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Abstract

To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early
origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and
obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat
diet (HFD) contained equivalent levels of n-3 fatty acids (FA’s) and higher levels of n-6 FA’s than the control diet (CTR), we
found significant decreases in docosahexaenoic acid (DHA) and total n-3 FA’s in HFD maternal and fetal plasma.
Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:
n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to
a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA’s and fetal hepatic apoptosis to CTR levels. Breast milk
from HFD dams contained lower levels of eicosopentanoic acid (EPA) and DHA and lower levels of total protein than CTR
breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a
potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.
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Introduction

Over the last twenty years, obesity has dramatically increased in

the United States across every ethnic group studied [1,2]. Women of

childbearing age have not been spared from this upsurge, as nearly

50% of all women of childbearing age are either overweight or obese

and one-third have body mass indexes (BMI) of 30 or higher [3,4]. A

particularly concerning part of the emerging epidemic of obesity is

the increasing rise in the percentage of children and adolescents that

are either overweight or at risk for overweight [1,2,5]. In addition,

diseases once only found in adults are occurring with greater

frequency in pediatric populations. Type 2 diabetes mellitus as well

as secondary co-morbidities such as hypertension, non-alcoholic

fatty liver disease, hyperlipidemia, and metabolic syndrome are now

becoming increasingly common in children [6,7].

The increasing prevalence of metabolic diseases and obesity in

children is most often attributed to a combination of an energy

conserving, or ‘thrifty’ genotype, with a prevalent imbalance of

nutrient intake and expenditure in the developed world. An

emerging body of evidence also suggests that our ability to respond

to metabolic challenges during postnatal life is modified by

environmental influences during fetal development. Fetal devel-

opment is a critical period when exposure to environmental insults

in-utero has lifelong effects on the structure and function of organs,

tissues and body systems in the offspring.

There is strong evidence in humans that maternal nutrient

deprivation during pregnancy can program adipocyte metabolism

and fat mass towards a propensity for obesity, and lead to a wide

range of developmental effects in the offspring [8–15]. In addition,

maternal obesity and gestational diabetes mellitus (GDM) during

pregnancy has also been implicated in the development of

metabolic disorders in offspring, including macrosomia, impaired

glucose tolerance, and a higher risk of developing obesity and

diabetes as adults [16–25]. While epidemiological evidence has
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shown that the intrauterine environment has profound effects on

fetal growth and the programming of childhood weight, the

mechanisms underlying metabolic programming are poorly

understood, particularly in humans.

Rodent studies have demonstrated that a maternal high fat diet

during gestation and lactation, or overfeeding during the postnatal

period, alters the development of the pancreas and liver as well

as central and peripheral nervous systems involved in energy

homeostasis [26–40]. While extremely valuable, these rodent

studies do not address the fact that there are critical developmental

differences between rodents and primates, including both humans

and nonhuman primates (NHP). For example, the development of

important central circuits regulating appetite and metabolism

occurs prenatally in humans and NHP, while rodent maturation of

these systems primarily occurs postnatally [41–45]. Furthermore,

the macro- and micro-architecture of the placenta is markedly

different between rodents and humans, and this has important

implications for fetal nutrient transfer during development

(reviewed in [46]). Therefore, studies designed to provide

mechanistic links between the maternal gestational metabolic

environment and fetal metabolic programming, in support of

previous human epidemiological observations, requires animal

models that closely resemble human development.

To this end, we have utilized a unique non-human primate

model of maternal high fat/calorie diet-induced obesity (in the

absence of gestational diabetes) to address the impact that chronic

maternal consumption of a high-fat diet (HFD) may have on

metabolic programming [47]. We acknowledge that ‘high-fat’ is a

phrase that simplifies the complex nature of our dietary

intervention and therefore have supplied a detailed analysis of

the dietary constituents. Nonetheless, this model utilizes chronic

high fat feeding, and the level and composition of dietary fat are

not outside the norms for a modern western diet [48].

Our group has previously shown that a maternal HFD alters

fetal development and expression of hypothalamic neuropeptides

in the context of hypothalamic inflammation, as well as inducing

changes in the central serotonergic system [49,50]. In the liver,

HFD fetuses had premature gluconeogenic gene expression,

steatosis, elevated triglyceride content, and oxidative stress. In

addition, epigenetic changes and altered circadian gene expression

has been shown in the HFD fetal liver [51,52]. HFD fetal plasma

contained elevated levels of inflammatory cytokines, and elevated

triglycerides and glycerol that were highly correlated to maternal

levels. Other work with this model has shown that alterations in

serum metabolite profiles are present in HFD fetuses [53]. The

majority of these changes were observed irrespective of maternal

obesity or maternal insulin resistance status and persisted into the

early postnatal period. Importantly, switching HFD mothers to a

control diet during pregnancy alone (diet-reversal; REV) reversed

a number of the observed fetal hepatic pathologies towards control

levels [47,52].

In the present study, we further characterize our NHP model of

maternal HFD induced obesity [47], by a detailed analysis of fatty

acids in the diet, maternal plasma, breastmilk, and fetal plasma. In

addition, we extend previous findings by evaluating the effects that

a maternal HFD has on inflammation and apoptosis in the fetal

liver. Our results show that the experimental maternal HFD leads

to increased apoptosis in the developing fetal liver. In addition,

maternal and fetal HFD plasma have reduced levels of circulating

n-3 fatty acids when compared to CTR. Importantly, we

demonstrate that a maternal dietary intervention during pregnan-

cy (REV) normalized fetal hepatic apoptosis and returned plasma

n-3 fatty acids to CTR levels in dams and fetuses. These data

support the idea that the placenta does not protect the developing

fetus from a pro-inflammatory maternal lipid milieu. Because

these effects are associated with maternal diet during gestation and

lactation, and some are reversed with dietary manipulation limited

to these intervals, these data have critical public health

implications.

Materials and Methods

Macaque model of maternal overnutrition
All animal procedures have undergone an extensive review

process and were in accordance with the guidelines of Institutional

Animal Care and Use Committee of the Oregon National Primate

Research Center (ONPRC) and Oregon Health & Science

University. Protocols involved in this study were developed to

ameliorate suffering and have been approved under IACUC ID

number: IS00000224 (0622 for internal purposes). The Animal

Care and Use Program at the ONPRC abides by the Animal

Welfare Act and Regulations (CFR 9, Ch 1, Subchapter A)

enforced by the USDA, the Public Health Service Policy on

Humane Care and Use of Laboratory Animals, in accordance

with the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health, and the recommendations of the

Weatherall report; The Use of Non-human Primates in Research.

Japanese macaques matched for age (5–7 years at start) and

weight (7–9 Kg) were randomly assigned to two dietary groups in

the fall of 2002: 1: Control diet (CTR; 13% of calories from fat;

Monkey Diet no. 5052, Lab Diet, Richmond, IN, USA) or 2:

High-fat diet (HFD; 35.2% of calories from fat; Custom Diet

5A1F, Test Diet, Richmond, IN, USA). The HFD also included

calorically dense treats made with peanut butter. Both diets are

sufficient in vitamin, mineral, and protein content for normal

growth. Prior to this study, all animals were maintained on

standard monkey chow in large outdoor enclosures and were naive

to any experimental protocols.

Manufacturers specifications provided for both diets show that

the total metabolizable energy content of the CTR chow was

2.87 kcal/g and was apportioned at 26.8% energy from protein,

58.5% energy from carbohydrate, and 14.7% energy from fat.

The main source of fat in the CTR diet was soybean oil. The total

energy content of the maternal HFD chow was 4.2 kcal/g and was

apportioned at 16.7% energy from protein, 51.5% energy from

carbohydrate, and 31.8% energy from fat. The main sources of fat

in the HFD were lard, animal fat, butter and safflower oil.

The animals were group housed and had ad libitum access to

food and water. The group housing is important as it provides for

normal social behavior and exercise, which contribute to the

psychological well being of the animals and more closely resembles

the human condition. However, because the animals are group

housed it is not possible to determine individual food/calorie

intake. For maternal plasma studies, 11 CTR, 6 HFD, and 7 REV

dams were used.

Each maternal group was housed with two males so that

pregnancies would occur during the yearly breeding season

(November–February). The females were checked each successive

year for pregnancies starting in November by ultrasound, which

allows an estimate of gestational age 65 days. Twice a year the

animals underwent IV glucose tolerance tests (IVGTT) (Methods
S1a), once during the late summer (nonpregnant state) and once

during the early 3rd trimester of pregnancy. All of the above

procedures were done under ketamine sedation (5–10 mg/kg).

For our studies, ONPRC veterinarians terminated singleton

pregnancies from dams by cesarean section at gestational day 130

(G130), as determined by ultrasound. Pregnant dams were fasted

overnight for approximately 16 hours prior to surgical procedure.

Maternal Diet and Fetal Hepatic Apoptosis
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Females were initially sedated with ketamine hydrochloride

(100 mg/ml) at a dose of 10–15 mg/kg. Once animals were

sedated they were delivered to the surgical area and placed on

isoflurane gas; induced at 3%, then maintained at 1.0–1.5%.

Cesarean sections were performed by trained ONPRC veterinar-

ians and their staff, and occurred on scheduled days between 10:00

and 10:30 am.

Pre and post-operative care was maintained by the ONPRC

veterinary staff. Immediately prior to the cesarean section animals

received an intravenous dose of hydromorphone (0.5 mg if under

10 kg, 1.0 mg if over 10 kg). An additional intravenous dose of

hydromorphone was administered post-operatively, usually within

an hour after the start of the procedure. For the remainder of the

day following the cesarean section, intravenous hydromorphone

was given at 4:00 pm and again at 8:00 pm in combination with

buprenorphine (0.3 mg IM). The following day, hydromorphone

was administered at 8:00 am, 12:00 pm, 4:00 pm and then again

with buprenorphine at 8:00 pm. Animals remained in the surgical

ICU area for approximately 7 days under close veterinary

observation and were then released back into their group.

After cesarean section, fetuses were deeply anesthetized with

sodium pentobarbital (.30 mg/kg i.v.) and exsanguinated. All

peripheral tissues and brain were removed, weighed and stored for

subsequent protein and RNA extractions or for histological

analyses. All surgical procedures used in this study, were

performed each scheduled day in an identical manner, following

an a priori defined protocol in both technique and timing. Thus for

plasma analyses, blood draws were taken at approximately the

same time of day for dams and fetuses. Maternal blood was taken

during c-section from the femoral artery, and fetal blood samples

were taken from the abdominal aorta during necropsy.

Fetal studies were performed with 11 CTR, 7 HFD and 6 REV

animals. Normal full-term pregnancies for Japanese macaques is

175 days, thus G130 is in the early 3rd trimester. G130 was chosen

after preliminary studies determined that this gestational age

represented a critical period for the development of several

metabolic systems: 1) hypothalamic circuits have started to

develop, 2) there is widespread pancreatic b-cell development, 3)

there is a full functioning placenta that is not at near term, and 4)

there is very little white adipose tissue (WAT).

Previous work with this model has demonstrated significant

increases in maternal leptin levels, decreases in maternal insulin

sensitivity, and increases in maternal weight gain starting with the

second year of maternal HFD exposure, and these changes persist

and become greater through year four [47]. For our fetal studies,

we are reporting differences in HFD fetuses whose mothers were

exposed to the maternal diet for at least four consecutive years. In

the fifth year of our studies, a diet-reversal protocol (REV) was

initiated to assess dietary impact independent of maternal obesity.

This protocol entailed switching a subgroup of adult females that

had been exposed to a high-fat diet for four consecutive years, to a

control diet 1–3 months before becoming pregnant and through-

out the pregnancy.

Maternal breast milk for fatty acid analysis was obtained at

postnatal day 30 (postnatal day 29.563 days, (mean 6 SD)) from 6

CTR and 16 HFD dams giving birth to full term infants. The

breast milk was collected during routine postnatal day 30 dual-

emission X-ray absorptiometry (DEXA) procedures for the

offspring. The DEXA procedure followed an a priori defined

protocol and breast milk was obtained at approximately the same

time of day for each animal. At 9:00 am, the mother was sedated

with ketamine (15 mg/kg) or telazol, if ketamine resistant. The

baby was separated from the mother for DEXA scanning. Two

hours later, 0.5 mL oxytocin was injected intravenously into the

mother to stimulate milk let down. The breast and nipple were

massaged and milk was collected into a 15 mL conical vial. The

milk sample was immediately stored on ice until centrifugation to

separate aqueous milk and cream layers.

Due to study design parameters in which the focus of the REV

group was on fetal effects, breast milk from the REV dams was not

available. In addition, during the two-year period that the breast

milk study encompassed, there were fewer pregnancies in CTR

dams (15) than in the HFD dams (23). The volume of milk

collected was highly variable and dependent on whether nursing

had occurred immediately prior to our procedures. Visual

inspection of the breast-milk was also used to identify and exclude

samples that were discolored or contaminated with maternal

blood. Thus, to obtain enough breast milk for the insulin, total

protein, leptin and cytokine assays we performed, and to provide

sufficient power for analysis, we sampled additional lactating CTR

Japanese macaque dams. Milking of these additional CTR dams

was performed during bi-annual colony health examinations and

included milk that was older than 30 days post-partum (post-natal

day 160634 (mean 6 SEM)). No differences were observed in the

CTR group between the older milk and the 30 days post-partum

milk for the insulin (12 CTR, 18 HFD dams) total protein (11

CTR, 8 HFD dams), leptin (20 CTR, 13 HFD dams) and cytokine

assays (14 CTR, 18 HFD dams), so they were grouped for analysis.

Detailed protocols for the insulin, total protein, leptin and cytokine

assays are described in Methods S1b.

Fatty acid profiles
The fatty acids present in each maternal diet, fasting maternal

plasma breast milk and fetal plasma were analyzed by a modification

of the methods described by Langerstedt et al. [54]. Deuterated fatty

acids including d3C10:0, d3C14:0, d3C16:0, d3C18:0, d3C20:0 and

d4C22:0 were added to samples prior to extraction as internal

standards. Following hydrolysis and extraction, fatty acids were

derivatized to the pentafluorobenzyl (PFB)-esters. The fatty acid-

esters were analyzed by gas chromatography-mass spectroscopy

(GC-MS) on a Trace DSQ (Thermoelectron) operating in the

negative ion chemical ionization mode with methane as the reagent

gas. The fatty acid-PFB esters were separated on a DB-5 ms capillary

column (30 m60.25 mm60.25 mm) with helium as the carrier gas at

a flow rate of 1 ml/min. Individual fatty acids were monitored with

selected ion monitoring and a dwell time of 50 ms for each ion

species. Each fatty acid was matched to the deuterated internal

standard closest in length and retention time. Peak area ratios of

known amounts of standard fatty acids and the internal standards

were used to generate calibration curves to quantify unknowns using

Xcalibur software.

Dynamic range and efficiency curves for Real-Time PCR
Macaque specific primer sets were evaluated to determine the

efficiency of our primer sets within a working range of cDNA

concentrations and identify an optimum concentration of cDNA

to use in Real-time PCR assays. A cDNA dilution series was made

from four random samples from each dietary group. The cDNA

was diluted based on initial RNA concentration and the

assumption of 100% reverse transcription efficiency. The dilution

series was designed so that each primer set started at an upper

limit of 50 ng total cDNA/reaction and decreased in 10 ng

increments to a minimum of 1 ng/reaction [55].

Primer validation Real-Time PCR reactions were run on an

Applied Biosystems 7300 as relative quantification plates with

SYBR master mix used at a 26 dilution. Following automatic

thresholding and standard baseline adjustments after each run, Ct

values were plotted as a function of the log (10) of the cDNA

Maternal Diet and Fetal Hepatic Apoptosis
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concentration and a linear slope was calculated [56]. Efficiency

was calculated as 10‘(21/slope) and was used for our experimen-

tal quantification [55]. For experimental assays we chose a cDNA

concentration that gave us Ct threshold values across all dietary

groups of between 20 and 32 cycles. In cases where we could not

detect the target of interest in any diet group; threshold Ct values

.35, or SYBR fluorescence not rising above background at all, we

confirmed the presence of the target and the specificity of our

target primers on fetal spleen processed in an identical manner as

our liver samples. Additional protocols describing liver tissue RNA

extractions (Methods S1c) and primer design (Methods S1d)

are included as supporting information.

Real-Time PCR
Experimental Real-Time PCR reactions were run on an

Applied Biosystems 7300 as relative quantification plates. Target

and endogenous control primers were used at a final concentration

of 471 nM in a 21 ml reaction. SYBR master mix was used at the

manufacturer’s recommended 26 dilution. Dissociation curves

were produced for every well to monitor primer amplification of a

single target. Alg9 was used as an endogenous control for all our

experiments. The Alg9 primer set was designed by core facilities at

the Oregon National Regional Primate Center as an endogenous

control for macaque gene expression analysis, and subjected to

extensive gene stability validation in our model by use of the

geNorm VBA applet [57,58]. Primer sequences used for Real-

Time PCR are described in Table S1.

Relative quantification of target gene expression was calculated

across each dietary group using empirically derived efficiency

values for each primer set and calculating an efficiency-corrected

fold by the following formula:

Fold~(Etarget)
DCt(target control-target sample)=

(Eendo)DCt(endo control-endo sample)

where E is the respective primer efficiency. The DCttarget was

calculated by choosing one calibrator sample from the control diet

group and subtracting subsequent target Ct values from that

calibrator across all groups. In addition, DCtendo was calculated by

using endogenous control Ct values for the same calibrator sample

as above, and subtracting subsequent endo Ct values from that

calibrator [55]. In situations where the optimum cDNA concen-

tration of our endogenous control differed from our target, we

produced cDNA dilutions for the endogenous control and target

from the same reverse-transcriptase reaction. Following the Real-

Time PCR reaction random target well reactions from each diet

group were run on a 2% agarose gel to verify amplicon singularity

and size. Bands of the expected size were excised, gel purified

(Qiaquick gel extraction kit, Qiagen #28706) and sequenced.

Target specificity was confirmed by BLAST and comparing

amplicon sequence with the NCBI macaque database.

TUNEL assay
We used an ApopTagH Peroxidase In-Situ TdT end-labeling

apoptosis detection kit (Chemicon S7100) on fetal CTR, HFD,

and REV paraffin embedded fetal liver sections (Right lobe,

5 microns thick) as per manufacturers instructions. Tissue was

deparaffinized in 3 washes of xylene, followed by graded alcohol

(100%, 95% and 70%) rehydration. Proteinase K (20 ug/ml)

digestion for 15 min at room temperature was followed by 2

washes in ddH2O. Endogenous peroxidases were quenched for

5 minutes in 3.0% hydrogen peroxide in 16 PBS. Following

application of proprietary equilibration buffer, the TdT enzyme

was incubated for one hour at 37uC. The TdT reaction was

stopped by immersion into wash buffer and the anti-digoxigenin

conjugate was applied and incubated at room temperature for

30 minutes. Following 4 washes in 16 PBS, the peroxidase

substrate was developed for 6 minutes at room temperature.

Samples were then washed in ddH2O and counterstained with

methyl green.

TUNEL imaging and quantification
Imaging was performed on a Marianas Digital Imaging

workstation equipped with a Zeiss Axiovert 200 M inverted

microscope (Zeiss Microimaging, Thornwood, NY) and a Cool-

snap camera (Roper Scientific, Tucson, AZ) by a blinded observer.

A montage of each liver section was created with the Marianas

Digital Imaging workstation using a 26 objective. Stereological

analysis of the 26montage was performed by masking the hepatic

area and placing 500 um6500 um regions with spacings of

1000 um61000 um and a random offset of 69.4 (x-coordinate)

and 513.4 (y-coordinate), on the image (SlideBook, Intelligent

Imaging Innovations, Denver, CO). Coordinates of each region

were recorded and then each region was imaged using a 106
objective. Following acquisition of between 20 to 40 106 images

per section, masking was used to threshold and calculate the total

hepatic parenchyma area. An additional mask was used to

threshold TUNEL positive cells. Within the stereology program

we excluded TUNEL positive debris under 5 microns in width.

Following these adjustments, the number of TUNEL positive

stained cells (‘‘events’’) was automatically counted and the total

hepatic area was recorded. The number of events was converted to

a rate, defined as rate = (# events + 0.5)/ hepatic area, with the

overall rate for each animal being summarized as the median rate

among all animal-specific measurements. These rates were then

log transformed (base 10) for analysis, with the log transformation

aiding to stabilize variance and make the distribution of rates more

symmetric. (The addition of 0.5 in the initial rate calculation was

necessary to avoid taking the log of zero; among the 646

measurement only 7.6% were 0 counts). Analysis of variance

was then used to determine whether the median rate differed

according to diet.

Other analyses based on summarizing individual measurements

in terms of mean rate, as well as non-parametric analysis (Kruskal-

Wallis) applied to the current median-rate summary led to similar

conclusions and are not reported. Similarly, a linear mixed effect

model with count distributed according to a Poisson distribution

(and area treated as an offset) found similar conclusions to our

earlier and more simple approaches based on all summarizing

forms (median/mean) of the log transformed rates; consequently,

we present only results of the simpler analysis. All analyses

performed using R version 2.6.1 (R Development Core Team

(2007), R Foundation for Statistical Computing, Vienna, Austria.

ISBN 3-900051-07-0, URL: http://www.R-project.org.) Graphs

were produced with Prism software (GraphPad Software, Inc., La

Jolla, CA).

Data analysis
Data for all analyses not explicitly described above, were first

compiled and tested for normality by Shapiro-Wilk with STATA

(College Station, Texas) statistical software. Data were trans-

formed to fit Gaussian distributions and tested for significance by

ANOVA with a Bonferroni post-hoc analysis. Groups that did not

attain a Gaussian distribution by transformation were first tested

for overall significance by Kruskal-Wallis rank sum, followed by a

Wilcoxon rank sum test with a Bonferroni adjusted alpha to

determine significance between diet groups. Pair-wise analysis of

Maternal Diet and Fetal Hepatic Apoptosis
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the fatty acid association between each dam and their respective

offspring was performed using pairwise correlation in STATA. We

are reporting an overall Pearson correlation coefficient across our

three diet groups for each analysis. In addition, maternal and fetal

fatty acid samples were also tested by pairwise correlation in

STATA for an overall association with maternal insulin resistance

and glucose clearance. All graphs were made with Prism software

(GraphPad Software, Inc., La Jolla, CA).

Results

Maternal diet nutritional analysis
To initiate our analysis of the impact that maternal HFD has on

the developing NHP fetus, we chose to first examine differences in

fatty acid composition between the CTR and HFD diets. Using

gas chromatography-mass spectroscopy, we found that compared

to the CTR diet, the maternal HFD has higher levels of myristic

(C14:0), myristoleic (C14:1), palmitic (C16:0), palmitoleic (C16:1),

stearic (C18:0), oleic (C18:1, n-9), linoleic (LA, C18:2, n-6), a-

linolenic (ALA, C18:3, n-3), and arachidonic (AA, C20:4, n-6)

fatty acids. In addition, the HFD had lower levels of eicosopenta-

noic acid (EPA, C20:5, n-3) and docosahexaenoic acid (DHA,

C22:6, n-3) than the CTR diet. When fatty acid subtypes were

combined into groups, the HFD contained much higher levels of

total fatty acids, saturated, monounsaturated, polyunsaturated,

essential fatty acids (EFA, sum of C18:2 and C18:3) and total n-6

fatty acids (sum of C18:2 and C20:4) than in the CTR diet. Total

n-3 fatty acids (sum of C18:3, C20:5 and C22:6) were similar

between HFD and CTR maternal diets; however, a greater than

2-fold increase in HFD total n-6 fatty acids resulted in an n-6:n-3

ratio of 20:1 compared to the 9:1 n-6:n-3 ratio in the CTR diet

(Table 1). Thus, the HFD has an n-6:n-3 ratio that is reflective of

current trends in the Western diet [59].

Maternal plasma lipid profiles
Lipid analysis of maternal plasma total fatty acids revealed that

fasting levels of total fatty acids, total n-6, saturated, monounsat-

urated, polyunsaturated, and EFA’s were not significantly different

between the CTR, HFD and REV maternal diet groups (Table 2).

However, total n-3 fatty acids were significantly reduced in the

HFD group when compared to CTR and REV diet groups.

Comprising the reduction of total n-3 fatty acids were significant

decreases in EPA (n-3) and DHA (n-3) in the HFD group when

compared to both the CTR and REV dietary groups. There was

no change in DHA between CTR and REV; however, EPA was

higher in the REV group when compared to CTR. There were no

significant differences observed in a-linolenic acid (n-3) and

linoleic (n-6) across the three dietary groups. A trend was observed

for lower levels of arachidonic acid (n-6) in HFD maternal plasma,

but this did not reach statistical significance (p = 0.06).

No significant changes were observed in total circulating n-6 fatty

acids between the three dietary groups. However, decreases in EPA

and DHA in the HFD group were large enough to significantly

lower total n-3 levels in maternal plasma. Consequently, the HFD

maternal plasma had a significantly higher n-6:n3 ratio (20:1) when

compared to CTR (5:1) or REV plasma (6:1).

Fetal plasma lipid profiles
Lipid analysis of fetal plasma also revealed that total fatty acids,

saturated, EFA’s and total n-6 fatty acid levels were not

significantly different between the CTR, HFD and REV diet

groups (Table 3). A significant increase in total polyunsaturated

fatty acids was found in the REV group when compared to the

HFD group but no statistical differences were observed when the

CTR group was compared to either the HFD or REV diet groups.

An increase in total monounsaturated fatty acids was observed in

the HFD fetal plasma compared to the CTR and REV groups.

The increase in monounsaturated fatty acids in the HFD group

was due to higher levels of the major monounsaturated, oleic acid

(C18:1, n-9), but the differences in oleic acid only reached

statistical significance when the HFD was compared to the REV

diet group.

As observed in the maternal circulation, total n-3 fatty acids

were significantly lower in the HFD group when compared to

CTR and REV. This decrease was due to significantly lower levels

of DHA in the HFD fetal plasma when compared to CTR and

REV. Again, due to the decreases in HFD circulating total n-3

fatty acids, a significant increase in the n-6:n-3 ratio was found

between CTR (4:1) and the HFD group (9:1). In the REV diet

group DHA and total n-3 fatty acids were normalized to CTR

levels. However, due to an increase in REV plasma n-6 fatty acids,

which was not itself significantly higher when compared to the

CTR and HFD diet groups, the REV n-6:n-3 ratio (7:1) was only

partially normalized to the CTR ratio. Thus, the reduced levels of

n-3 fatty acids and elevated n-6:n-3 fatty acid ratio found in the

HFD maternal plasma were also observed in the HFD fetal

plasma.

Plasma n-6:n-3 ratios are correlated between maternal
and fetal circulation

The fasting levels of total fatty acids, saturated, monounsatu-

rated and n-6 fatty acids are not different in the maternal plasma

Table 1. Gas chromatography- mass spectrometry analysis of
maternal chow.1

DIET GROUP

Fatty
Acid

Common
Name (Type) CTR HFD

Mean SEM Mean SEM
HFD/CTR
Ratio

C 14:0 Myristic 0.5 0.1 15.0 1.3 30

C 14:1 Myristoleic 0.004 0.001 0.4 0.1 100

C 16:0 Palmitic 6.1 2.0 24.7 5.7 4.1

C 16:1 Palmitoleic 0.2 0.0 3.4 0.5 17

C 18:0 Stearic 2.9 1.0 20.2 1.9 7

C 18:1 Oleic (N9) 9.5 2.1 52.9 15.4 5.6

C 18:2 Linoleic (N6) 18.9 5.0 40.6 14.6 2.1

C 18:3 Linolenic (N3) 0.5 0.1 1.2 0.4 2.4

C 20:4 Arachidonic (N6) 0.04 0.02 0.4 0.1 10

C 20:5 EPA (N3) 0.8 0.2 0.3 0.1 0.4

C 22:6 DHA (N3) 1.0 0.5 0.6 0.2 0.6

Total Fatty Acids 40.3 4.8 169.6 39.4 4.2

Total Saturated 9.4 3.0 59.9 8.8 6.4

Total Monounsaturated 9.7 2.0 56.6 15.9 5.8

Total Polyunsaturated 21.2 5.8 52.6 20.5 2.5

Total Essential Fatty Acids 19.4 5.1 41.8 15.0 2.2

Total N6 19.0 5.0 50.2 19.7 2.2

Total N3 2.2 0.8 2.4 0.8 0.9

N6:N3 Ratio 8.8 1 19.9 0.9 2.3

1All values are mean 6 SEM and expressed as mg/g of dry chow.
doi:10.1371/journal.pone.0017261.t001
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between dietary groups. Except for a small but significant increase

in monounsaturated fatty acids, these findings are also observed in

fetal plasma. However, we observed significant decreases in DHA

and total n-3 fatty acids in both maternal and fetal HFD

circulation that were normalized with maternal diet reversal.

These findings suggest that circulating n-3 fatty acids, as essential

fatty acids, are dependent on dietary supply and availability in

both mother and fetus across our three dietary groups.

Our model provides us with the ability to perform pair-wise

analysis of circulating lipids between individual dams and their

offspring to investigate associations between maternal and fetal

parameters. Thus, we performed a pairwise correlation analysis

and found that there was a significant correlation (Figure 1A)

between the maternal n-6:n-3 ratio and the n-6:n-3 ratio found in

the fetus (Roverall = .63, p = .002). In addition, we found a weaker

but statistically significant association (Figure 1B) between

maternal EPA and fetal EPA (R = .43overall, p = .045). However,

we did not find a statistically significant association between

maternal and fetal plasma DHA.

Maternal obesity versus maternal consumption of a high-
fat diet

Previous work with this model has shown that following chronic

maternal consumption of a HFD two maternal phenotypes emerge

[47]. Compared to CTR animals, diet-sensitive HFD dams are

obese, hyperleptinemic, and insulin resistant. In contrast, the diet-

resistant HFD dams had normal insulin secretion during glucose

tolerance tests, similar body weights, body fat and circulating

leptin levels relative to the maternal CTR diet group even after

four years on the high-fat diet. To date, the majority of findings

regarding fetal development with this model have been indepen-

dent of maternal obesity and diabetes.

We tested whether maternal sensitivity to the HFD is associated

with either maternal or fetal fatty acid levels by pairwise

correlation. We found that the maternal insulin secretion (insulin

AUC) and maternal glucose clearance (glucose AUC), as

determined by third trimester maternal i.v. glucose tolerance

testing, were not correlated with fasting plasma levels of any

maternal fatty acids acquired at time of cesarean section (G130).

Interestingly, we found that the fetal plasma n-6:n-3 ratio was

positively correlated with maternal insulin AUC (Roverall = .61,

p = .002, Figure 2A). No other fetal plasma fatty acids assayed

were correlated with the maternal insulin AUC. Additionally, we

found that the total fetal plasma levels of saturated fatty acids

(Roverall = .54, p = .007, Figure 2B) were correlated with the

maternal glucose AUC, as were the individual saturated fatty acids

C14:0 (myristic acid; Roverall = .43, p = .04), C16:0 (palmitic acid;

Roverall = .45, p = .04). In addition, C18:1 (oleic acid; Roverall = .43,

p = .04) and C18:3 (a-linolenic acid ( n-3); Roverall = .50, p = .01 )

were also positively correlated with maternal glucose AUC

(Figure S1). These data extend previous associations found

between maternal diet sensitivity and fetal outcomes in our model

[53]. Our findings suggest that while maternal diet has been the

primary predictor of fetal outcomes thus far, other maternal

Table 2. Gas chromatography- mass spectrometry analysis of maternal plasma lipids.1

DIET GROUP

Fatty Acid Common Name (Type) CTR HFD REV

Mean SEM Mean SEM Mean SEM p-value2

C 14:0 Myristic 290.7 61.8 347.5 84.8 226.1 35.6 0.68

C 14:1 Myristoleic 4.7 1.0 3.3 0.4 4.7 0.9 0.52

C 16:0 Palmitic 2456.2 239.4 2187.7 209.8 2239.4 194.2 0.67

C 16:1 Palmitoleic 192.2 50.6 113.5 17.3 90.4 11.1 0.54

C 18:0 Stearic 796.7 60.1 1013.4 65.7 860.4 55.2 0.07

C 18:1 Oleic (N9) 828.7 129.0 1084.7 101.8 859.5 85.8 0.33

C 18:2 Linoleic (N6) 1167.9 150.6 1122.6 72.6 1395.6 231.8 0.73

C 18:3 Linolenic (N3) 27.8 4.0 28.6 2.1 31.3 4.5 0.81

C 20:4 Arachidonic (N6) 484.5 55.8 366.6 29.8 570.2 48.1 0.06

C 20:5 EPA (N3) 72.8b,c 9.4 5.2a,c 0.8 122.0a,b 13.1 0.0001

C 22:6 DHA (N3) 219.4b 33.8 39.8a,c 2.4 177.5b 21.2 0.0001

Total Fatty Acids 6541.5 632.3 6312.8 469.4 6377.7 568.6 0.9718

Total Saturated 3543.6 310.6 3548.6 310.8 3325.9 264.7 0.89

Total Monounsaturated 1025.5 170.5 1201.4 117.6 954.6 90.7 0.58

Total Polyunsaturated 1972.5 238.6 1562.8 81.8 2270.2 308.0 0.33

Total Essential Fatty Acids 1195.7 154.5 1151.2 74.7 1426.5 237.1 0.61

Total N6 1652.5 203.0 1489.2 80.3 1951.5 280.1 0.53

Total N3 320b 37.4 73.7a,c 2.7 330.8b 30.2 0.0001

N6:N3 Ratio 5.2b 0.2 20.2a,c 0.9 6.1b 0.5 0.0009

1All values are means 6 SEM and are expressed as mmol/L. (n = 11 for CTR, n = 6 for HFD, n = 6 for REV).
2Overall significance as determined by ANOVA or Kruskal-Wallis rank sum test.
aSignificantly different from CTR, p,.0167, Bonferroni adjusted a.
bSignificantly different from HFD, p,.0167, Bonferroni adjusted a.
cSignificantly different from REV, p,.0167, Bonferroni adjusted a.
doi:10.1371/journal.pone.0017261.t002
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factors (e.g. obesity, hyperinsulinemia, etc.) may also play

important roles in determining the fatty acid milieu of the

developing fetus.

Inflammation in the high-fat fetal liver
Recent work with this model suggested that non-alcoholic fatty

liver disease (NAFLD) is present in the HFD fetal liver. McCurdy

et al. demonstrated that oxidative damage, hepatic steatosis, and

upregulation of phospho-JNK1 that was highly correlated with

levels of fetal liver triglycerides were present in the HFD fetal livers

[47]. To extend these findings, we investigated whether inflam-

mation and consequent evidence of non-alcoholic steato-hepatitis

(NASH) was present in the HFD fetal liver. We used Real-time

PCR to evaluate the expression of inflammatory markers between

CTR, HFD and REV fetal livers (Table 4). We found that the

expression of interleukin-10 (IL-10) was significantly different

across the three dietary groups and lower in the REV group, but

post hoc tests did not show statistical significance when compared

to the CTR and HFD diet groups. Unexpectedly, the expression of

Arginase-1 in the REV diet group, a marker of Th2 macrophage

activation [60,61], was significantly decreased when compared to

the CTR and HFD groups. No differences were observed in the

expression of any of the other inflammatory markers we assayed

between the CTR, HFD and REV maternal diet groups. These

data suggest that the fetal liver is not the origin of the increased

levels of pro-inflammatory cytokines found in fetal circulation in

previous work with this model [47].

Apoptosis in high-fat fetal liver
During gestation the fetal liver directly receives about 50% of

maternal blood flow via the branch of the umbilical vein that

connects to the portal vein [62]. Thus, the fetal liver, and

particularly the right lobe of the fetal liver, is anatomically

positioned to be directly affected by factors that are present in the

umbilical circulation. Given the increases in pro-inflammatory

cytokines found in the fetal umbilical circulation and the evidence

of NAFLD reported in previous work [47], we performed a

TUNEL assay to examine whether evidence of increased hepatic

apoptosis was present in fetal livers exposed to a maternal HFD.

We found that there is a significant increase in the number of

apoptotic cells in the HFD fetal liver compared to CTR when

normalized to hepatic area (2.14 fold increase, p,.05). Impor-

tantly, by switching a subgroup of HFD mothers to a control diet

during a subsequent pregnancy (REV), apoptosis in the fetal liver

was completely normalized to baseline (Figure 3).

Postnatal Studies
To begin to understand the long-term metabolic programming

effects that a maternal high-fat diet has on the offspring, it is

necessary to separate effects that occur in-utero from changes that

occur after parturition. Lactation is a critical period of develop-

ment for the offspring that may be sensitive to maternal obesity

and consumption of a high-fat diet. To begin to address the effects

that maternal obesity and overnutrition may have during lactation,

we performed gas chromatograph mass spectroscopy on maternal

Table 3. Gas chromatography- mass spectrometry analysis of fetal plasma lipids.1

DIET GROUP

Fatty Acid Common Name (Type) CTR HFD REV

Mean SEM Mean SEM Mean SEM p-value2

C 14:0 Myristic 125.1 18.2 164.0 34.5 127.2 32.9 0.57

C 14:1 Myristoleic 4.4 1.0 6.3 1.9 5.5 1.9 0.8

C 16:0 Palmitic 708.3 108.3 647.5 98.4 737.4 146.3 0.88

C 16:1 Palmitoleic 146.1 19.7 118.8 10.7 115.2 15.6 0.49

C 18:0 Stearic 455.0 37.7 419.1 63.9 385.7 22.3 0.6

C 18:1 Oleic (N9) 473.2 56.5 724.7c 73.9 390.2b 103.1 0.02

C 18:2 Linoleic (N6) 498.6 73.0 450.0 31.9 976.9 293.5 0.17

C 18:3 Linolenic (N3) 13.9 1.8 13.7 1.5 14.2 1.9 0.98

C 20:4 Arachidonic (N6) 572.6 152.4 417.3 111.7 675.6 229.3 0.4

C 20:5 EPA (N3) 42.6 9.1 30.9 5.4 67.9 20.3 0.29

C 22:6 DHA (N3) 273.9b 78.7 52.2a 6.0 259.4 119.3 0.01

Total Fatty Acids 3313.7 404.9 3044.4 243.2 3755.1 566.3 0.65

Total Saturated 1288.4 134.8 1230.5 175.4 1250.2 164.9 0.96

Total Monounsaturated 623.7 70.5 849.8 82.1 510.8 111.7 0.05

Total Polyunsaturated 1401.7 279.8 964.1c 118.7 1994.0b 372.4 0.047

Total Essential Fatty Acids 512.5 74.8 463.7 32.4 991.1 294.3 0.19

Total N6 1071.2 201.1 867.3 114.1 1652.5 310.9 0.09

Total N3 330.5b 80.1 96.8a,c 6.8 341.5b 110.1 0.001

N6:N3 Ratio 3.6b 0.2 8.9a 0.9 6.7 1.7 0.007

1All values are means 6 SEM and are expressed as mmol/L. (n = 11 for CTR, n = 7 for HFD, n = 6 for REV).
2Overall significance as determined by ANOVA or Kruskal-Wallis rank sum test.
aSignificantly different from CTR, p,.0167, Bonferroni adjusted a.
bSignificantly different from HFD, p,.0167, Bonferroni adjusted a.
cSignificantly different from REV, p,.0167, Bonferroni adjusted a.
doi:10.1371/journal.pone.0017261.t003
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breast milk to characterize postnatal exposure of the offspring to

maternal fatty acids. In addition, we assayed levels of insulin, total

protein, and leptin as well as interleukin-1b present in maternal

breast milk.

Maternal breast milk lipid profiles
In the breast milk we found no changes in total fatty acids in the

HFD group versus CTR. C14:0 (myristic), C16:0 (palmitic), C18:0

(stearic) and total saturated fatty acids were not higher in the HFD

group when compared to control (Table 5). There were no

differences in total levels of monounsaturated fatty acids as well as

C16:1 (palmitoleic) and C18:1 (oleic). Total polyunsaturated fatty

acids were unchanged in HFD breast milk when compared to

CTR. Total n-6 fatty acids, as well as C18:2 (linoleic) and C20:4

(arachidonic), were unchanged in the HFD breast milk when

compared to CTR. Total n-3 fatty acids were also unchanged

between the CTR and HFD diet groups. However, C20:5 (EPA,

n-3) and C22:6 (DHA, n-3) were significantly lower in the HFD

breast milk when compared to CTR breast milk. C18:3 (linolenic,

n-3) was the largest component of total n-3 fatty acids assayed and

was unchanged between the CTR and HFD diet groups. Thus,

the observed decreases in EPA and DHA were not large enough to

significantly lower the total levels of breast milk n-3 fatty acids.

The mean n-6:n-3 ratio was higher in the HFD (19:1) breast milk

than CTR breast milk (9:1). However, a large variance in both

groups prevented the increased HFD n-6:n-3 ratio from attaining

significance. Overall, the significant decreases in EPA and DHA in

HFD breast milk reflect what was also observed in maternal and

fetal plasma.

To further characterize the effects that maternal HFD had on

breast milk, we performed radio-immunoassays for insulin and

leptin. We found that insulin levels in maternal breast milk are

significantly higher (2-fold) in HFD mothers versus CTR

(Figure 4A). We found no changes in the levels of leptin in

maternal breast milk between CTR and HFD, although the levels

were quite low in both groups (data not shown). We also found no

differences in the levels of the inflammatory cytokine IL-1b

Figure 1. Correlation of fetal plasma fatty acids with maternal
plasma fatty acids. Pair-wise correlation analysis of the plasma N6:N3
fatty acid ratio (A), and plasma EPA levels (B), between CTR, HFD and
REV Japanese macaque dams and their respective third trimester
fetuses (n = 22 maternal/fetal pairs). Both the plasma N6:N3 FA ratio and
plasma EPA levels are correlated between maternal and fetal circulation.
(CTR: white squares, HFD: dark grey circles, REV: grey diamonds).
doi:10.1371/journal.pone.0017261.g001

Figure 2. Correlation of fetal plasma fatty acids with maternal
insulin resistance and glucose clearance. Pair-wise correlation
analysis of fetal plasma N6:N3 fatty acid ratio with respective maternal
insulin AUC (A), across CTR, HFD and REV maternal diet groups. Pair-
wise correlation analysis of total fetal plasma saturated FA’s with
respective maternal glucose AUC (B), across CTR, HFD and REV maternal
diet groups. (n = 23 maternal/fetal pairs). Fetal N6:N3 ratio is positively
correlated with maternal insulin AUC. Total fetal plasma saturated FA’s
are correlated with maternal glucose AUC. (CTR: white squares, HFD:
dark grey circles, REV: grey diamonds).
doi:10.1371/journal.pone.0017261.g002
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between CTR and HFD breast milk (data not shown). Total

protein levels in HFD breast milk are significantly lower than in

the CTR breast milk (Figure 4B).

Postnatal phenotype
Given the proinflammatory environment our cohort of HFD

animals were exposed to in-utero, combined with increased

apoptosis in the fetal liver and the significant changes in breast

milk composition, we examined the offspring from CTR and HFD

dams to determine if phenotype differences were apparent in the

postnatal period. Previous work with this model demonstrated that

the offspring of HFD dams had similar bodyweights at postnatal

day 30 (P30) and post-natal day 90 (P90) as CTR offspring, and

higher levels of body-fat at P90 [47]. The current results again

showed that body weights were similar between the CTR and

HFD offspring at the P30 and P90 time points (Figure 5A) and

that the HFD offspring had higher body fat at P90 than CTR

offspring, as determined by DEXA scanning (Figure 5B). In

addition, HFD offspring had significantly lower lean body mass

than CTR offspring at P90 (figure 5C). We measured bone

mineral content as well and found no differences at either P30 or

P90 offspring between the two diet groups (Figure 5D). Thus,

while total body weights are similar at P90 between CTR and

HFD offspring, the HFD offspring have higher body fat and lower

lean body mass than CTR offspring.

Discussion

While much work has been done in the NHP to highlight the

effects that maternal nutrient deprivation has on development of

metabolic systems in the offspring [63–67], there is a fundamental

gap in understanding the contributions that maternal obesity and

maternal nutrient excess provide to metabolic programming.

Previous work with this model has demonstrated that a maternal

HFD altered fetal development and expression of key hypotha-

lamic neuropeptides in the context of hypothalamic inflammation

[49]. Furthermore, HFD fetal plasma contained elevated levels of

inflammatory cytokines, and elevated triglycerides and glycerol

that were highly correlated with maternal levels. In the liver, HFD

fetuses had premature gluconeogenic gene expression, steatosis,

elevated triglyceride content, and oxidative stress. The majority of

these changes were observed irrespective of maternal obesity or

maternal insulin resistance status and persisted into the early

postnatal period. Importantly, switching HFD mothers to a

control diet during pregnancy alone (diet-reversal; REV) normal-

ized a number of the observed fetal hepatic pathologies towards

control levels [47].

In the present study, we report in the nonhuman primate that

chronic maternal HFD consumption, independent of maternal

obesity or diabetes, leads to significantly reduced plasma levels of

n-3 fatty acids in fasted HFD pregnant dams and third trimester

fetuses. Our dietary model was designed to mimic the typical

Western diet being consumed by a majority of pregnant women in

the developed world. Whether the pathology is induced by

elevated dietary fat content per se or is instead due to a change in

dietary fatty acid composition (e.g. elevated n-6:n-3 ratio) was not

addressed by this experimental design. Furthermore, we cannot

draw conclusions regarding whether specific fatty acid manipula-

Table 4. Inflammatory marker mRNA expression in fetal
liver.1

DIET GROUP

Target CTR HFD REV
p-
value2

Mean SEM Mean SEM Mean SEM

Interferon-c 0.42 0.11 0.38 0.11 0.32 0.06 0.87

Interleukin-1b 0.95 0.26 1.05 0.24 0.89 0.11 0.82

Interleukin-4 undetected undetected undetected n/a

Interleukin-6 undetected undetected undetected n/a

Interleukin-10 0.97 0.06 1.19 0.18 0.69 0.11 0.045

I-TAC (CXCL11) 0.93 0.12 1.06 0.08 0.82 0.15 0.1

Lymphotoxin-a 0.76 0.11 0.79 0.08 0.77 0.05 0.59

MCP-1 (CCL2) 0.78 0.1 0.81 0.14 0.75 0.06 0.91

Tumor Necrosis Factor-a 0.82 0.16 0.71 0.07 0.53 0.08 0.28

Arginase-1 1.01 0.09 1.00 0.07 65a,b 0.04 0.009

C-Reactive protein 1.93 0.32 1.48 0.22 2.19 0.41 0.11

1All values are means 6 SEM and are expressed as relative fold to CTR calibrator
sample. (n = 7 for CTR, n = 8 for HFD, n = 7 for REV).

2Overall significance as determined by Kruskal-Wallis rank sum test.
aSignificantly different from CTR, p,.0167, Bonferroni adjusted a.
bSignificantly different from HFD, p,.0167, Bonferroni adjusted a.
cSignificantly different from REV, p,.0167, Bonferroni adjusted a.
doi:10.1371/journal.pone.0017261.t004

Figure 3. Fetal hepatic apoptosis. Quantification of TUNEL positive
cells normalized to hepatic parenchyma area in G130 macaque fetal
liver for CTR, HFD, and REV maternal diet groups (A). Data are expressed
as fold increase over CTR of the median rate 6 standard error (CTR;
n = 6, HFD; n = 7, REV; n = 6, *P,.05 versus CTR, ANOVA). Representative
brightfield images for TUNEL staining in CTR (B) and HFD (C) G130 fetal
liver. TUNEL staining was returned to CTR levels following maternal diet
reversal (REV), thus representative REV image is not pictured. Scale bar,
50mm.
doi:10.1371/journal.pone.0017261.g003
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tions (e.g. n-3 supplementation) would have beneficial effects on

the developing fetus.

In HFD dams we observed significantly reduced fasting plasma

levels of DHA, EPA and total n-3 fatty acids. In the HFD fetal

circulation, plasma levels of DHA and total n-3 fatty acids were

also significantly reduced when compared to the CTR diet

animals. HFD breast milk contained lower levels of EPA and

DHA than CTR breast milk, however total n-3 fatty acids were

not different between CTR and HFD breast milk. We also

observed that apoptosis was significantly increased in the HFD

fetal liver. Importantly, we found that returning HFD dams to a

CTR diet during pregnancy normalized plasma n-3 fatty acids in

pregnant dams and fetuses and returned fetal hepatic apoptosis to

control levels.

The maternal HFD diet had by definition a much higher total

fat content than the CTR diet including much higher levels of

saturated, monounsaturated and polyunsaturated fats. Among the

essential fatty acids, the HFD also contained slightly higher levels

of linolenic acid (C18:3 n–3) but double the levels of the more

abundant linoleic acid (C18:2 n–6) and total n-6 fatty acids.

Consequently the HFD chow n-6:n-3 ratio was 2-fold higher than

the CTR n-6:n-3 ratio. The high saturated and monounsaturated

fatty acids in the HFD reflect that its fat largely came from animal

sources (lard, animal fat, and butter), versus the CTR diet (grains

and soybean oil). Also included in the maternal HFD were daily

calorie-dense treats made from peanut butter.

In humans, a recent report showed that low-nutrient-density

foods, consisting of refined carbohydrates and animal products

high in saturated fat, were the major contributors to the total

energy intake for a cohort of pregnant women [68]. While this

study was small in scope, the consumption of a diet that is high in

calories and saturated fats is similar to findings from nationally

representative studies of children and non-pregnant women

[69,70]. Thus, our NHP HFD has strikingly similar characteristics

to what is known about human dietary choices during pregnancy.

The present data are particularly relevant in light of the fact that

over the last 100 years dietary n-6:n-3 ratios have gone from being

close to 1:1 to approximately 20:1 [71]. There is strong evidence

suggesting that cellular membrane long chain polyunsaturated fatty

acid composition is largely determined by dietary ratios [72]. Thus,

the maternal and fetal plasma n-6:n-3 ratio mirrored the n-6:n-3

Table 5. Gas chromatography- mass spectrometry analysis of
maternal breast milk lipids.1

DIET GROUP

Fatty
Acid

Common
Name (Type) CTR HFD p-value2

Mean SEM Mean SEM

C 14:0 Myristic 25.8 16.1 49.8 12.4 0.18

C 14:1 Myristoleic 24.6 11.3 33.7 11.7 0.51

C 16:0 Palmitic 60.1 18.7 87.7 13.3 0.42

C 16:1 Palmitoleic 64.0 24.0 52.4 17.1 0.42

C 18:0 Stearic 27.9 8.3 46.4 6.8 0.10

C 18:1 Oleic (N9) 43.2 23.7 67.5 15.5 0.18

C 18:2 Linoleic (N6) 64.6 21.5 56.1 5.5 0.51

C 18:3 Linolenic (N3) 13.2 5.0 15.4 5.3 0.61

C 20:4 Arachidonic (N6) 1.7 0.5 1.9 0.3 0.48

C 20:5 EPA (N3) 0.6 0.2 0.2 0.1 0.012

C 22:6 DHA (N3) 2.3 0.6 0.3 0.0 0.0007

Total Fatty Acids 328.1 61.5 411.6 32.5 0.30

Total Saturated 113.9 41.2 183.9 29.9 0.21

Total Monounsaturated 131.8 24.1 153.7 18.6 0.61

Total Polyunsaturated 82.4 20.2 74.0 7.0 0.71

Total Essential Fatty Acids 77.8 19.0 71.5 6.7 0.71

Total N6 66.3 21.9 58.0 5.7 0.51

Total N3 16.1 4.9 16.0 5.4 0.51

N6:N3 Ratio 9.1 3.6 18.9 3.5 0.16

1All values are means 6 SEM and are expressed as mmol/L. (n = 6 for CTR, n = 16
for HFD).

2Overall significance as determined by Student’s T-test or Wilcoxon rank sum
test.

doi:10.1371/journal.pone.0017261.t005

Figure 4. Maternal breast milk insulin and protein. Analysis of
insulin (A) and total protein levels (B) in breast milk from macaque dams
in CTR (white bars) and HFD (black bars) maternal diet groups. A. Insulin
was assayed by a commercially available primate RIA kit. HFD dams
have significantly higher levels of insulin in their breast milk than CTR
dams ( CTR; n = 11, HFD; n = 17, **P,.01 versus CTR, Wilcoxon rank sum
test). B. Macaque breast milk total protein levels were measured from
the aqueous layer using a BCATM Protein Assay kit across CTR (white
bars) and HFD (black bars) maternal diet groups. HFD breast milk
contains significantly lower levels of total protein when compared to
CTR ( CTR; n = 13, HFD; n = 17, *P,.05 versus CTR, Student’s t-test).
doi:10.1371/journal.pone.0017261.g004
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ratio of the diet in each diet group. The elevated n-6:n-3 ratio found

in the HFD chow was a result of increases in n-6 fatty acids. Notably,

the maternal and fetal HFD plasma n-6:n-3 ratio was driven by

significant decreases in n-3 fatty acids when compared to CTR

plasma. In particular, DHA was significantly decreased in both the

maternal and fetal HFD circulation. Furthermore, significant

decreases in EPA and DHA were observed in breast milk. Thus,

the HFD offspring are provided with decreased levels of EPA, DHA

and n-3 fatty acids during both fetal and early postnatal life,

developmental periods that are dependent solely on maternal

transfer of nutritional substrates for normal growth.

The n-3 and n-6 long chain polyunsaturated fatty acids,

particularly DHA and AA, are critical for proper infant growth

and neurodevelopment (reviewed in [73]). DHA and AA are both

highly enriched in neural tissue while DHA is the major

component of retinal photoreceptor membranes [74–76]. While

only non-esterified fatty acids (NEFA) can be transferred from

mother to fetus directly, other mechanisms, including hydrolysis of

triglycerides and receptor mediated transfer, allow fatty acids

including docosahexaenoic acid (DHA, 22:6 n-3), eicosapentae-

noic acid (EPA, 20:5 n-3) and arachidonic acid (AA, 20:4 n-6), to

be transferred through the placenta to the fetus [77–81].

In the human fetus, there is limited capacity for de novo lipogenesis

and the precursors for fetal fat accretion are primarily supplied

trans-placentally and consist of maternal substrates derived from

lipids rather than from glucose [81–83]. It has also been shown in

baboons that while the fetus has the capacity to synthesize DHA

from its EFA precursor, a-linolenic acid, preformed maternal DHA

is preferentially used for DHA accretion in the fetal brain [84–86].

Thus, the composition of the fatty acid supply to the fetus is mainly

determined by maternal lipid profile and suggests that modifica-

tions of maternal diet or metabolic homeostasis will affect delivery

of lipid substrates to the fetus [87,88]. Our results support these

findings and demonstrate that decreased circulating levels of DHA,

total n-3 fatty acids, and an elevated n-6:n-3 ratio was recapitulated

in both maternal and fetal circulation.

Previous work in nonhuman primates demonstrated that dietary

deprivation of n-3 fatty acids, and consequent decreases in plasma

n-3 fatty acids during the prenatal and postnatal periods, had

profound effects on brain and visual system fatty acid composition

and retinal function of fetuses and infants [89,90]. Decreased levels

of n-3 fatty acids during development have also been associated

with altered acetylcholine and dopamine release in rodents

[91,92]. Recently it was reported in our model, that fetuses

exposed to a maternal HFD displayed significant changes in

central serotonergic systems and nearly 78% of the HFD offspring

displayed increased anxious or aggressive behavior during

behavioral tests at postnatal day 130 [50]. Our work demonstrates

that circulating levels of DHA and total n-3 fatty acids are

significantly reduced in the HFD maternal and fetal plasma. Thus

while the changes in fetal brain development previously reported

in our model are likely to be multifactorial, our data suggests that

Figure 5. Offspring body composition. DEXA analysis of macaque offspring at post-natal day 30 (P30) and post-natal day 90 (P90) from CTR
(white bars) and HFD (black bars) diet groups. A. Total weight of macaque offspring at P30 and P90. B. Normalized fat mass of macaque offspring
between CTR and HFD diet groups at P30 and P90 (*P,.05 versus CTR, Student’s t-test). C. Normalized lean body mass (LBM) of macaque offspring
between CTR and HFD diet groups at P30 and P90 (*P,.05 versus CTR, Student’s t-test). D. Normalized bone mineral content (BMC) of macaque
offspring between CTR and HFD diet groups at P30 and P90. All data is expressed as mean 6 standard error (P30 CTR; n = 15, P30 HFD; n = 17, P90
CTR; n = 13, P90 HFD; n = 19).
doi:10.1371/journal.pone.0017261.g005
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the lower levels of plasma DHA and n-3 fatty acids found in the

HFD fetal circulation may be partly responsible.

While the maternal HFD chow has decreased levels of EPA and

DHA when compared to the CTR chow, the levels of total n-3

fatty acids were not different between two diets. In addition, the

maternal HFD has much higher levels of a-linolenic acid (C18:3,

n-3), an essential fatty acid precursor necessary for DHA synthesis,

than the CTR chow. Neuringer et al. [90] demonstrated in the

NHP that plasma levels of DHA could be maintained in pregnant

dams fed a diet containing 8% a-linolenic acid despite

undetectable levels of pre-formed DHA. It has been well

established that the desaturases responsible for synthesis of DHA

from a-linolenic acid are subject to regulation from dietary and

hormonal factors [93–98]; in particular, n–3 and n–6 fatty acids

compete as substrates for these desaturases as well as for uptake

into tissues. Thus it is reasonable to conclude that the decreased

levels of maternal plasma DHA and total n-3 fatty acids we

observed are due to the high n–6:n–3 ratio of the HFD.

The present study expands upon previous findings that suggest

that maternal diet can lead to severe inflammatory and oxidative

stress in the fetal liver. McCurdy et al. explored the effects of

maternal HFD in this model and demonstrated evidence of fetal

hepatic steatosis, oxidative stress, upregulation of heat-shock

proteins, and increased phosphorylation of c-Jun NH2-terminal

kinase (p-JNK), and increased inflammatory cytokines in the fetal

circulation [47]. While our data does not show that the HFD fetal

liver is the primary site of cytokine synthesis (at least at a

transcriptional level), the circulating inflammatory insult to the

developing fetal liver in our model is nonetheless quite significant.

Hepatocyte apoptosis is a marker of disease severity in numerous

hepatic disease states [99–101]. In fact, the severity of hepatocyte

apoptosis is significantly correlated with histopathological and

biochemical markers of NASH and hepatic fibrosis [102]. There is

evidence that there are connections between fatty acids, hepatic

steatosis and hepatic apoptosis. For example, incubation of HepG2

cells in-vitro with saturated and monounsaturated fatty acids

produced steatosis and p-JNK-dependent apoptosis that was more

pronounced with saturated fatty acids [103]. In primary rat

hepatocytes, treatment with oleic and stearic acid induced steatosis

and sensitized hepatocytes to cytotoxicity mediated by tumor

necrosis factor related apoptosis inducing ligand (TRAIL) [104].

Our data show a significant increase in the numbers of apoptotic cells

in fetal livers exposed to a maternal high-fat diet. Previous findings of

severe hepatic steatosis, increases in p-JNK, and high circulating

levels of inflammatory cytokines [47], as well as our current findings

of increased oleic acid in the fetal circulation are consistent with

previously described mechanisms of hepatic apoptosis. To our

knowledge, the increased apoptosis in the HFD fetal liver is a novel

finding that reinforces the extent of damage occurring within the

developing fetal liver. However, the regenerative capacity of the liver

is formidable and studies already in progress will determine whether

permanent hepatic damage is evident in these animals.

Our NHP model is a sophisticated and effective tool that makes it

possible to quickly translate our findings into human clinical

research studies. In addition to our findings, previous work with this

model highlights the complex relationship between maternal diet

and obesity. It has been shown that fetal serum metabolites are

reduced under maternal high fat diet conditions. In agreement with

our fatty acid findings, changes in specific fetal serum metabolites

were associated with maternal diet, while others were associated

with maternal obesity and insulin resistance [53]. Future studies are

needed to untangle the contribution of maternal phenotype from

maternal diet and their combined effects on fetal development

before comprehensive interventions are employed. Within the midst

of the present childhood obesity epidemic, it is critical that we move

our findings forward into human studies and potentially into the

realm of public health policy and clinical practice.
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