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Abstract

Background: Diet and exercise promote cardiovascular health but their relative contributions to atherosclerosis are not fully
known. The transition from a sedentary to active lifestyle requires increased caloric intake to achieve energy balance. Using
atherosclerosis-prone ApoE-null mice we sought to determine whether the benefits of exercise for arterial disease are
dependent on the food source of the additional calories.

Methods and Results: Mice were fed a high-fat diet (HF) for 4.5 months to initiate atherosclerosis after which time half were
continued on HF while the other half were switched to a high protein/fish oil diet (HP). Half of each group underwent
voluntary running. Food intake, running distance, body weight, lipids, inflammation markers, and atherosclerotic plaque
were quantified. Two-way ANOVA tests were used to assess differences and interactions between groups. Exercised mice
ran approximately 6-km per day with no difference between groups. Both groups increased food intake during exercise and
there was a significant main effect of exercise F((1,44)=9.86, p<<0.01) without interaction. Diet or exercise produced
significant independent effects on body weight (diet: F(1,52)=6.85, p=0.012; exercise: F(1,52)=9.52, p<<0.01) with no
significant interaction. The combination of HP diet and exercise produced a greater decrease in total cholesterol (F(1,
46)=7.9, p<0.01) and LDL (F(1, 46) =7.33, p<<0.01) with a large effect on the size of the interaction. HP diet and exercise
independently reduced TGL and VLDL (p<<0.05 and 0.001 respectively). Interleukin 6 and C-reactive protein were highest in
the HF-sedentary group and were significantly reduced by exercise only in this group. Plague accumulation in the aortic
arch, a marker of cardiovascular events was reduced by the HP diet and the effect was significantly potentiated by exercise
only in this group resulting in significant plaque regression (F1, 49=4.77, p<<0.05).

Conclusion: In this model exercise is beneficial to combat dyslipidemia and protect from atherosclerosis only when
combined with diet.
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abnormally low serum concentrations of HDL cholesterol and
elevations of triglycerides (T'G), low-density (LDL) and very low-
density (VLDL) lipoprotein-cholesterol. Much of the reduction in
cardiovascular morbidity and mortality in Western societies over
the past 2 decades has been attributed to the benefits of more

Introduction

Lifestyle modifications including diet, exercise, and weight
control are recommended for the treatment of dyslipidemia and
assocliated coronary artery disease (CAD). The benefits of each of

these modifications on health are dose-responsive. ACSM/CDC/
AHA guidelines recommend a minimum of 30 minutes of
moderate-intensity physical activity per day with an open-ended
maximum [1]. Dietary recommendations include caloric intake
appropriate for maintenance or reduction of body weight, reduced
consumption of sugars, saturated fats and processed foods, and
replacement with protein, unsaturated fats, omega-3 and complex
carbohydrates. A body mass index (BMI)<25 kg/m?2 is recom-
mended for optimal cardiovascular health.

Serum lipids are strong mediators of CAD and indicators of
cardiovascular risk. Atherogenic dyslipidemia is characterized by
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effective control of serum lipids through lifestyle changes and
pharmacological management [2—7]. Epidemiological studies have
shown that exercise training without dietary intervention leads to
only minimal reductions of body mass but, as expected this is
markedly improved by concomitant diet modulation [reviewed in
[7-15]]. The individual roles of diet, exercise and body mass in
lipid regulation and CAD are complex because these parameters
do not act independently [16-18]. Even after separation into
weight categories and correction for dietary intervention there are
marked inconsistencies between, and sometimes within studies on
the effect of exercise on plasma lipids. A meta-analysis of 61 study
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groups and 2200 subjects showed that endurance exercise training
alone lead to significant reductions of TG, LDL and total
cholesterol (T'C) in less than 50% of cases [19]. These numbers
were potentiated by concomitant dietary intervention in most
studies but dietary fat reduction also tended to reduce HDL. These
studies indicate that in human subjects it is still not possible to
predict the effects of exercise without diet modification on
atherogenic lipid profiles or associated CAD.

While the influence of exercise alone on blood lipids is unclear,
definitive studies have confirmed positive effects of both moderate
and high-intensity exercise training on molecular parameters that
determine the so-called metabolic syndrome [20]. Exercise has been
shown to increase production of nitric oxide, reduce systemic
inflammation and increase levels of circulating endothelial progenitor
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cells [21-26]. Exercise training is now an established therapeutic
intervention with benefits that include enhancement of myocardial
and peripheral perfusion and reduction of morbidity and mortality of
patients with CAD [reviewed in [27,28]]. In a prospective clinical
study of CAD patients, 4-weeks of intensive exercise training
decreased acetyl-choline-induced coronary artery vasoconstriction
by 54%, an effect that was sustained with continued exercise [29,30].

The effect of combined exercise and diet on lipid profile and
atherosclerosis is still an open question. Studies on ApoE-/- mice
demonstrated favorable effects of treadmill running or swimming on
plaque reduction after carotid ijury or hypercholesterolemia
respectively [31-33]. In both cases short exercise periods reduced
mflammatory markers and decreased plaque. The effects were deemed
to be independent of systemic lipids and were attributed to anti-oxidant
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Figure 1. Exercise parameters of mice fed HF and HP diets. Mice were received at age 5-weeks and fed HF for 4.5 months as described in
Methods. At this time half of the mice were randomly assigned to continue on the HF diet and half were weaned off the HF diet onto the HP diet as
described in Methods. At the same time half of the mice from each diet (10 mice per group) were randomly assigned to exercise by housing in
individual cages with computer-monitored exercise wheels or remained sedentary also in individual cages without wheels. Running was monitored
continuously. Each point is the mean of 10 mice per group; exercised mice only. After a lag period and slight overshoot, mean running distance

stabilized at 6-km per day. Open circles HP; closed circles HF.
doi:10.1371/journal.pone.0017263.g001
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Figure 2. Comparison of food intake between groups. Food consumption was measured 3 times per week in all groups by weighing chow
pellets and calculating mean consumption for each group (n=10). Open circles: high protein (HP) sedentary; closed circles: HP-exercise; open
triangles: high fat (HF) sedentary; closed triangles: HF exercise. Bars on right are mean of total food intake during the exercise period *= SEM; both
exercise groups consumed significantly more chow than the sedentary groups; p<<0.01 by Mann-Whitney U test.
doi:10.1371/journal.pone.0017263.g002

and ant-inflammatory effects. Here we tested the effects of radical Materials and Methods

lifestyle modifications including voluntary running (6-km/day) and ad-

lib high fat (HF) or high protein/fish oil (HP) diets on ApoE -/- mice Animals

with pre-developed plaque. The results show that exercise positively Male ApoE-/- mice 5 weeks of age were purchased from Jackson
modifies lipid profiles and atherosclerotic plaque accumulation only laboratories (Bar Harbor, Maine) and handled according to University
when combined with the HP. Diet and lipid profiles correlated closely of Miami animal care and use regulations. Mice were kept in rooms
with atherosclerosis. Inflammatory markers IL6 and CRP were both with alternating 12-hour periods of light and dark with ad-libitum
increased by feeding HIF chow and this was blunted by exercise. access to water and chow. For the first 4.0 months after arriving all
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Figure 3. Comparisons of total body weight between groups. Mice were weighed 3 times per week in all groups and mean weight calculated
(n=10 per group). Symbols as in Figure 2. For bar graphs on the right each value represents the mean of body weights during the exercise period =
SEM; data was analyzed by two-way ANOVA as described in Methods; analysis of simple effects; **p<<0.001; *p<<0.01).
doi:10.1371/journal.pone.0017263.9003
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mice were fed high fat chow diet #88137 (Harlan-Teklad; 42% fat,
1.25% cholesterol; (HF)) beginning at 5 weeks of age. After 4.0
months, 6 animals were sacrificed as a baseline for aortic
atherosclerotic plaque, the other mice were individually housed in
cages either equipped with computer monitored running wheels
(exercise group; n=20) or not (non-exercise group; n = 20). Half of
each group were continued on the HF diet and the other half were
switched to a diet high in protein and unsaturated oils (custom diet
from Purina; 45% protein, 39% fat (Canola and Menhaden fish oil
(1:1); (HP)) also at 4.0 months. For diet switching, mice were weaned
off the HF diet by gradually increasing the ratio of HP: HF chow over
2 weeks. Mice were sacrificed and aortas harvested after a further 2.5
months so that the overall duration of the study was 6.5 months and
mice were aged 7.75 months at the time of sacrifice. The HP chow
was created by replacing all animal fat from the HF formula with
Canola and fish oils while keeping total calories from fat at
approximately 40%. Calories from protein were also increased (to
45%) at the expense of carbohydrates (to 15%) in the HP diet.
Distance and time of running were recorded continuously, body
weights were determined weekly and average weekly food intakes
were monitored.

Blood plasma lipids and cytokines

Blood samples were taken monthly from the orbital sinus after gas
anesthesia, plasma was separated and stored at —80°C until analysis.
Total cholesterol, HDL, triglycerides, LDL and VLDL were
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measured by reflectance spectrophotometry (VITROS Chemistry
System Ortho-Clinical Diagnostics, Raritan, NJ) using the manufac-
turer’s reagents and protocols. C-Reactive Protein (CRP) was
measured by Rat/Mouse CVD CRP Single Plex (Millipore Corp.
Bedford, MA) and IL-l alpha and B, IL-6, IL-10, IFN-gamma, and
TNF-alpha, by Milliplex Mouse Cytokine Panel 6-plex (Millipore
Corp. Bedford, MA). Mean values represent data taken during the
full time course after implementation of the exercise regimens.

Atherosclerosis

Whole aortas were opened lengthwise, fixed in 10% formalin,
stained with oil red O and quantified by computerized
morphometrics. The results for atherosclerotic plaque were
expressed as the mean percent of baseline values and represent
the mean * standard error of the mean.

Statistical analysis

Statistical analysis was carried out using the Statistical Package
for the Social Sciences (SPSS, Inc., Chicago, IL, USA). All data
are expressed as means * SEM unless noted otherwise. The
results for atherosclerotic plaque are expressed as the mean *
SEM percent of baseline values. A level of 5% probability was
considered significant. The normality of distribution of each
variable was tested and transformed data were used when
necessary. Differences between two groups were analyzed by
Student’s t test and Mann-Whitney U test. A two-way between
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Figure 4. Comparisons of lipid profiles between groups. Blood was collected at the time of sacrifice in all groups. Total cholesterol (TC), HDL,
triglycerides (TG), LDL and VLDL were measured by gas chromatography. HF, HP, HFE, HPE as in Figures 1 and 2. Each value represents the mean
plasma lipid level for the exercise period = SEM; two-way ANOVA was used as described for Figure 3; **p<<0.001; *p<<0.05.

doi:10.1371/journal.pone.0017263.g004
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Figure 5. HDL profiles. HDL was measured in blood samples by gas
chromatography as described for Figure 4; labeling and statistics also as
described in Figures 3 and 4; *p<<0.05; **p<<0.001.
doi:10.1371/journal.pone.0017263.9g005

groups ANOVA was used to evaluate diet and exercise interaction
effects for dependent variables; a significant interaction was
interpreted by a subsequent simple-effects analysis with Bonferroni
correction.

Results

Exercise rates, food intake and body weight
Mean values for speed of running and distance are shown in
Figure 1. Distance increased to almost 10 km per day over the first
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2 weeks and then dropped and stabilized at about 6 km. There
was a small non-significant trend for the HF diet group to out-run
the HP group (HF 6.88%+0.35 km/day; HP 6.15%=3.2 km/days;
p=0.13). Average speed followed similar trends again with no
significant difference between groups (p=0.23). As shown in
Figure 2, food intake was increased in both diet groups during the
first 4 weeks of exercise and stabilized with significantly more food
intake by the exercise relative to the sedentary groups. This was
confirmed by two-way ANOVA between groups analysis that
showed a significant main effect for exercise I' (1,44)=9.86,
p<<0.01) without diet/exercise interaction. The diet main effect
was not significant indicating that animals consumed the same
amount of food on both diets. Body weights fell during the first 6
weeks of diet and exercise and stabilized in these groups thereafter
but continued to increase in HF sedentary group (Fig. 3). Two-way
ANOVA revealed no significant interaction between diet and
exercise on body weight but very significant main effects for diet (I
(1,52)=6.85, p<<0.01) and exercise (F (1,52)=9.5, p=0.01),
indicating that these factors acted independently. The switch from
HF to HP resulted in a significantly reduced mean body weight
over 3 months (38.7*1.4 g vs. 36.2*0.7 g, p<0.01 for HF and
HP groups respectively). Similarly, exercising mice weighed
significantly less than their sedentary counterparts (HF sedentary,
38.7*x1.4 g vs. HF-E 35.1%0.2 g, p<0.01). Exercising mice fed
HP had the lowest mean body weight that was significantly lower
than the sedentary HP group (HP, 36.2%+0.7 ¢ vs. HPE,
33.1£0.5 g). It is noteworthy that mean weight of mice in the
HF-E group was less than that of sedentary mice in the HP group
(HF-E, 35.1%£0.2 g vs. HP, 36.2%0.7 g) suggesting that exercise is
superior to diet in preventing weight gain in these mice. It is also
noteworthy that exercise resulted in reduced body weight in both
diet groups despite significantly increased food intake relative to
the sedentary groups.

Lipid profiles

Changes in plasma lipids are shown in Figures 4 (a—d) and 5.
Total cholesterol and LDL sustained the most dramatic changes
(Figs. 4 a & b). A positive interactive effect of diet and exercise on

TC (F (1, 46)=7.9, p<0.01) and LDL (F (1, 46)=7.33, p<0.01)
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Figure 6. Comparison of inflammation markers between groups. Blood was collected as described in the Figure 4 legend. Interleukin-6 (IL-6)
was quantified in serum samples by ELISA using a Milliplex Mouse Cytokine Panel 6-plex as described in Methods. C-reactive protein (CRP) was
quantified in plasma by using a CVD CRP Single Plex kit also described in Methods. In data not shown we observed no changes in IL-1a. and j, IL-10,
IFN-v, and TNF-a, by the same assays. Statistical analysis are as described for Figure 3; ***p<0.001; ** p<<0.01; * p<<0.05.

doi:10.1371/journal.pone.0017263.g006
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Figure 7. Comparisons of atherosclerotic plaque accumulation between groups. Aortas were harvested at the time of sacrifice (8-months),
fixed in paraformaldehyde and stained with Oil-Red as described in Methods. Left panels show light microscope view of aortas representative of each
condition. Right panels show subtraction images used for plaque quantification by densitometry (the method is described in detail in Ref 49).

doi:10.1371/journal.pone.0017263.g007

was confirmed by 2-way ANOVA. Main effects for diet and
activity status were also significant. The switch from HF to HP
resulted in marked declines of both TC and LDL with >2-fold
decrease of TC (p<0.001) and almost 3-fold decrease of LDL
(p<<0.001) in the HP group HF-TC, 1267%178; HP-TC,
455*+77 mg/dL; HF-LDL, 1138%178; HP-LDL, 329%+72 mg/
dL). Further analysis of the interactive effect indicated that
exercise failed to decrease either lipoprotein levels in animals that
were continued on the HF diet (HF-TC, 1267*+178; HFE-TC,
1365196 mg/dL, p=0.71; HF-LDL, 1138*=178; HFE-LDL,
1246196 mg/dL, p =0.69); however exercised mice in the HP
group displayed further significant decreases of both TC and LDL
(HP-TC, 455£77 mg/dL; HPE-TC, 360%=25 mg/dL, p=0.001;
HP-LDL, 329%*72 mg/dL; HPE-LDL, 263%19.2 mg/dL,
p =0.001). Triglyceride (T'G) and VLDL levels were lower in the
HP groups compared to HF animals (p<<0.05); and were
significantly decreased by exercise in both groups (p<<0.001).
Two-way ANOVA did not reveal a significant interaction between
diet and exercise on TG or VLDL. Instead, main effects were
confirmed for diet (TG, F (1,46)=6.1, p=0.017; VLDL, F
(1,46) = 6.4, p=0.015) and exercise (TG, I (1,46) = 41.1, p<<0.001;
VLDL, F (1,46)=40.4, p<<0.001). The added main effects of diet
and exercise resulted in the lowest plasma levels of TG and VLDL
for animals in the HP-E relative to HF-E groups (TG, 95%£5.2 vs.
105%3.6 and VLDL, 19£1.0 vs. 21*1 mg/dL). HDL was not
significantly affected by diet alone, (Figure 5) but the interaction of
diet with exercise (F (1,46) = 4.2, p<<0.05) caused a marked drop of
HDL in the HP-E group (HP, 100%3.4 mg/dL; HP-E 786 mg/
dL, p<<0.05). The results demonstrate independent effects of diet
and exercise on TG and VLDL but a strong interactive effect on
TC and LDL; a combination of HP diet and exercise was required
to lower TC and LDL, two of the strongest metabolic risk factors
for coronary artery disease. Importantly, we found that HDL
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levels were significantly lower in the HP-E group. The reasons for
this are not clear however the HP-E group had the lowest body
weight, significantly lower than the HP sedentary group (Figure 3),
combined with low dietary cholesterol and saturated/trans fat.
Previous studies on human subjects that have reported decreased
HDL levels associated with diets that are low in saturated fat
[19,34,35].

Cytokines

Figure 6 shows changes in serum inflammatory markers
associated with diet and exercise groups. Results for IL6 and
CRP followed similar trends. IL6 levels were markedly decreased
in animals fed the HP relative to HF diet (HP, Md =6.4 pg/ml;
HF, Md=61.1 pg/ml, p<0.01). Likewise for CRP, switching to
the HP diet significantly reduced plasma levels (HP, 127.4 ng/ml;
HF, 135 ng/ml, p<<0.05). In the HP diet group exercise did not
significantly affect the plasma levels of either IL6 or CRP (HP-IL6,
Md =6.4 pg/ml; HPE-IL6, Md = 6.4 pg/ml, p>0.05; HP-CRP,
127.4 ng/ml; HPE-CRP, 128.0 ng/ml, p>0.05) meaning that
exercise did not further augment the already powerful effect of HP
diet alone. Contrary to this, exercise caused a significant 8-fold
reduction of IL6 and CRP in the HF diet group, (HF-IL6,
Md=61.1 pg/ml; HFE-IL6, Md =8.1 pg/ml, p<<0.05; HF-CRP,
135.0 ng/ml; HFE-CRP, 122.0 ng/ml p<<0.01). In this case 2-
way ANOVA revealed a trend for positive interaction between
diet and exercise on CRP (p=0.052). These results are also
consistent with the possibility that CRP is regulated by IL-6 [36].
We observed no significant changes in the levels of TNF-alpha,
IL10, IFN-gamma or IL1f (not shown).

Atherosclerosis
Figure 7 shows representative examples of aortas from mice
treated as indicated and stained en-face with Oil-Red as described

February 2011 | Volume 6 | Issue 2 | 17263



1.2

=
o

Aortic Arch (fraction of baseline)

0 -

HFE HPE

HE HP

Figure 8. Quantification of aortic arch plaque accumulation in
different groups. Aortas were harvested and processed as described
in Figure 6 legend and Methods. Plaque in the arches of 8-10 aortas
from each group was quantified as described in Methods and expressed
as percentages of the baseline plaque at 5-months. Statistics are by 2-
way ANOVA as described for Figure 3; *p<<0.05; ** p<<0.01.
doi:10.1371/journal.pone.0017263.g008

in Methods. Arrows indicate the aortic arch where plaque
accumulation in effected subjects is usually the highest and is a
strong predictor for cardiovascular events including stroke [37].
Figure 8 shows the quantification of aortic arch plaque in the four
experimental groups expressed as the mean = SEM percent of
baseline values. Decreased plaque levels associated with HP * diet
are apparent in the aortas, and two-way ANOVA analysis
confirmed that modification of the diet only did not account for
a reduction in plaque (HF, 1.12%0.06; HP, 1.01£0.05, p =0.18).
Similarly, exercise did not reduce plaque accumulation in the HF
group relative to the sedentary counterparts (HF, 1.12%0.06;
HFE, 1.06%=0.04, p=0.42). This is consistent with the effects of
exercise on TC and LDL in this group and may reflect the
increased intake of saturated fat that was associated with exercise.
Two-way ANOVA revealed a significant interaction between diet
and exercise in plaque reduction (F (1, 49)=4.77, p<<0.05) in the
aortic arch and main effects for diet (p<<0.001) and activity status
(p<<0.01). Therefore both diet and exercise contribute to plaque
reduction, and the combination conferred significant protection
relative to all other groups (HP, 1.01+0.05; HP-E, 0.71+0.05; I
(1,49)=15.4, p<0.001). These changes are consistent with parallel
combined effects of the HP diet and exercise on TC and LDL.

Discussion

Our results show for the first time that exercise without dietary
intervention did not favorably benefit atherogenic lipids (T'C, LDL)

@ PLoS ONE | www.plosone.org
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or plaque accumulation on the aortic arch in ApoLl knockout mice
with advanced atherosclerosis. This was despite significant exercise-
mediated reduction of inflammatory markers IL-6 and CRP in the
HF group. A similar effect of exercise on pro-inflammatory cytokine
reduction was observed in a prior study by our group also using the
ApokLl knockout mice model [38]. Conversely, exercise combined
with a diet enriched in protein and unsaturated oils conferred
optimal protection against atherosclerosis, with significantly im-
proved inflammatory markers, lipid profiles, and reduced plaque
accumulation. TC, LDL, and IL6 each decreased by >2-fold when
mice were switched from HF to HP, and exercise resulted in an
additional 25% decrease of both lipids augmenting the already
significant effects of diet. Two-way ANOVA analyses confirmed a
significant positive interaction between diet and exercise in reducing
TC and LDL and preventing plaque accumulation in the aortic
arch. Triglyceride and VLDL levels were lowered by exercise with
both diets but in this case there was no interaction suggesting
independent roles for the interventions in regulating these lipids.
Whereas we focused our studies on the aortic arch where the most
dense plaque accumulates and is a strong predictor of adverse
clinical events [for example see ref. 37], similar trends were seen for
total plaque across the entire aorta (Fig. 7 and data not shown). A
compounding influence on the potentially positive effects of exercise
alone may be ad-libitum access to food, a condition designed to
mimic human subjects that embark on exercise regimens without
limiting caloric intake. We found that exercise significantly
increased food intake of both diet groups although there was also
a significant interactive effect, with mice in the HF-E group
consuming a small but significantly greater amount of chow than
the HP-E group. This may be related to taste and food preference
by mice in the HF group. Despite increased food consumption, mice
in both exercise groups demonstrated significantly lower weight gain
(both about 10%) compared with sedentary mice. Most importantly,
only mice that were simultaneously switched to the HP diet showed
a significant benefit of exercise on plaque accumulation and this
correlated with a similar positive interaction of diet and exercise on
TC and LDL as well as the inflammatory markers IL-6 and CRP.
Therefore, whereas energy expenditure more than offset the
additional calories consumed, when the increased calories were
from the HF diet they appear to neutralize the positive effects of
exercise on lipids and atherosclerosis prevention. In this model,
voluntary exercise lowered IL6 and CRP in both diet groups but did
not reduce the progression of atherosclerosis in the absence of
dietary intervention. We found a small but significant decrease in
the level of HDL in the HP-E group. Whereas we do not know the
reason for this, HDL levels have been reported to increase with
exercise in human subjects (reviewed in [39]), but may be reduced
by low fat diets [34,35].

Voluntary exercise in mice with unrestricted access to the
exercise wheel is equivalent to a strenuous aerobic exercise
program. Mice run an average of 6 Km per day and spend
approximately 4 h running per 24 h at a mean speed of 1.5 Km/
hr (data not shown). Our results differ from other reports on the
effects swimming exercise on Apol-/- mice maintained on a
continuous HF diet. The latter studies reported that atheroscle-
rotic plaque accumulation was attenuated by 30-minute swimming
periods 3 times per week for 8-weeks, with no change of lipids. The
effects of exercise in this study were attributed to enhanced anti-
oxidant and NO production [32,33]. We also found that exercise
did not reduce the levels of TC or LDL when mice were fed a
continuous HF diet, in fact there was a trend for these to be
increased, most likely caused by the significantly increased food
intake associated with exercise. Also in our studies exercise only
prevented plaque accumulation when mice were switched from
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HF to HP. The differences may involve the nature of the exercise;
swimming periods were of shorter duration but may be more
intense than voluntary running. The swim studies did not report
food intake but they reported no change in average body weight
associated with exercise suggesting that there are major differences
in activity level and “lifestyles’ between the swim protocol and our
studies on voluntary exercise. Also in our studies the mice were
older and heavier with 4.5-months of pre-formed plaque before
exposure to diets and exercise. Plaque deposition involves multiple
steps beginning with inflammation and loss of endothelial integrity,
followed by lipid and inflammatory cell infiltration, deposition of
fatty streaks and ultimately foam cell production and neointimal
expansion (reviewed in [40—42]). We found that atherogenic lipid
levels correlated more closely with plaque accumulation than did
the IL6 or CRP levels in exercised mice fed HP suggesting that
lipid regulation is more important than inflammation in regulating
plaque progression in this model.

Our results are consistent with most of the studies on the effects of
exercise on CAD patients but perhaps at variance with the concept
that exercise programs alone are always protective against CAD
[43-45]. The recently updated Cochrane Collaboration review
analyzed the effectiveness of exercise-based cardiac rehabilitation in
patients with coronary heart disease [46,47]. From 48 trails and
8940 subjects it was found that long-term exercise programs
significantly reduced cardiac mortality as well as mean cholesterol
and triglyceride levels (—14.3 mg/dL and —20.4 mg/dL respec-
tively), but no significant changes of HDL or LDL. Significantly
lower rates of self-reported smoking further suggest the presence of
subgroups with self-imposed lifestyle modifications that may include
changed eating habits and diet. These results are also consistent with
the analyses of Leon & Sanchez [19] where less than 50% of 2200
subjects recruited to exercise training programs without diet
modification displayed significant reductions of TG, LDL or TC.
It seems possible that within these groups there are subjects with
severe dyslipidemia and advanced CAD that are unresponsive to

References

1. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, et al. (2007) Physical
activity and public health: updated recommendation for adults from the
American College of Sports Medicine and the American Heart Association.
Circulation 116(9): 1081-93.

2. Cuffe M (2006) The patient with cardiovascular disease: treatment strategies for
preventing major events. Clin Cardiol 29 (10 Suppl): 114-12.

3. Rice TW, Lumsden AB (2006) Optimal medical management of peripheral
arterial disease. Vasc Endovascular Surg 40(4): 312-27.

4. Genest J (2006) Combination of statin and ezetimibe for the treatment of
dyslipidemias and the prevention of coronary artery discase. Can J Cardiol 10:
863-8.

. Nesto RW (2005) Beyond low-density lipoprotein: addressing the atherogenic
lipid triad in type 2 diabetes mellitus and the metabolic syndrome.
Am J Cardiovasc Drugs 5: 379-87.

6. Libby P (2005) The forgotten majority: unfinished business in cardiovascular risk
reduction. J Am Coll Cardiol 46: 1225-8.

7. Foley SM (2005) Update on risk factors for atherosclerosis: the role of

inflammation and apolipoprotein E. Medsurg Nurs 14(1): 43-50.

8. Muchiteni T, Borden WB (2009) Improving risk factor modification: a global
approach. Curr Cardiol Rep 11(6): 476-83.

9. Stanner S (2009) Diet and lifestyle measures to protect the ageing heart. Br J
Community Nurs 14(5): 210-2.

10. Blair SN, Morris JN (2009) Healthy hearts—and the universal benefits of being
physically active: physical activity and health. Ann Epidemiol 19(4): 253-6.

11. Fontana L (2008) Calorie restriction and cardiometabolic health. Eur J
Cardiovasc Prev Rehabil 15(1): 3-9.

12. Westman EC, Feinman RD, Mavropoulos JC, Vernon MC, Volek JS, et al.
(2007) Low carbohydrate nutrition and metabolism. Am J Clin Nutr 86(2):
276-84.

13. Batsis JA, Nieto-Martinez RE, Lopez-Jimenez F (2007) Metabolic syndrome:
from global epidemiology to individualized medicine. Clin Pharmacol Ther
82(5): 509-24.

14. Cuffe M (2006) The patient with cardiovascular disease: treatment strategies for
preventing major events. Clin Cardiol 29 (10, Suppl): 114-12.

wr

@ PLoS ONE | www.plosone.org

Diet, Exercise and Atherosclerosis
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In conclusion, there is increasing evidence that exercise training
can reduce endothelial dysfunction and the progression of
atherosclerosis. Exercise training improves the bioavailability of
nitric oxide, diminishes the level of inflammatory markers, and can
enhance the numbers of circulating endothelial progenitor cells
[48] while reducing EPCs in the bone marrow [38], with the
potential of reducing atherosclerosis [49]. Results presented here
suggest that in atherosclerosis-prone ApoE-/- mice the protective
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significantly diminished by diet and pre-elevated levels of
atherogenic lipids. We only observed significant TC/LDL-
lowering and decreased atherosclerosis by exercise when the
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lower body weights and inflammation markers in exercised mice
on the high fat diet, plaque accumulation was not significantly
reduced. Therefore it seems possible that in this model where
significant disease is already present, protection against further
plaque accumulation and plaque regression requires correction of
lipid and cytokine profiles, conditions seen only when exercise was
superimposed on the high protein diet.
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