily of the

protein a-synuclein [2]. The anatomical and functional changes in

PD may be classified into a three phase model: (1) mesenchephalic

(dopaminergic neuronal loss), (2) basal ganglia (dopaminergic

deafferentation) and (3) cortical (functional reorganisation) [3].

Longitudinal investigations using structural magnetic resonance

imaging (MRI) provide a framework to map the sequence of

neuroanatomical changes at all levels of this model. This is an

advantage over techniques such as positron emission tomography

(PET), which can only focus on one level, for example pre-synaptic

dopamine terminals [4]. This information may then be related to

clinical symptoms in patients to identify their neuroanatomical

causes. This approach has been used successfully in several clinical

studies [3,5,6,7,8], but such studies are lacking in animal models.

MRI is well suited for this purpose, since the high anatomical

resolution permits collection of quantitative information on

morphological changes in the brains of disease models, which

may be directly correlated with behavioural phenotypes [9,10,11].

Notably, such studies in animal models offer a significant

advantage in that the neuropathology underlying MRI signal

changes may be investigated. Moreover, this approach has the

potential to identify surrogate markers of disease progression,

which may be beneficial in the evaluation of novel pre-clinical

models of PD and evaluation of experimental PD therapeutics

[9,10,12].

Although several MRI studies have been conducted in both

primate [13,14,15] and rodent models of PD [16,17,18,19,20,21],

these have primarily focussed exclusively on the nigrostriatal

system or on changes in brain function, rather than structure.

Previously, we have identified in vivo a pattern of morphological

changes in several brain regions in rats lesioned by intranigral

injection of the proteasome inhibitor lactacystin, which were

associated with behavioural impairment in this model [11].

Intracranial injection of proteasome inhibitors into the nigrostri-
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atal system is a model system that recapitulates key features of PD,

including a-synuclein aggregation [11,22,23,24,25]. However,

whilst dopaminergic neurons may be preferentially sensitive to

proteasome inhibition [26], synthetic proteasome inhibitors may

also induce non-specific neuronal toxicity [27,28] and affect

astrocyte proliferation and morphology [29,30]. Thus, the aim of

the current study was to map the evolution of neurodegenerative

changes (primary and secondary) in the lactacystin model and

examine their relevance to behavioural dysfunction using a

combination of MRI, behavioural assessment and linear regression

analysis. Post-mortem analyses of the brain were also conducted to

identify potential neurobiological substrate(s) underlying in vivo

morphometric changes. We hypothesized that structural brain

changes in the extra-nigral regions, as well as the nigrostriatal

system, underlie motor behavioural impairment in vivo.

Materials and Methods

Experimental animals
Male Sprague-Dawley rats (250610g, Harlan, UK) were

housed in groups of three at 2161uC on a 12 hr light: dark cycle

(lights on 0700, lights off 1900). Standard rat chow and drinking

water were available ad libitum. All animal experiments were

carried out in accordance with the Home Office Animals

(Scientific procedures) Act, UK, 1986 and were approved by the

Kings College London ethical review panel (Designation no. PCD

70/2901.)

Experimental design
The experimental design for this study is shown in Figure 1.

Animals were randomly assigned to either control or lesion groups

using a random number sequence (lesion N = 8; control N = 7). All

animals underwent serial evaluation of brain structure by MRI and

motor behavioural testing at baseline prior to surgery and 1, 3 and 5

weeks (wks) post-surgery (Figure 1). Drug-induced rotation as an

index of nigrostriatal damage was assessed at 1, 3 and 5 wks post-

surgery. All animals underwent post-mortem histological assessment.

Two separate cohorts of animals were also lesioned with lactacystin or

saline, but sacrificed at 1 or 3 wks post-lesion respectively. These

animals were included for comparative analysis of post-mortem

neuropathological changes at these time-points to investigate the

pathology underlying MRI signal changes at 1 and 3 wks in vivo.

Induction of nigrostriatal lesions
Nigrostriatal lesions were induced as previously described, with

saline and lactacystin designated animals operated on in a

randomised fashion in the same surgical session. [11]. Briefly,

animals were anaesthetised by i.p. injection of a mixture of

medetomidine hydrochloride (DomitorH, 0.25 mg/kg) and keta-

mine hydrochloride (VetalarTM, 230 mg/kg) and positioned in a

stereotaxic frame (Kopf Instruments, Tujunga, CA, USA).

Animals assigned to the lesion group received a unilateral injection

of lactacystin (10 mg in 2.5 ml; L6785, Sigma-Aldrich, Poole, UK)

into the L-MFB (AP: 24.4 mm, ML: 21.5 mm lateral from

bregma and 27.8 mm ventral to dura) [31]. Lactacystin was

dissolved in 0.9% saline (pH 7.4) immediately prior to use and

stored on ice to prevent degradation. Injections were performed at

a rate of 1 ml/min using a motorized syringe pump and the needle

was slowly withdrawn 5 min after lesioning to minimize diffusion

of toxin into the injection tract. Anesthesia was reversed 1 hr after

induction by subcutaneous (s.c.) injection of atipamezole hydro-

chloride (AntisedanH, 5 mg/kg). Animals assigned to the control

group underwent identical surgery, but received an injection of

0.9% saline. Post-operative care included analgesia (buphrenor-

phine, 0.3 mg/kg s.c. during the first 48 hr), fluid-replacement

(4 ml glucosaline solution i.p.) and mashed high-nutrient food

pellets during the first week after surgery. Animals were weighed

and semi-quantitatively scored daily for neurological deficits using

a general neurological rating scale [32]. This was done daily in a

blinded fashion until the end of the experiment.

Behavioural testing
Prior to testing (training or trial) animals were acclimatized to

the testing room for 30 min.

Grip strength meter test. Forelimb motor dysfunction was

assessed using a grip strength meter (GSM; TSE Systems, Bad

Homburg, GER) as previously described [11,33].

Accelerating rotarod. Performance on the accelerating

rotarod test (TSE systems, Bad Homburg, GER) was assessed as

previously described, with modification [34]. Briefly, animals were

assessed pre-operatively at five speeds of rotation: 8, 10, 12, 14 and

16 rpm to establish a baseline performance. Animals were allowed

to remain stationary at 0 rpm for 10 sec, after which the speed was

increased to 8 rpm for 10 sec and then progressively to 10, 12 and

14 rpm for 10 sec each. The highest speed, 16 rpm, was

Figure 1. Experimental design and time-points for MRI and behavioural analysis in animals undergoing longitudinal examination.
Additional cohorts of lesioned and control animals were sacrificed at weeks 1 and 3, respectively, for histological analysis.
doi:10.1371/journal.pone.0017269.g001
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maintained for 200 sec until the 4 min test period elapsed. These

rotational speeds were chosen so that sham (uninjured) animals

would not fall off during the test. A rat was considered failing the

4-min period test if (a) it fell off the device before the time period

elapsed or (b) it simply gripped the rungs and spun for two

consecutive revolutions rather than actively walking on the

rotating rods. Rats from both groups were tested twice daily

(once each morning and afternoon) over a 3-day period at 1, 3 and

5 wks post-surgery. The means of the test results were used for

statistical analysis.

Rotational asymmetry. Apomorphine-induced rotation

(0.1mg/kg) as an index of nigrostriatal damage was evaluated in

a bank of eight rotameter bowls as previously described [11,35].

Lesioned animals that did not reach a cut-off value of .5

contralateral turns, per minute, (indicative of ,70% nigral cell

loss) were excluded from further analysis.

Magnetic resonance imaging
In vivo T2-weighted (T2W) MR images were acquired using a

7.0 T horizontal small bore magnet (Varian, Palo Alto, CA, USA)

with a custom built head RF coil (David Herlihy, Imperial College

London) linked to a LINUX-based control console running VnmrJ

acquisition software (v2.3, Varian, Palo Alto CA, USA), using a

multi-echo, multi-slice spin-echo pulse sequence (MEMS), with the

following scan parameters: FOV = 35 mm635 mm; matrix =

1926192; TR = 4200 ms; TE = 10, 20, 30, 40, 50, 60, 70,

80 ms; 4 averages, total scan duration 54 minutes, as previously

described [11]. Fifty contiguous 500 mm-thick coronal slices were

acquired ensuring complete coverage of the brain. Post-acquisi-

tion, MR images were visually inspected for motion or intensity

artefacts and scans displaying such were excluded. On this basis,

the final N numbers for MR image analysis at each time-point

were lactacystin N = 7 and saline N = 5. All echo times (10–80 ms)

were summed and converted to ANALYSE 7.5 (Mayo Clinic,

Rochester, USA). Quantitative T2 relaxation maps were also

obtained by a mono-exponential fit of the eight multi-echo images

(TE = 10–80ms) using VnmrJ software [11].

MR image analysis
Signal intensity measurements. Signal intensity (SI) values

for T2 were measured in both the contralateral and ipsilateral

hemispheres of saline and lactacystin-lesioned animals, in the

corpus striatum (STR) and the substantia nigra (SN) from

quantitative T2 maps as previously described [11].

Manual segmentation volumetric analysis. The volume

of the whole brain (WBV), ventral midbrain (VM), corpus striatum

(STR), cerebral cortex (CTX), hippocampus (HPC), cerebellum

(CB) and lateral ventricles (LV), were measured using a manual

segmentation approach [36], as described in our previous study

[11]. Thickness of the primary motor cortex (M1) and the barrel

field of the primary somatosensory cortex (S1BF) were also

measured on in vivo MR images, as previously described [37,38].

Deformation based morphometry. A single baseline scan

from a control animal was chosen, based on scan-quality, as a

canonical reference (CR), which defines an anatomical space for

analysis. The orientation of the CR was further standardised (sCR)

by rigidly registering the x-axis mirror (mCR) to the original CR

and applying the halfway transformation. An approximate brain-

region for registration was created on the sCR using the 3D

region-growing tools available in MRIcroN (MRIcroN: http://

www.sph.sc.edu/comd/rorden/MRicron/). The brain mask was

dilated outside the brain boundary and foreground: background

voxels were weighted 1000:1. All scans were normalised to the

sCR using FLIRT registration [39,40] with 9 degrees of freedom

(dof) and the –nosearch option followed by transformation into the

sCR space. All scans were corrected for intensity inhomogeneity

artefact using N3 [41]. High signal-to-noise mean images for each

group (control, lesion) at each time-point (baseline, 1, 3 and 5 wks)

were created by averaging the relevant registered intensity-

corrected images. High-dimensional fluid-registration [42] was

used to warp each lesion-mean to the normal-mean at the

corresponding time-point; this approach removes growth-related

confounds by comparing each time-point against an age-matched

control. Maps of localised inter-group volume differences were

computed from the Jacobian determinant of the non-rigid

transformation at each time-point. Relative differences in global

volumetric scaling between groups computed from the 9-dof

registration were combined with Jacobian results to produce maps

of total average volume-difference between groups.

Tissue collection
Animals were terminally anaesthetised by a sodium pentobar-

bital overdose (60 mg/kg i.p.) and transcardially perfused with

0.9% saline, followed by ice-cold 4% paraformaldehyde (PFA) in

0.2 M phosphate buffer, pH 7.4. Brains were rapidly dissected

out, post-fixed for 24 hours and cryo-protected in buffered 30%

sucrose. Serial coronal sections (40 mm) were cut on a freezing

microtome at 220uC and stored in cryoprotective solution

containing 0.05% sodium azide at 220uC until processed for

immunohistochemistry.

Immunohistochemistry
Tissue sections processed for stereology were immunostained

free floating using a standard immunoperoxidase method as

described previously [11]. To identify dopaminergic neurons in

the SNc and fibres in the striatum, sections were stained with

rabbit anti-tyrosine hydroxylase (TH, AB151, Chemicon, 1:3000).

To examine global neuronal loss, tissue sections were stained with

mouse anti-Neuron specific nuclear protein (NeuN, MAB377,

Chemicon, 1:1000).

To visualize a-synuclein aggregation in dopaminergic neurons,

tissue sections were processed for fluorescence microscopy.

Sections were rinsed 3610 min with PBS, followed by 1 hr

incubation in blocking solution (10% normal goat serum, 0.3%

Triton X-100 in PBS) at room temperature (RT). Sections were

double-labelled with mouse anti-a-synuclein (610786, BD Biosci-

ences, 1:100) and rabbit anti-tyrosine hydroxylase (TH, AB151,

Chemicon, 1:3000). All primary and secondary antibodies were

diluted in blocking solution. All incubations with primary

antibodies were overnight at 4uC, followed by incubation with

appropriate secondary antibodies conjugated to a fluorescent

moiety for 2 hr at RT (ALEXA488 1:500, ALEXA555 1:1000; all

from Molecular Probes, Invitrogen, UK). Tissue sections were

washed thoroughly in PBS and mounted in vectashield containing

49, 6-diamidino-2-phenylindole (DAPI) (Vector Laboratories, UK)

on glass slides. Antibody specificity was confirmed in adjacent

tissue sections with the primary or secondary antibody omitted.

Post-mortem histological analysis
Quantification of neuronal loss in the SNc and striatum

using the optical fractionator probe. Unbiased estimates of

the number of TH-positive (TH+) neurons within the SNc in

saline and lactacystin-lesioned animals were obtained as previously

described [11]. To obtain unbiased estimates of the total number

of neurons in the striatum in each group, the optical fractionator

probe was utilized. The number of NeuN-positive cells were

counted in every 12th serial section of the striatum with the

reference volume defined from +2.2 mm to 21.4 mm from

Extra-Nigral Damage Predicts Behavioural Deficits
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bregma [43]. In each section, the area of analysis was traced

at62.5 magnification and Cavalieri’s method was used to estimate

the volume of the reference region [44,45]. These values were

compared to MRI-derived measurements of striatal volume to

check the reproducibility of these in vivo measurements. The

number of neurons was sampled in each tissue section using

counting frames (80680 mm), systematically distributed with

known x and y steps throughout the region from a random

starting point. At least 20–25 counting frames were sampled per

section, under 660 magnification. Cells were only counted if they

did not touch the exclusion lines and if they came into focus within

the 18-mm thick optical dissector, with 2-mm guard zones.

Estimates of neuronal number were generated by Stereo

Investigator software. The coefficients of error (CE) were

calculated according to the procedure of West and colleagues

with values ,0.10 accepted [46]. To ensure the absence of bias in

cell counting, slides were coded such that the operator was blinded

to the surgical status of the animal.

Post-mortem cortical thickness measurements. To

replicate MRI measurements post-mortem, the thickness of the

M1 and S1BF were measured using the contour measurement tool

in Stereo Investigator software using the same microscope set-up

described for stereology analysis. M1 thickness was measured

2 mm lateral from midline, on every 12th serial section, at slices

corresponding approximately to +3.00 mm, +2.52 mm and

+2.04 mm from the cingulum to the brain surface. S1BF

thickness was measured 6 mm from midline on every 12th serial

section corresponding approximately to Bregma 20.36 mm,

20.84 mm and 21.32 mm from the external capsule to the

brain surface. The mean thickness of M1 and S1BF cortices was

calculated for each subject from the average of ten lines drawn per

structure. The mean values for each subject, in each hemisphere

were then averaged to give an overall group mean.

Optical density measurements. Optical density of TH+
fibres in the corpus striatum was measured as previously described

with modification [11,47].

Statistical analysis
All data are expressed as the mean 6 SEM. Behavioural data,

MRI volumes and T2 SI measurements were analysed using

repeated measures (RM) two-way analysis of variance (ANOVA)

with lesion and time as main effects. Post-hoc tests were performed

using Bonferroni’s correction for multiple comparisons. Post-

mortem data were analysed using two-tailed students t-test.

Correlations between regional brain volume changes, histology

and motor behaviour across time were evaluated for all subjects

(both saline controls and lactacystin-lesioned animals) using linear

multiple regression models (variables entered) or a Pearson’s

correlation, as appropriate. All statistical analysis was performed in

SPSS (v17.0; SPSS Inc. Woking; UK).

Results

Lactacystin microinjecton induces motor behaviour
deficits

Lesioned animals, but not saline controls, consistently showed

deficits in spontaneous motility, possibly reflecting developing

bradykinesia in these animals. A clear ipsiversive deviated

posture with spontaneous circling and dystonic deviation of the

body axis towards the ipsilateral site of injection was also

observed in lesioned animals, but not saline-controls. This was

reflected in an overall increase in median neurological score,

up to day 14, after which neurological dysfunction remained

unchanged (Figure S1).

Forepaw grip strength improved with time in saline controls

[F(3,30) = 13.49, p,0.0001, Figure 2A]. By contrast, in lesioned

animals [F(1,36) = 19.95, p,0.001, Figure 2B], there was a

significant impairment in grip strength of the contralateral forepaw

by wk 1 (p,0.05), which was maintained at wk 3 (p,0.01) and wk

5 (p,0.01). As there was no significant difference in forepaw grip

strength prior to the administration of lactacystin (i.e. baseline),

grip strength in both forepaws evolved differently over time

(F(3,36) = 11.79, p,0.001). Forepaw grip strength was therefore

significantly affected by administration of lactacystin into the L-

MFB by week 1, but did not exhibit a progressive worsening of this

deficit.

Performance on the accelerating rotarod revealed a significant

impairment of lesioned animals (F1,36 = 17.48; p,0.0001,

Figure 2C). However, this deficit was only evident after baseline

(F(3,36) = 7.769, p,0.01), although both groups’ performance

changed with time (F3,36 = 9.79; p,0.0001). Lesioned animals

showed a significantly shorter latency to fall compared to saline-

controls at wk 1 (p,0.001), wk 3 (p,0.01) and wk 5 (p,0.01). By

wk 3 and 5, lesioned animals performance appeared to slightly

recover, although it remained significantly impaired compared to

saline controls throughout. Thus, motor co-ordination impairment

was greatest at wk 1.

To probe striatal dopamine availability, animals were chal-

lenged with the dopamine D2 receptor agonist apomorphine.

Lesioned animals exhibited a significant increase in contraversive

rotations (F1,26 = 159.0; p,0.0001) at all time-points tested

(p,0.01; Figure 2D). On average, lesioned animals displayed net

contraversive turns of 6–7 turns/min, with locomotor activity

increasing steadily after 5 min of drug administration and

maintained for approximately 35 minutes, at which point

locomotor activity decreased back to baseline. One lesioned

animal did not demonstrate significant (.5 turns/min) contralat-

eral circling and was thus excluded from all further analysis.

Additional lesioned animals, but not saline controls, sacrificed at

wk 1 and wk 3 showed identical rotational behaviour (data not

shown).

Substantia nigra signal intensity evolves longitudinally
following microinjection of lactacystin

To probe the underlying pathology responsible for inducing this

behavioural phenotype, longitudinal T2-weighted MR images

were acquired to measure the evolution of structural deformations,

as well as changes in signal intensity that indicate a change in

tissue composition. Remarkable changes in the contrast of the

MR images were observed in the ventral midbrain across time

in lesioned animals, which were absent in saline controls

(Figure 3A, B). A hyperintense signal in an area approximate to

the SN was present at wk 1 post-lesion, which evolved into an area

of hypointense signal at later time-points. Quantification revealed

longitudinal changes in the ratio of T2 SI between the ipsilateral

and contralateral hemispheres, in the SN (F(1,30) = 5.87; p,0.05,

Figure 3C). This SI evolution in lactacystin animals was only

present post-lesion (F(1,30) = 7.39; p,0.01), but there was no overall

effect of time (F(1,30) = 5.36; p.0.05) indicating that the signal

change was not associated with normal aging. The hyperintense

contrast in the SN of lesioned animals at wk 1 post-lesion,

however, failed to reach statistical significance. By contrast, at later

time-points, the T2 SI ratio was significantly reduced (hypointense

contrast) in the SN of lesioned animals at wk 3 (p,0.05) and wk 5

(p,0.05). No significant alterations in T2 SI ratio were observed in

the STR at any-time point, in either lesioned animals or saline

controls (Figure 3D). Specific changes in T2 SI are therefore only

observed in the SN in this model, suggesting that these reflect

Extra-Nigral Damage Predicts Behavioural Deficits
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particular aspects of pathology that are changing the signal

characteristics of this region.

Microinjection of lactacystin produces a progressive
pattern of brain structural changes

Visual inspection of MR images revealed a progressive

enlargement of the lateral ventricles (LV), accompanied by

conspicuous atrophy in the ventral midbrain (VM) and ventral

thalamus, with a concomitant increase in cerebrospinal fluid (CSF)

space in the lesioned group that was absent in saline controls

(Figure 3A, B). Longitudinal changes in brain volume for major

brain structures in saline and lesioned animals were investigated

utilising a manual segmentation analysis of in vivo MR images (see

Table S1 for summary of statistical analyses).

Lactacystin microinjection into the L-MFB induced signifi-

cant gross morphological changes that affected whole brain

volume (WBV) compared to saline controls at wk 3 (p,0.05) and

wk 5 (p,0.05), but not wk 1 (Figure S2A). These changes were

contained within the cerebrum as no significant change in the

volume of the cerebellum over time was observed (Figure S2B).

For sub-cortical brain regions, a significant volume decrease in

the ipsilateral ventral midbrain (VM) appeared from wk 3

onwards, increasing by wk 5, suggesting a progressive degen-

eration of this structure in lesioned animals. A significant

volume decrease was observed in the ipsilateral STR from Wk 3

onwards in lesioned animals compared to saline controls

(Figure 4A, B). A trend towards a decreased ipsilateral STR

volume was observed at wk 1, but this failed to reach statistical

significance (Figure 4B).

Volume changes were not confined to the basal ganglia

following lactacystin microinjection. Significant hypertrophy of

the ipsilateral LV was observed in lesioned animals at all post-

lesion time points (p,0.01; Figure 4C). A trend towards

hypertrophy of the contralateral LV of lesioned animals was also

observed, but this failed to reach statistical significance (Figure 4C).

Additionally, a significant reduction in the volume of the ipsilateral

cerebral cortex (CTX) was observed at wk 1 (p,0.05) in lesioned

animals compared to saline controls. This increased further at wk

3 (p,0.01) and wk 5 (p,0.01; Figure 4E). Within the CTX,

lesioned animals had significantly thinner M1 and S1BF compared

to saline controls at wk 1 (p,0.05), wk 3 (p,0.01) and wk 5

(p,0.01, Figure 4F, G). No significant changes were observed in

the thickness of either the M1 or S1BF in the contralateral

hemisphere in either treatment group (Figure 4F, G). However, no

significant volume change was observed in the hippocampal

formation in either hemisphere in either saline or lesioned animals

(Figure 4D).

To examine the relationship between unspecific whole brain

volume decreases and specific regional volume changes, MRI

volume measurements (saline and lactacystin) for the ipsilateral

Figure 2. Parkinsonian-like motor phenotype in Lactacystin-lesioned animals. (A) Saline-injected controls show no deficits in the GSM test
for either limb at any time-point. (B) Lesioned animals develop a progressive impairment in the grip strength of the contralateral forelimb in the GSM
test. Data shown in (A, B) are mean grip force (G) 6 SEM. **p,0.01 contralateral limb vs. ipsilateral limb. (C) Lesioned animals, but not saline controls
show motor co-ordination deficits as evidenced by shortened latency to fall in the accelerating rotarod test at all time-points post-surgery. Data
shown are mean latency to fall (sec) 6 SEM. *p,0.05; **p,0.01; saline vs. lactacystin-injected. (D) Lactacystin-lesioning induces significant
contralateral circling in response to apomorphine challenge (0.1 mg/kg s.c.) at all time-points post-surgery. Data shown are mean net contraversive
rotations 6 SEM. ***p,0.001; saline (N = 5) vs. lactacystin-injected (N = 7).
doi:10.1371/journal.pone.0017269.g002
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hemisphere were correlated using Pearson product moment

analysis (Table 1). This revealed a highly significant positive

correlation between ipsilateral CTX volume alone and WBV at

wk 1. By wk 3, both the ipsilateral VM and ipsilateral STR volume

in addition to ipsilateral CTX volume were associated with

changes in WBV. Notably, decreases in WBV only reached

statistical significance from wk 3, indicating that tissue volume

decrease in the CTX alone at wk 1 is insufficient to induce a

change in WBV in lactacystin-lesioned animals, but that changes

in multiple brain structures are required. By contrast, ipsilateral

LV volume was negatively correlated with WBV, indicating that as

WBV shrinks, ventricular volume increases. At wk 5, only

ipsilateral VM volume was significantly correlated to WBV,

implying that a progressive degeneration of the ipsilateral VM is

primarily influencing changes in WBV at this stage of degener-

ation, but no other region.

To examine whether these MRI changes are related to

behavioural impairment in this model, equation models were

derived using a multiple linear regression to predict final

behavioural impairments based on MRI measurements (Table 2).

Overall, thickness of the ipsilateral CTX was revealed as the best

predictor of forepaw grip strength, whilst M1 cortex thickness best

predicted performance on the accelerating rotarod. Unexpectedly,

ipsilateral LV volume best predicted the number of contraversive

rotations after apomorphine administration. Neither ipsilateral

STR volume, nor ipsilateral VM volume, were significant

predictors of behavioural outcome for any behavioural test

performed.

Figure 3. Representative longitudinal in vivo T2W MR images acquired from (A) saline-injected controls and (B) lactacystin-lesioned
animals. MR images are shown at four coronal levels (approximate distances from bregma are shown in mm). Note the absence of visible
pathological changes in saline injected controls. By contrast, in lesioned animals hypertrophy of the lateral ventricles and deformation of the ventral
midbrain with concomitant increase in CSF space (dashed arrows in B) may be observed post-lesion. Apparent contrast changes were also present in
the area of the substantia nigra (solid arrows in B) with time. (C) No significant alteration in T2 signal intensity was observed at any time-point
between groups in the striatum. (D) By contrast, a clear temporal evolution of changes in T2 signal intensity are apparent in the substantia nigra of
lactacystin-lesioned animals compared to saline controls, ranging from hyperintense signal at wk 1 to hypointense signal at wk 3 and wk 5. Data
shown are the mean ratio of T2 signal intensity between the contralateral non-injected and ipsilateral injected brain hemispheres in each group 6
SEM. *p,0.05; saline (N = 5) vs. lactacystin (N = 7).
doi:10.1371/journal.pone.0017269.g003
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Deformation based morphometry analysis of brain structure
This analysis identified several areas of local tissue volume

change in cortical and sub-cortical areas, which evolved with time

(Figure 5). At wk 1, increases in CSF space in lactacystin-treated

animals are evident and persist until wk 5. At wk 3, local volume

decreases in the ipsilateral VM were evident and continued to

expand at wk 5. Similarly, volume decreases were observed in the

ipsilateral STR at wk 3 and 5, but interestingly, DBM analysis

suggests that volume change is confined to the lateral and medial

dorsal regions of the ipsilateral STR. Decreases in the ipsilateral

CTX volume were not readily apparent from wk 1 onwards, but

small, localized areas of volume decrease may be observed in

frontal cortical areas. By wk 3 and wk 5 however, cortical volume

decreases are widespread in the ipsilateral hemisphere. Intrigu-

ingly, DBM analysis also suggests volume decreases in the

contralateral CTX by wk 5. No local tissue volume changes were

observed in the hippocampus. Apparent changes in the cerebellum

were a reflection of the general brain volume decrease that

resulted in a larger gap between cerebrum and cerebellum. Taken

together, DBM analysis confirms the manual segmentation results.

Notably, DBM identified additional local tissue volume changes

in areas of the brain that were immeasurable using the manual

segmentation approach. For instance, clear volume decreases were

observed in the ipsilateral ventral thalamus and globus pallidus

from wk 3 onwards (Figure 5). Volume decreases were also

observed in other ipsilateral cortical regions from wk 3 onwards,

including areas approximate to the piriform and lateral entorhinal

CTX (Figure 5). DBM detected additional significant expansion of

tissue volume in an area approximate to the SN at wk 1, which was

replaced by decreases at wk 3 and wk 5.

In vivo MRI atrophy reflects post-mortem
histopathological changes

To confirm in vivo MRI measurements, the volume of the STR

was determined post-mortem by stereology using the Cavalieri

probe estimator, which confirmed a significant decrease in the

volume of the ipsilateral STR in lesioned animals, compared to

saline controls (p,0.0001; Figure 6A). No significant change was

observed in the contralateral STR in either group (Figure 6A).

Overall, there was excellent correspondence between in vivo MRI

and post-mortem histological measurements of STR volume

(r = .879; p,0.001; Figure 6B). Similarly, cortical thinning in the

M1 and S1BF CTX measured from MR images was confirmed

post-mortem in the M1 (p,0.01) and S1BF (p,0.01) (Figure 6C).

No change was observed in the contralateral hemisphere in either

group. Good correspondence was observed between in vivo MRI

and post-mortem cortical thickness measurements for both M1

(r = .646; p,0.05) and S1BF (r = .691; p,0.05; Figure 6D).

Neuropathology underlying tissue volume changes
To identify the specific neural substrates of structural changes,

animals evaluated by serial MRI underwent post-mortem

immunohistochemical evaluation of the integrity of the nigrostri-

atal system. At the level of the STR, lactacystin microinjection into

the L-MFB resulted in a ,70% reduction of TH+ fibres in the

ipsilateral STR 5 wks post-surgery, accompanied by a visible

hypertrophy of the LV, relative to the intact contralateral

hemisphere. These changes were not observed in saline controls

(p,0.001; Figure 7A, B). To establish whether volume change in

the ipsilateral STR at Wk 5 reflects atrophy due to neuronal loss,

the number of NeuN+ cells in the contralateral and ipsilateral

striatum was quantified. This confirmed no significant difference

in the number of NeuN+ cells in the ipsilateral striatum relative to

the contralateral striatum in either saline or lactacystin-injected

animals (Figure 7C, D). A significant increase in neuronal density

(NeuN+ cells/mm3) in the ipsilateral striatum of lactacystin

lesioned animals was observed (49,37762771 vs. 41,26061961

neurons/mm3; p,0.05), which was absent in saline controls

(43,30961925 vs. 41,80461693 neurons/mm3; p.0.05). Taken

together these data suggest striatal volume change in this model

does not reflect neuronal loss per se.

At the level of the SNc, lactacystin microinjection into the L-

MFB resulted in a substantial loss of TH+ cells in the ipsilateral

SNc, but also the VTA, relative to the intact contralateral

hemisphere at wk 5, which was not observed in saline controls

(Figure 7E). Quantification by stereology confirmed a significant

Table 1. Correlations between in vivo whole brain volume
and regional brain volume changes across time.

Brain region
WBV
(wk 1)

WBV
(wk 3)

WBV
(wk 5)

Ventral midbrain .196 .815** .688*

Corpus striatum .412 .786** .538

Cerebral cortex .712** .680* .525

Lateral ventricles 2.322 2.593* 2.287

M1 cortex .530 .495 .273

S1BF cortex .431 .384 .012

*Correlation is significant at the 0.05 level,
**correlation is significant at the 0.01 level. (Abbreviations: WBV, whole brain volume).
doi:10.1371/journal.pone.0017269.t001

Table 2. Multiple regression analysis between MRI and
behavioural data.

Behavioural test Equation model predicting behaviour at wk 5

GSM test = 2921.63+(.914*CTX volume)

Accelerating rotarod = 2539.38+(.826*M1 cortex thickness)

Apomorphine rotation = 256.66+(.846*LV volume)

(Abbreviations: CTX, cortex; M1, primary motor cortex; LV, lateral ventricle).
doi:10.1371/journal.pone.0017269.t002

Figure 4. Time-course of regional brain volumetric changes in saline and lactacystin-injected animals. Significant tissue volume change
was observed in (A) the ipsilateral ventral midbrain and (B) ipsilateral corpus striatum at 3 and 5 wks post-surgery compared to the non-injected
contralateral hemisphere and both brain hemispheres in saline controls. (C) Lateral ventricle hypertrophy and (D) cortical atrophy were present from
1-wk post-surgery and maintained at 3 and 5 wks in lesioned animals, but not saline controls. (E) No significant change in the volume of the
hippocampus was observed in either hemisphere in either group at any time-point. Significant thinning of the primary motor (F) and primary
somatosensory cortex were also present from wk 1 post-lesion in lactacystin-injected animals, but not saline controls. Data shown are mean volume
(mm3 A–E) or thickness (mm, F, G) 6 SEM. ***p,0.001 ipsilateral hemisphere vs. non-injected contralateral hemisphere in lactacystin-injected
animals; wwwp,0.001 ipsilateral hemisphere of lactacystin-lesioned animals vs. ipsilateral hemisphere of saline controls. Saline, N = 5, lactacystin,
N = 7.
doi:10.1371/journal.pone.0017269.g004
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loss of TH+ cells (,85%) in the SNc of lactacystin-lesioned

animals relative to the intact contralateral hemisphere (p,0.0001;

Figure 7F). No loss of TH+ cells was observed in either hemisphere

of the SNc in saline controls (Figure 7F). Loss of nigral TH+
neurons was accompanied by a distinct pattern of a-syn

aggregation in the SNc. Large irregular a-syn inclusions were

observed in a low proportion of the rare surviving TH+ cells in the

SNc at wk 5. Surviving TH+/a-syn- cells were also present, as

were TH-negative cells that contained a-syn aggregates. Free

aggregates of a-syn were also observed in the parenchyma. No a-

synuclein (a-syn) aggregation was observed in saline-injected

controls (Figure 7G).

To document the time-course of pathological changes in the

nigrostriatal system, post-mortem immunohistochemical analysis

was carried out in additional cohorts of lesioned and control

animals, sacrificed at 1 and 3 wks post-surgery respectively. This

revealed that in lesioned animals TH+ fibre loss in the ipsilateral

STR, TH+ cell loss and the pattern of a-syn aggregation in the

ipsilateral SNc was directly comparable at wk 1 and wk 3, to that

observed at wk 5 (Figure S3).

Lactacystin microinjection induces secondary
neurodegeneration in the thalamus and ventral midbrain

To determine if volume changes in other brain regions are the

result of secondary neurodegeneration following the primary insult

caused by nigrostriatal destruction, the presence or absence of

neuronal loss in the M1 cortex, thalamus, and ventral midbrain

were assessed qualitatively from NeuN-stained tissue sections

(Figure 8). No evidence of gross neuronal loss was observed in the

M1 cortex (Figure 8A) or the S1BF (data not shown), in either saline

controls or lesioned animals, at wk 5 (Figure 8A) nor at wk 1

(Figure S4) or wk 3 post-lesion (Figure S5). By contrast, in lesioned

animals, but not saline controls, severe neuronal loss was observed

in the ipsilateral ventral posterolateral (VPL) and ventral

posteromedial (VPM) thalamic nuclei at wk 5 (Figure 8B).

Similarly, in the ipsilateral ventral midbrain (VM) of lesioned

animals, but not saline controls, extensive neuronal loss was

observed in numerous nuclei including the red nucleus (RN),

medial genticulate nucleus (MGN) and anterior pretectal nucleus

(APTD) at wk 5 (Figure 8C). Extensive neuronal loss was also

observed in the SNc at this time-point (Figure 8D). Additionally,

the substantia nigra pars reticulata (SNpr) and the ventral

tegmental area (VTA) were not free from the toxicity of lactacystin

at wk 5 (Figure 8D). Analysis of lesioned animals sacrificed at wk 1

and wk 3 post-lesion revealed that neuronal loss in the thalamus

and ventral midbrain was absent at wk 1 (Figure S4), but present at

wk 3 post-lesion (Figure S5). These data are consistent with the

evolution of substantial volume decreases identified by manual

segmentation and DBM in the thalamus and ventral midbrain.

Correlation analyses between brain volume change,
behavioural dysfunction and post-mortem
neuropathology

To identify whether MRI changes are associated with

underlying nigral pathology, correlation analyses were performed

between in vivo MRI measurements and post-mortem neuropa-

thology measurements obtained at wk 5. Multiple regression

analyses were also performed to identify which if any, in vivo MRI

measurement best predicted nigrostriatal damage. Loss of both

ipsilateral striatal TH+ fibres and nigral TH+ cells was

significantly correlated with volume changes in the ipsilateral

VM, STR, CTX, LV and M1 cortex thickness, but not S1BF

cortex thickness or SI T2 measurements in the SN at this time-

point (Table 3). Multiple regression analysis identified ipsilateral

Figure 5. Deformation Based Morphometry confirms and extends manual segmentation analysis. Comparisons between the saline and
lactacystin mean normalised MR images are shown for each time-point (p,0.02 uncorrected). The coloured overlay shows the scale factor of local
apparent volume differences (on a logarithmic scale). Red/yellow indicates local tissue volume expansions, whilst blue/cyan indicates local tissue
volume contractions.
doi:10.1371/journal.pone.0017269.g005
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CTX volume as the best predictor of TH+ cell number at wk 5,

whilst VM volume was the best predictor of TH+ fibre density at

wk 5 (Table 4).

Correlation analysis between nigrostriatal pathology and

behavioural phenotype at wk 5 were also performed (Table 5).

Highly significant correlations were found between loss of

ipsilateral striatal TH+ fibres and nigral TH+ cells, as well as

behavioural impairment in this model (Table 5). Multiple

regression analysis confirmed that TH+ fibre density in the STR

was the best predictor of behavioural impairment for all tests

(Table 6). Multiple regression analyses determined which mea-

surements, in vivo MRI or post-mortem histology, best predicted

behavioural impairment in this model (Table 6). Interestingly, for

both grip strength and apomorphine rotation, TH+ fibre density

(post-mortem) was the strongest predictor over any MRI

measurement. However, for performance in the accelerating

rotarod, M1 cortical thickness as measured from MR images

remained the best overall predictor of performance.

Discussion

Establishing the neurological basis of behavioural dysfunction is

key to provide a better understanding of PD. To this end, using a

combination of in vivo MRI and behavioural testing, we have

identified the spatiotemporal sequence of tissue volume and signal

intensity (SI) changes in animals lesioned with the proteasome

inhibitor lactacystin, a rat pre-clinical model of PD, many of which

have been reported from clinical neuroimaging studies of PD

patients. Our manual analysis of brain volume changes is

complemented by the application of deformation-based mor-

phometry (DBM), which revealed additional pathology in lesioned

animals, particularly in the thalamus, also reported in PD patients

[48]. Using multiple regression analysis, we have established which

in vivo MRI-based structural changes predict behavioural dysfunc-

tion. Consistent with our hypothesis, pathological changes in the

basal ganglia, as well as extra-nigral structural alterations,

particularly in the cortex, predict motor deficits in this model.

Sequence of behavioural and neuropathological changes
Lactacystin lesioning resulted in significant motor impairments,

consistent with previous reports in this model [11,22,23,24,25].

Notably, in all three tests, functional impairment in lesioned animals

was maximal by wk 1 post-lesion. Interestingly, in the rotarod test,

lesioned animals performance improved slightly by weeks 3 and 5

post-lesion. This may reflect learning of the test paradigm or may be

related to intrinsic compensatory mechanisms. Post-mortem

analyses of nigrostriatal integrity demonstrated that nigrostriatal

Figure 6. Post-mortem confirmation of in vivo MRI signal changes. (A) Cavalieri estimator probe measurement of corpus striatum volume
post-mortem in saline and lactacystin-injected animals reveals a significant decrease in the volume of the ipsilateral striatum in lesioned animals,
(***p,0.01). (B) Linear regression analysis reveals a strong correlation between measurement of striatal volume in both groups from either MRI or
post-mortem histology (r = . 879). (C) Cortical thickness measurements post-mortem confirms cortical thinning in the M1 and S1BF cortices of
lactacystin-lesioned animals but not saline controls, consistent with MRI data. (*p,0.05; **p,0.01). (D) Linear regression also reveals a robust
correlation between cortical thickness measurements in the M1 and S1BF by MRI or from post-mortem histological sections (r = . 646 and .691;
respectively). Data shown in (A) and (C) are mean volume or thickness, respectively, 6 SEM. Saline, N = 5, lactacystin, N = 7.
doi:10.1371/journal.pone.0017269.g006
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destruction was already maximal by wk 1 in lesioned animals with

no further increase at 3 or 5 wks. Overall, these data are consistent

with an acute, rapid degeneration of nigral DA neurons and striatal

DA deafferentation at this dose of lactacystin (10 mg), characteristic

of the static non-progressive lesions generated following L-MFB

administration of neurotoxins [49,50].

As such, structural brain changes at wk 1 post-lesion may be the

most relevant in this model. This time-point reflects end-stage PD,

where nigrostriatal destruction is almost complete [51]. At wk 1, in

vivo significant tissue volume changes were located only in the

cortex, including thinning of the M1 and the S1BF cortex, which

was confirmed post-mortem. Cortical thinning may therefore

Figure 8. Qualitative analysis of neuronal loss in extra-nigral brain regions demonstrating MRI changes at week 5 post-lesion. (A)
Lactacystin microinjection does not result in gross neuronal loss in the ipsilateral primary motor (M1) cortex. By contrast, compared to saline controls
widespread neuronal loss is apparent (solid black arrows) in (B) ipsilateral ventral thalamic nuclei, (C) ipsilateral ventral midbrain extra-nigral nuclei
and (D) substantia nigra pars compacta (SNc) in lesioned animals. Note the loss of neurons in the ventral tegmental area (VTA) and substantia nigra
pars reticulata (SNr). All images64 magnification, scale bar = 200 mm. Abbreviations: M1, primary motor cortex; cg, cingulum; cc, corpus callosum; ic,
internal capsule; vpl, ventral posterolateral thalamic nucleus; vpm, ventral posteromedial thalamic nucleus; mgn, medial geniculate nucleus; APTN,
anterior pretectal nucleus; PaR, pararubral nucleus; RN, red nucleus. Saline, N = 5, lactacystin, N = 7.
doi:10.1371/journal.pone.0017269.g008

Figure 7. Neuropathological alterations following lactacystin lesioning of the nigrostriatal system. (A) Lactacystin microinjection
induces substantial TH+ fibre loss in the ipsilateral striatum, accompanied by ventricular enlargement (*). (B) Quantification of TH+ fibre density in
lesioned (N = 7) and control animals (N = 5). Data shown are mean TH fibre density (A.U) 6 SEM; ***p,0.001; ipsilateral vs. contralateral hemisphere.
(C) Striatal volume change in lesioned animals is not associated with gross neuronal loss confirmed by (D) optical fractionator counts of striatal
neuron number. Data shown are the mean number NeuN+ cells 6 SEM; ***p,0.001; ipsilateral vs. contralateral hemisphere. (E, F) Lactacystin
microinjection induces significant loss of nigral TH+ cell bodies. Data shown are mean number TH+ cells in the SNc 6 SEM. ***p,0.001; ipsilateral vs.
contralateral hemisphere. (G) Loss of TH+ cells is accompanied by formation of a-synuclein immunopositive aggregates in lesioned animals compared
to saline controls. Note the clear pattern and distribution of a-synuclein inclusions, with some surviving TH+ cells showing inclusion pathology (solid
white arrows), some surviving TH+ cells without a-synuclein positive inclusions (dashed white arrows), TH-negative cells with a-synuclein positive
inclusions (yellow solid arrows) and aggregates of a-synuclein in the brain parenchyma (asterisks). Images in (A, C, E) 64 magnification, scale
bar = 200mm, images in (G) 640 magnification, scale bar = 20 mm.
doi:10.1371/journal.pone.0017269.g007
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reflect the primary neuroanatomical alteration related to loss of

nigral dopaminergic neurons in this model. Interestingly, these

data are consistent with clinical MRI studies, reporting cortical

volume changes in both early [52,53,54] and late-stage PD

patients [55,56,57], although in later stages this is heavily

influenced by co-morbidity with dementia [55,58]. Cortical

thinning is however, also present in non-demented late-stage PD

patients [55,58,59,60]. Importantly, however, imaging data from

acute time-points post-lesion are required to confirm the timing of

onset of cortical thinning in relation to nigral dopaminergic

neuronal loss. Notably, we also did not detect any change in the

volume of the hippocampal formation in lesioned animals, by

manual segmentation. Several clinical imaging studies have

identified decreased grey matter density in the hippocampus

associated with depression and cognitive impairment in PD and

Parkinson’s disease dementia (PDD) patients [61,62,63]. This may

be explained by the low sensitivity of the manual segmentation

approach to detect subtle volume change. However, the more

sensitive DBM method also did not detect hippocampal volume

change. Thus, it may be that our model simply does not

recapitulate the neuropathology associated with hippocampal

volume change in PD. However, this study did have a small

number of subjects, thus lowering statistical power to detect

volume changes. Replication in a larger cohort with DBM analysis

may identify hippocampal volume loss.

By contrast to wk 1, structural brain changes at wks 3 and 5

post-lesion are likely to reflect secondary neurodegeneration

resulting from the initial insult in this model. Longitudinal MRI

is therefore able to detect and chart the sequence of primary and

secondary neuroanatomical changes caused by nigral neurode-

generation, which can be used to predict behavioural impair-

ments.

Predictive power of neuroanatomical changes detected
by MRI

Linear multiple regression and correlation analyses reveal

several important findings regarding the predictive power of brain

volume changes in lesioned animals. Notably, decreased cortical

volume was the best predictor of grip strength and rotarod

performance, consistent with the notion that cortical changes are

most likely linked to primary nigrostriatal degeneration. Interest-

ingly, functional changes in cortical structures, including the

anterior cingulate, motor and somatosensory cortex is associated

with PD motor symptoms as evidenced by several functional MRI

(fMRI)-based studies in the clinic [64,65,66,67,68] and in animal

models [13,14,69,70]. Unexpectedly, lateral ventricle (LV) volume

best predicted the degree of apomorphine rotation. Although LV

hypertrophy is reported in and correlates with clinical symptoms

in PD patients [6], this is of little intrinsic value, since it is a

measure of global, non-specific changes in brain structure.

Overall, whilst these results do not imply an insignificant role of

basal ganglia structures in PD-related motor behavioural impair-

ment, they do suggest that subtle structural alterations in cortical

regions may play a role in PD motor deficits.

However, in disagreement with clinical findings [3,71], changes

in nigral T2 SI are not linked to behavioural dysfunction in this

model. However, this may be explained by the mismatching of

rapidly developing neuronal death due to proteasome inhibition,

versus the relatively delayed accumulation of iron in the SN in this

model, which potentially underlies the hyperintense contrast in the

SN [11,23,24,25].

Neurobiology underlying neuroanatomical changes
Whilst correlation analyses support the notion that cortical

volume changes are related to motor dysfunction in this model,

post-mortem validation of MRI signal changes is crucial before

these can be accepted as surrogate markers. The excellent

correspondence between in vivo MRI and post-mortem measure-

ment of cortical thinning indicates that this measure may be a

useful surrogate marker of motor impairment.

Establishing the mechanisms that underlie these changes remains

however a challenge. Interestingly, cortical thinning in lesioned

animals was not associated with gross neuronal loss at post-mortem.

These data are consistent with the observation that cortical thinning

may occur without neuronal loss in healthy elderly patients [72] and

the lack of neuronal loss in the neocortex of cognitively impaired PD

patients [73]. Notably, in this animal model STR volume changes in

Table 3. Correlations between post-mortem measures of
nigrostriatal damage and in vivo MRI measurements at wk 5.

Histology

MRI TH+ cells SNc TH+ fibres STR

VM volume .839** .884**

STR volume .749** .835**

CTX volume .840** .882**

LV volume 2.676* 2.771**

M1 thickness .751** .841**

S1BF thickness .494 .574

SN T2 SI .576 .602

*Correlation is significant at the 0.05 level,
**correlation is significant at the 0.01 level. (Abbreviations: VM, ventral midbrain;
STR, corpus striatum; CTX, cortex; LV, lateral ventricle; M1, primary motor cortex,
S1BF, primary somatosensory cortex barrel field; SN, substantia nigra; SI, signal
intensity).
doi:10.1371/journal.pone.0017269.t003

Table 4. Multiple regression analysis between MRI and post-
mortem histology data.

Post-mortem histology Equation model predicting histology at Wk 5

TH+ cells SNc = 233198.18+(.829*CTX volume)

TH+ fibres STR = 2132.03+(.947*VM volume)

(Abbreviations: CTX, cortex; VM, ventral midbrain; SNc, substantia nigra pars
compacta; STR, corpus striatum.)
doi:10.1371/journal.pone.0017269.t004

Table 5. Correlation analysis between post-mortem histology
and behaviour.

Behaviour

Histology GSM test
Accelerating
rotarod

Apomorphine
rotation

TH+ cells SNc .839** .749** .840**

TH+ fibres CPu .884** .835** .882**

*Correlation is significant at the 0.05 level,
**correlation is significant at the 0.01 level. Abbreviations: SNc, substantia nigra
pars compacta; STR, corpus striatum.
doi:10.1371/journal.pone.0017269.t005
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vivo were also not associated with neuronal loss post-mortem,

consistent with findings in PD patients and other animal models

[74,75,76]. Volume changes in the CTX and STR in this model

may therefore be a consequence of the loss of DA innervation from

the midbrain [47,75,76,77]. Indeed, cortical DA depletion due to

loss of mesocortical inputs results in dendritic spine remodeling [77]

and altered synaptic morphology [78] in layer V cortical projection

neurons, consistent with a functional re-organisation of these

structures following loss of DA inputs from the midbrain. Potentially

however, tissue volume changes in the CTX and STR may also

reflect glial cell pathology. Indeed, whilst there are extensive studies

on neurons, little attention has been paid to the effect of proteasome

inhibition in glial cells, in particular, astrocytes. Notably, lactacystin

has been reported to induce dose-dependent decreases in both

proliferation and induces morphological changes in cultured

cortical astrocytes [29,30].

Post-mortem analysis revealed however, gross neuronal loss in

the ventral midbrain and thalamus by 3 wks post-lesion, but not

prior to this, consistent with the onset of volumetric change in

these structures detected by MRI. Thus, volume change in these

structures may reflect trans-synaptic neuronal loss, consistent with

previous observations in lactacystin-lesioned animals [79]. How-

ever, a role for concomitant glial cell pathology cannot be

excluded. Alternatively, thalamic neuronal loss may reflect a

consequence of functional changes in basal ganglia circuitry due to

DA depletion [80,81,82]. Consistent with this notion, thalamic

neurodegeneration has been identified in post-mortem PD brain

tissue [83,84,85,86] and PD animal models [80,87].

Crucially however, whilst dopaminergic neurons may be

preferentially sensitive to proteasome inhibition [26] evidence

suggests that synthetic proteasome inhibitors induce dose-depen-

dent dopaminergic neuronal degeneration and are associated with a

significant risk of non-specific neuronal and/or glial cell toxicity at

higher doses [11,22,23,27]. Thus, whilst the MRI changes observed

in the current study are clearly linked to DA depletion, we cannot

exclude the possibility that these may also reflect additional loss of

other vulnerable neuronal or glial cell populations. A more

progressive nigrostriatal degeneration, as reported with lower doses

of lactacystin [23], may therefore provide more clinically-relevant

correlations between behavioural deficits and MRI changes.

Additionally, it is not clear if tissue volume and pathological

changes in extra nigral regions are accompanied by pathological a-

synuclein deposition in this model. Consequently, future studies

examining both the dose-dependence of lactacystin-induced brain

volumetric changes and further detailed post-mortem histological

studies are required to fully understand the neuropathological

correlates of brain volume changes in this model.

Conclusions
Manual and voxel-based MRI analysis methods revealed that

microinjection of lactacystin into the L-MFB results in a distinct

sequale of structural alterations in the brain, many of which are

consistent with descriptions of structural alterations in PD patients.

Of these, cortical thinning exhibited a greater predictive power for

the degree of functional impairment compared to all other in vivo

measures. Structural changes in other brain regions may reflect

secondary neuropathology due to non-specific toxicity of lactacys-

tin or are the consequence of a functional reorganisation of basal

ganglia circuitry following DA depletion. Consequently, these

changes do not predict motor impairment in vivo. However,

confirmation of these finding in a larger cohort of animals, at

lower doses of lactacystin and in other pre-clinical models of PD,

such as the rat 6-hydroxydopamine (6-OHDA) or 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) murine and non-hu-

man primate models will be important and significant advances.

Nonetheless, these data highlight the importance of a compre-

hensive anatomical assessment beyond the primary insult in the

nigrostriatal system. Furthermore, these data demonstrate that

integration of MRI data with post-mortem neuropathology is not

only essential to confirm the relevance of in vivo MRI findings to

behavioural dysfunction. Moreover, this integrative approach

provides a powerful model system with which to investigate the

neuropathological correlates of structural MRI changes as

observed in the brains of PD patients.

Supporting Information

Figure S1 Neurological scoring of animal health reveals
lactacystin-lesioned (N = 7) animals develop a progres-
sive increase in neurological score, consistent with
subtle motor deficits and behavioural abnormalities.
Neurological scores increase to day 14 post-lesion and then

become static. Saline controls (N = 5) display no gross neurological

abnormalities.

(TIF)

Figure S2 Longitudinal in vivo MRI detects a reduction
in whole brain, but not cerebellum volume in lactacys-
tin-lesioned animals (N = 7) compared to saline controls
(N = 5). Data shown are mean volume 6 standard error.

*p,0.05; saline vs. lactacystin.

(TIF)

Figure S3 Time-course of nigrostriatal pathology in-
duced by lactacystin microinjection into the L-MFB. (A)

Lactacystin microinjection induces substantial TH+ fibre loss in

the ipsilateral striatum, accompanied by ventricular enlargement.

(B) Quantification of TH+ fibre density in lesioned (N = 5) and

control animals (N = 5) reveals this is maximal by week 1 post-

lesion and does not progress further. Data shown are mean TH

fibre density (A.U) 6 SEM; ***p,0.001. (C, D) Quantification of

nigral TH+ cell bodies in lesioned and control animals reveals this

Table 6. Multiple regression analysis between post-mortem histology and in vivo MRI with behavioural data.

Equation models predicting behaviour

Behaviour In vivo MRI volumes Post-mortem histology MRI and Histology

Grip Strength = 2921.627+(0.9146CTX) = 30.986+(0.9306Fibre Density) = 24.759+(0.9416Fibre density)

Rotarod = 2539.377+(0.8266M1) = 69.408+(0.6946Fibre Density) = 539.377+(0.8266M1)

Rotameter = 256.655+(0.8466LV) = 477.563+(20.9266Fibre Density) = 586.086+(20.9556Fibre Density)

(Abbreviations: CTX, cortex; M1, primary motor cortex, LV, lateral ventricles.)
doi:10.1371/journal.pone.0017269.t006

Extra-Nigral Damage Predicts Behavioural Deficits

PLoS ONE | www.plosone.org 14 February 2011 | Volume 6 | Issue 2 | e17269



is maximal by week 1 post-lesion and does not progress further.

Data shown are mean number TH+ cells in the SNc 6 standard

error ***p,0.001. (E) Loss of TH+ cells is accompanied by

formation of a-synuclein immunopositive aggregates in lesioned

animals compared to saline controls at week 1 and 3. Note the

clear pattern and distribution of a-synuclein inclusions, with some

surviving TH+ cells showing inclusion pathology (solid white

arrows), some surviving TH+ cells without a-synuclein positive

inclusions (dashed white arrows), TH-negative cells with a-

synuclein positive inclusions (yellow solid arrows) and aggregates

of a-synuclein in the brain parenchyma (asterisks). Images in (A, C,

E) 64 magnification, scale bar = 200mm, images in (G) 640

magnification, scale bar = 20 mm.

(TIF)

Figure S4 Qualitative analysis of neuronal loss in extra-
nigral brain regions demonstrating MRI changes at
week 1 post-lesion. (A) Lactacystin microinjection (N = 5) does

not result in apparent neuronal loss in the ipsilateral primary

motor (M1) cortex at this time-point. Similarly, compared to saline

controls (N = 5) no neuronal loss is evident in (B) ipsilateral ventral

thalamic nuclei, (C) ipsilateral ventral midbrain extra-nigral nuclei.

By contrast, substantial neuronal loss is present in (D) the

substantia nigra pars compacta (SNc). Note also the loss of

neurons in the nearby ventral tegmental area (VTA) and

substantia nigra pars reticulata (SNr). All images 64 magnifica-

tion, scale bar = 200 mm. Abbreviations: M1, primary motor

cortex; cg, cingulum; cc, corpus callosum; ic, internal capsule; vpl,

ventral posterolateral thalamic nucleus; vpm, ventral posterome-

dial thalamic nucleus; mgn, medial geniculate nucleus; APTN,

anterior pretectal nucleus; PaR, pararubral nucleus; RN, red

nucleus.

(TIF)

Figure S5 Qualitative analysis of neuronal loss in extra-
nigral brain regions demonstrating MRI changes at
week 3 post-lesion. (A) Lactacystin microinjection (N = 5) does

not result in apparent neuronal loss in the ipsilateral primary

motor (M1) cortex at this time-point. By contrast, compared to

saline controls (N = 5) widespread neuronal loss is already apparent

(solid black arrows) in (B) ipsilateral ventral thalamic nuclei, (C)

ipsilateral ventral midbrain extra-nigral nuclei and (D) substantia

nigra pars compacta (SNc). Note also the loss of neurons in the

nearby ventral tegmental area (VTA) and substantia nigra pars

reticulata (SNr). All images 64 magnification, scale bar = 200 mm.

Abbreviations: M1, primary motor cortex; cg, cingulum; cc,

corpus callosum; ic, internal capsule; vpl, ventral posterolateral

thalamic nucleus; vpm, ventral posteromedial thalamic nucleus;

mgn, medial geniculate nucleus; APTN, anterior pretectal nucleus;

PaR, pararubral nucleus; RN, red nucleus.

(TIF)

Table S1 Summary of overall statistical results from repeated

measures 2-way ANOVA for in vivo serial MRI measurements.

(DOC)
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