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Abstract

Background: Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in
many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the
brain, cAMP has been implicated in learning, memory processes and other brain functions.

Methodology/Principal Findings: Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal
dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred
significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary
rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and
improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were
reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A.

Conclusions/Significance: Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic
neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors
in the treatment of neurodegenerative disorders, particularly Parkinson disease.
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Introduction

Parkinson disease (PD) is one of the most common progressive

neurodegenerative disorder, affecting around 1% of the elderly

population. Typical symptoms of this disease are muscle rigidity,

bradykinesia, resting tremor and postural instability. At the

cellular level, PD is characterized by the loss of dopamine-

containing neurons in the substantia nigra pars compacta (SNpc)

although neuropathology can extend into other brain regions [1].

The cell death leads to the loss of dopamine in areas where these

neurons project, causing the described symptoms. The main

known risk factor is age, however susceptibility genes including a-

synuclein, leucine rich repeat kinase 2 (LRRK-2), and glucocere-

brosidase (GBA) have shown that genetic predisposition is another

important causal factor in a 10% of diagnosed patients. There is

currently no cure and no effective disease-modifying therapy. The

dopamine replacement therapy in clinical use is only palliative;

leading to temporarily limited improvement of clinical symptoms,

and the chronic treatment with dopaminergic drugs have severe

side effects as bradykinesia. Consequently, new approaches to treat

Parkinson disease are needed to find disease’s modifying agents

that may delay or stop the neuronal death.

Neuroinflammation has been increasingly recognized as a

primary mechanism involved in PD pathogenesis [2,3]. Loss of

dopamine-producing neurons in PD is accompanied by

inflammation in surrounding support glial cells. Activation of

microglia has been demonstrated in SN and striatum from

postmortem PD brains and in PD animal models [4,5,6]. This

inflammatory state in glial cells leads to the production of toxic

substances, including cytokines such as IL-1b, IL-6, and TNF-a,

that further damage neurons, leading to a cycle of inflammatory

damage that ultimately worsens the progression of the disease.

New evidence in experimental animals indicates that blocking

the signaling pathways in glial cells responsible for turning
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on neurotoxic genes dramatically decreases damage to dopami-

nergic neurons. Unfortunately, current therapies do not address

this neuroinflammation problem, being focused on ameliorating

the symptoms of dopamine loss rather than on the underlying

causes of injury to dopaminergic neurons. Targeting the

signaling pathways in glial cells responsible for neuroinflamma-

tion represents a promising new therapeutic approach designed

to preserve remaining neurons in PD patients, thereby

extending the window of efficacy of existing symptomatic drugs

in order to better maintain quality of life. Given the evidence for

neuroinflammation in PD, agents with anti-inflammatory

effects have been investigated for their neuroprotective

potential [7].

Different studies have suggested that cyclic AMP (cAMP) levels

might play an important role in neuroprotection and in the

neuroinflammatory response [8,9] thus control of the levels of this

nucleotide could trigger the regulation of the pathological

neuroinflammatory process and, consequently, to delay the

progression of neurodegenerative disorders, such as PD. Intracel-

lular cAMP levels depend on one hand on their synthesis by

adenylyl cyclases and, on the other hand, on its degradation by

cyclic nucleotide 39, 59-phosphodiesterases (PDEs) [10,11]. Hence,

PDEs have recently emerged as important drug targets for

regulating several diseases [12].

The PDEs comprise a family of 21 members, which have been

so far classified into 11 groups, according to their sequence

homology, cellular distribution, and sensitivity to different PDE

inhibitors [11,12], being some of them expressed on central

nervous system [13]. PDE7 is a cAMP-specific PDE, which is

insensitive to a PDE4 inhibitor, Rolipram [10,11] and it has been

recently demonstrated that can be a target for the control of

neuroinflammation [14]. The PDE7 family is composed of two

genes, PDE7A and PDE7B. High mRNA concentrations of both

PDE7A and PDE7B are expressed in rat brain and in numerous

peripheral tissues, although the distribution of these enzymes at

the protein levels has not been reported. Within the brain PDE7A

mRNA is abundant in the olfactory bulb, hippocampus, and

several brain-stem nuclei [15]. The highest concentrations of

PDE7B transcripts in the brain are found in the cerebellum,

dentate gyrus of the hippocampus and striatum [16,17]. There is

very little information regarding the physiological functions

regulated by PDE7. It has been shown that PDE7 is involved in

pro-inflammatory processes and is necessary for the induction of

T-cell proliferation [18]. In addition, specific inhibitors of PDE7

have been recently reported as potential new drugs for the

treatment of brain diseases [19]. However, a detailed analysis of

the effect of these compounds on normal central nervous system

function as well as in pathological conditions have yet to be

described.

Several years ago, our research group was the first one in

reporting the first PDE7 selective inhibitors [20]. Since then, a lot

of efforts have been done to increase potency and selectivity of this

kind of compounds, conforming a great variety of diverse chemical

compounds with interesting pharmacological profiles [21]. We

have recently reported a new and diverse chemical family of PDE7

inhibitors, the quinazolines ones, discovered by using a ligand-

based virtual screening [22]. Moreover, the biological profile of

these new thioxoquinazolines showed that they are useful

compounds to decrease the inflammatory activation in a T-cell

line [23].

In the present study, we demonstrate for the first time, that

PDE7 inhibition enhances neuroprotection and diminishes

neuroinflammation in well-characterized cellular and animal

models of PD. In addition, treatment of adult rats with the blood

brain barrier permeable PDE7 inhibitor named S14 (Phenyl-2-

thioxo-(1H)-quinazolin-4-one, Figure 1) significantly protects

dopaminergic neurodegeneration and improves motor function

in LPS-lesioned animals. Lastly, we also show that its effects are

mediated by the cAMP/PKA signaling pathway. As such, these

findings identify PDE7 as a potential therapeutic target for the

treatment of Parkinson Disease.

Results

Expression of PDE7
We first analyzed whether PDE7 was expressed throughout the

central nervous system of the adult rat. As can be seen in

Figure 2A, significant levels of PDE7A and PDE7B were detected

in different brain regions including the striatum. In the case of the

SNpc, we found, by immunohistochemistry studies, that the levels

of PDE7A and PDE7B are low in the basal state. However, they

were notably increased after LPS injection (Figure 2B). These

results are of interest since these genes have been related to

inflammation [18]. Moreover, the increased observed after LPS

injury support our data showing an important role for PDE7

inhibitors as neuroprotective agents of dopaminergic neurons.

Additionally, both isoforms of PDE7 are expressed in the SH-

SY5Y neuroblastoma cell line and in primary rat mesencephalic

cultures (Fig. 2C). Besides, double immunocytochemistry studies

clearly show that TH positive cells expressed PDE7A and

PDE7B.

PDE7 inhibition protects neuronal SH-SY5Y cells from 6-
hydroxydopamine (6-OHDA)-induced death

The human dopaminergic neuronal cell line SH-SY5Y

possesses many qualities of substantia nigra neurons [24] and is

therefore widely used as a model to study the death of

dopaminergic neurons. Since S14 has been described as a PDE7

inhibitor, we first analyzed whether this compound could increase

cAMP levels on SH-SY5Y cells. To this end, cells were treated for

1 h with S14 and two well-known PDE4 and PDE7 inhibitors,

Rolipram and BRL50481, respectively, and cAMP levels were

analyzed by ELISA. Figure 3A shows that, as expected, Rolipram

and BRL50481, were able to elevate the levels of cAMP in these

cultures. Treatment with S14 also resulted in a significant increase

in the levels of cAMP. We next analyzed the phosphorylation state

Figure 1. Structure of the PDE7 inhibitor used in the
experiments, the quinazoline derivative S14.
doi:10.1371/journal.pone.0017240.g001
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of the cAMP response element-binding protein (CREB), a known target of

the cAMP/PKA signaling pathway. As shown in Figure 3B,

treatment of SH-SY5Y with Rolipram, BRL50481 or S14,

together with 6-OHDA, resulted in an increase of phosphorylated

CREB levels.

We then examined the effect of S14 on the cell death induced

by 6-OHDA exposure. As shown in Figure 3C, 6-OHDA

treatment resulted in a loss of viability, as assessed by a decline

in (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)

(MTT) and a significant elevation in lactate dehydrogenase (LDH)

level (Fig. 3C), as compared with control untreated cells.

Incubation with the PDE7 inhibitor quinazoline compound S14

afforded significant protection against 6-OHDA-induced cell

death lowering elevated LDH levels by as much as 50% and

reversing the decline in MTT by 22%. This neuroprotective effect

was mimicked by BRL50481 and by Rolipram. S14 has an IC50

of 5.5 mM on PDE7A, five times more potent than its inhibition on

PDE4D (IC50 = 22 mM) [22]. Quinazoline derivative S14 does

not inhibit PDE3 (3% of inhibition at 10 mM) therefore preventing

the compound from possible cardio toxic effects. Hence, the results

obtained here suggest that S14 protects the human dopaminergic

neuronal cell line SH-SY5Y from cell death through an inhibition

of the PDE7 enzyme.

Toxicity induced by 6-OHDA was also accompanied by an

increase in nitrite production (Fig. 3C, lower panel), and its

concentration was brought toward normality after S14 treatment,

indicating that this drug blocks 6-OHDA-induced oxidative stress,

which leads to free radical generation.

Activation of PKA by cAMP is required for S14-induced
neuroprotection of SH-SY5Y

The most common intracellular target of cAMP is PKA. PKA

activation is responsible for many of the actions attributed to

cAMP [25]. Nonetheless there are other effects of this nucleotide,

which are not mediated by PKA [26,27]. We therefore

investigated if PKA activation is required for the neuroprotective

actions of S14. To this end, SH-SY5Y exposed to 6-OHDA and

pretreated or not with Rolipram, BRL50481 or S14, were treated

with the PKA inhibitor H89 or the specific membrane-permeable

inhibitor of PKA activation adenosine 39,59-cyclic monopho-

sphorothioate Rp-isomer (Rp-cAMP). As shown in Figure 3C,

both compounds prevented the increase in cell viability and the

decrease in nitrite liberation elicited by the three PDE inhibitors,

suggesting that the cAMP/PKA pathway mediates their effects on

SH-SY5Y cells.

Lastly, apoptosis was determined by measuring the levels of

active caspase 3 and Annexin V analysis (Fig. 3D). Our results

indicate that 27% of the SH-SY5Y cell population was positive

for caspase 3 staining within 16 h after treatment with 6-OHDA

and that this effect was almost completely reversed by the

treatment with the S14 compound. Annexin V-FITC analysis

also showed a significant decrease in the number of apoptotic

cells in those cultures treated with S14 (Fig. 3D). These results

suggest that S14 is rescuing SH-SY5Y cells from 6-OHDA-

induced apoptosis.

PDE7 inhibition protects cultured primary mesencephalic
cells from lipopolysaccharide- and 6-OHDA-induced cell
death

We next examined whether PDE7 inhibition could also have

neuroprotective effects on primary ventral mesencephalic cultures.

These cultures are known to be vulnerable to LPS treatment,

resulting in a loss of neuronal viability [28]. The viability of

mesencephalic cell cultures, known to be rich in dopaminergic

neurons, was determined by quantifying tyrosine hydroxylase (TH)

immunoreactivity after exposure to LPS. Treatment with this

endotoxin decreased the number of TH+ cells by 42% (Fig. 4A).

S14 addition significantly preserved TH+ cells from LPS toxicity.

No significant difference in the number of DAPI-positive nuclei

was found among the treated cultures (data not shown). We also

analyzed whether S14 affected the LPS-induced expression of

TNF-a and COX-2, two well known proinflammatory agents. As

shown in Figure 4A, incubation of primary mesencephalic cultures

with S14 completely abrogated the induction of TNF-a and COX-

2 expression after LPS treatment, suggesting that the protection

observed by S14 could be exerted, at least in part, through an

effect upon inflammatory reaction of microglial cells present in the

cultures. These results were further corroborated by measuring

nitrite liberation to the culture medium (Fig. 4B). LPS treatment

resulted in an increase in the concentration of nitrites in the

cultures medium, which was significantly prevented by S14. In fact

the levels of nitrites in the S14-treated cultures were even lower

that those detected in control non-treated cells.

The neuroprotective effects of S14 were also tested after

exposure to the dopaminergic toxin 6-OHDA. As expected, 6-

OHDA significantly decreased TH-positive cells (80%) (Fig. 4C).

Addition of S14 to the cultures conferred a robust protection

against 6-OHDA-mediated cell loss.

Neuroprotective role of PDE7 inhibition in an in vivo
model of PD

Given the in vitro anti-inflammatory and neuroprotective effects

described above, we then assessed the efficacy of S14 in a well-

characterized rodent model of PD. LPS injection into the SNpc of

rodents induces dopaminergic cell loss and microglial activation

[29,30]. To this end, adult rats were injected unilaterally in the

SNpc with vehicle, LPS, or LPS plus S14 and were killed 72 h

after injection. Histological analysis were used to evaluate the

extend of dopaminergic cell loss and microglial activation in the

SNpc of the different groups of animals. A significant preservation

of dopaminergic neurons was found in S14-injected rats compared

with abundant dopaminergic neuron damage after injection with

LPS (Fig. 5). Quantitative studies showed a decrease of 85%,

compared with the vehicle-injected rats, in the number of

dopaminergic neurons in the SNpc after LPS injection. In

contrast, in the S14-treated group, only a moderate decrease

(25%) in dopaminergic cell number was observed 3 days after LPS

injection. These results extend the observations made in vitro and

suggest that treatment of LPS-injected animals with S14 results in

an almost complete prevention of dopaminergic injury. In

addition, we also analyzed the effect of BRL50481, a well

Figure 2. Western blot and immunocytochemical analysis of PDE7A and PDE7B. (A) Representative Western blot and quantification
analysis showing expression levels of PDE7A and PDE7B in different brain regions and in the dopaminergic cell line SH-SY5Y. Cx, cerebral cortex; Hip,
hippocampus; St, striatum. (B) Inmunohistochemical analysis of PDE7A and PDE7B expression in the substantia nigra pars compacta (SNpc) of adult
rats. Figure also shows the expression of both isoenzymes 72 h after lipopolysaccharide (LPS, 10 mg) injection in this area. Scale bar, 25 mm. (C)
Immunofluorescence analysis of PDE7A and PDE7B expression (green) and tyrosine hydroxylase (TH, red) in the dopaminergic cell line SH-SY5Y and in
primary mesencephalic cultures. Representative results of at least three independent experiments are shown. Scale bar, 10 mm. Nuclei were
counterstained with DAPI (blue).
doi:10.1371/journal.pone.0017240.g002
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characterized PDE7 inhibitor, on this same model of PD. Our

results showed that BRL50481 has similar neuroprotective and

anti-inflammatory effects as S14. Only a 20% decrease in the

number of dopaminergic neurons (Figure 5B) was observed in rats

injected with this compound, compared to 85% found in LPS-

treated animals.

One of the events that take place in the SNpc after LPS injury is

the activation of microglial cells, which is in part responsible for

the dopaminergic cell degeneration. Microglial cells (identified as

OX-42-positive cells) were very scarce in the contralateral part of

LPS-injected animals and in the SNpc of vehicle-injected animals

(Figure 6A). Seventy-two hours after LPS injection, a high OX-42

immunoreactive signal was clearly observed in the SNpc. This

strong microgliosis was completely absent in the animals treated

with the quinazoline PDE7 inhibitor S14. Also, BRL50481

treatment of LPS-injured rats completely abrogated the micro-

gliosis observed in the LPS-treated group (Figure 6A). Altogether,

these results reinforce our hypothesis that PDE7 could be an

important target for neuroprotection of dopaminergic neurons.

Finally we analyzed the effects of S14 treatment on rotational

behavior by assessing the behavioral changes in hemi-parkinsonian

rats. To this end, three weeks following LPS lesion rats were

injected with apomorphine, which is known to induce contralat-

eral rotational behavior in denervated animals. Figure 6B shows

that the LPS-treated rats exhibited 7 contralateral turns per

minute following an administration of apomorphine. Rats lesioned

with LPS and treated with S14 showed a significant improvement

(only 1 turn per minute) after apomorphine. Vehicle-treated

animals showed no contralateral rotational behavior. Immunohis-

tochemistry analysis also showed that, three weeks after LPS

administration, dopaminergic cell death was significantly attenu-

ated in the group treated with S14 (data not shown).

Discussion

In this study, we have demonstrated, for the first time, that

inhibition of PDE7 induces neuroprotection of human dopami-

nergic neuronal cells SH-SY5Y and of primary mesencephalic

cultures and attenuates the production of nitrites and proin-

flammatory agents. Our data also show that inhibition of PDE7

results in an inhibition of microglial activation and has

neuroprotective effects on the nigrostriatal system in an in vivo

model of PD. In addition, the neuroprotective effect of PDE7

inhibition appears to be mediated by the cAMP/PKA signaling

pathway. These results suggest that inhibition of PDE7 can

represent a new therapeutic approach for the treatment of PD and

other neurodegenerative disorders in which inflammation pro-

cesses are involved. Thus, PDE7 inhibitors may represent a new

generation of valuable drugs.

We initially analyzed the neuroprotective and anti-inflammato-

ry effects of the PDE7 inhibitor S14 in the human dopaminergic

cell line SH-SY5Y and in primary mesencephalic cultures. Human

neuroblastoma cells exposed to 6-OHDA are used as in vitro model

for PD, due to similar cellular processes that occur in the

degenerating dopaminergic neurons [31]. We show that S14

significantly attenuates 6-OHDA-induced neuronal cell death and

nitrite liberation in the SH-SY5Y neuronal cell line and in

mesencephalic cultures. These effects are accompanied by an

elevation of intracellular cAMP levels, indicating that also in

dopaminergic neurons the activity of PDE7 is important in

governing cellular cAMP concentration. The mechanism of action

of this compound seems to be the inhibition of the PDE7 enzyme,

the subsequent activation of the cAMP/PKA signaling pathway

and the activation of the transcription factor cAMP response

element-binding protein (CREB) by phosphorylation. It is known

that cAMP can activate at least three different signaling pathways

within cells. The first one to be characterized and the most

extensively studied rely on the activation of PKA, which then

phosphorylates different substrates including transcription factors

such as CREB. However, cAMP can also stimulate the guanine

nucleotide exchange protein Epac, which in turn activates the

GTPase Rap-1 [32]. Other pathway identified as activated by

cAMP includes another guanine nucleotide exchange protein

called CNrasGEF, which directly activates Ras [33]. Yet, our

results showing a reversion of the anti-inflammatory and

neuroprotective effects of S14 by both Rp-cAMP and H89 (a

specific inhibitor of PKA activation), support the notion that S14

specifically activates cAMP-dependent PKA activation.

These neuroprotective actions of PDE7 inhibition are in

accordance with previous findings showing that cAMP signaling

pathway might inhibit cell death in various neurodegenerative

disorders. Previous work has demonstrated a clear involvement of

PKA in neuroprotection [34,35]. Absence of CREB in developing

brain results in generalized cell death, whereas postnatal

disruption of this transcription factor triggers progressive neuro-

degeneration [36]. Also, it has been shown that CREB is necessary

for neuronal survival and axonal growth in different neuronal

populations [9]. Of note, inhibition of cAMP signaling pathway

has been suggested to contribute to Hungtinton disease pathology

[37,38,39]. Our results add new and important data establishing

that elevation of intracellular cAMP levels through inhibition of

PDE7 promotes protection of dopaminergic cells and has potent

anti-inflammatory effects.

To evaluate the translational relevance of the aforementioned

cellular effects, the anti-inflammatory and neuroprotective actions

of direct administration of S14 into the brain were assessed in a

classical rodent model of PD. Research in the last years has

unveiled an important role for neuroinflammation in the

degeneration of the nigrostriatal dopaminergic pathway that

constitutes the pathological basis of PD. Neuroinflammation is

characterized by the activation of glial cells that release various

cytotoxic substances, including pro-inflammatory cytokines, reac-

Figure 3. Effect of S14 on 6-OHDA-induced SH-SY5Y cell death. Cells were treated with Rolipram (30 mM), BRL50481 (BRL, 30 mM), or S14
(10 mM) as indicated in Methods. (A) Intracellular levels of cAMP in cells treated during 1 hr with the indicated compounds. **p,0.01; ***p,0.001
versus non-treated (basal) cells. (B) Representative Western blot showing phosphorylation of CREB after incubation of cells with 6-OHDA (35 mM) for
16 h in the presence or absence of the indicated compounds. A specific anti-phospho-CREB antibody was used. The use of an antiserum that does
not discriminate between CREB and phospho-CREB (bottom panel) indicates that the total levels of CREB are not affected by the treatments.
Quantification analysis are shown. ***p,0.001 versus non-treated (basal) cells; #p,0.05, ##p,0.01, ###p,0.001 versus 6-OHDA-treated cells. Rol,
Rolipram (C) Cell viability, cytotoxicity and nitrite production were measured as indicated in Methods. Some cultures were pretreated with the
protein kinase A inhibitor H89 or the cAMP antagonist Rp-cAMP. Values represent the mean 6 SD of six replications in three different experiments.
**p,0.01; ***p,0.001, versus 6-OHDA-treated cells; ##p,0.01, ###p,0.001 versus the values obtained in the absence of H89 or Rp-cAMP (D)
Apoptotic levels were determined by active caspase 3 (green) and Annexin V-FITC (green) immunodetection. Representative images of at least three
independent experiments are shown. Scale bar, 10 mm. Nuclei were counterstained with DAPI (blue). Quantification of active caspase 3 and Annexin
V-FITC-positive cells is shown. ***p,0.001 versus 6-OHDA-treated cells.
doi:10.1371/journal.pone.0017240.g003

PDE7 Inhibition in Parkinson Disease

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e17240



Figure 4. Effect of S14 on cell death and inflammation processes in mesencephalic cell cultures induced by incubation with LPS or
6-OHDA. (A) Rat primary mesencephalic cultures were treated with LPS (1 mg/ml) in the absence or presence of S14 (10 mM) and the expression of
TH, COX-2 and TNF-a was evaluated by immunofluorescence analysis using specific antibodies, as described in Methods. Representative results of
three independent experiments are shown. Scale bars, 20 mm. Nuclei were counterstained with DAPI. Quantification of the numbers of
immunoreactive cells was performed as described in Methods. Values represent the mean from three different experiments and twenty independent
fields ($50 cells/field) per culture. *p,0.05; ***p,0.001 versus LPS-treated cells. (B) Nitrite production was evaluated by the Griess reaction. Values
represent the mean 6 SD of six replications in three different experiments. ***p,0.001, versus LPS-treated cells (C) Rat primary mesencephalic
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tive oxygen species, and nitric oxide and sustained reactivity of

microglia is implicated in the pathology of many neurodegener-

ative disorders [40]. Inhibition of this process could then protect

against neurodegeneration and expansion of brain injury. This

view is further supported by epidemiologic data showing that long-

term treatment with non-steroidal anti-inflammatory drugs may

protect against Alzheimer disease and Parkinson disease

[41,42,43]. Administration of the bacterial endotoxin LPS in rats

induces a consistent glial activation and a subsequent dopaminer-

gic cell loss that parallels many aspects of PD [29,44,45]. Here, we

show that S14 has potent anti-inflammatory effects in vivo after

LPS injection in the SNpc. Our results indicate that this

compound significantly reduces the accumulation of reactive

microglia in the striatum of lesioned-rats. The underlying

mechanism of this anti-inflammatory effect of S14 may involve

the suppression of certain cytokines, e.g. TNF-a. Indeed our in vitro

results show that treatment of primary mesencephalic cultures with

S14 significantly decreased TNF-a and COX-2 levels, two potent

pro-inflammatory agents.

Besides this potent anti-inflammatory action of S14, the

administration of this compound also causes a significant

preservation of dopaminergic cells loss in the SNpc. PD is

characterized by selective degeneration of dopaminergic neurons

in the SN. Rats receiving LPS presented classic reductions in the

number of TH-immunoreactive cells, a marker of dopaminergic

cells in the SN. These animals also demonstrated motor function

deficits. A unilateral lesion in nigrostriatal dopaminergic pathway

produces an imbalance of dopamine between the lesioned and

unlesioned striatum leading to circle toward the side of the lesion

[46,47]. Treatment of the animals with a dopamine agonist such

as apomorphine leads to contralateral rotational behavior in

denervated animals [48]. This rotational behavior is consistent

with damage to dopaminergic neurons in the SN and the decrease

of dopamine in the striatum [49]. Behavioral assessment detected

significant differences between the LPS and control animals at 3

weeks after LPS administration. S14 administration provided

complete protection, as assessed by TH-positive cell number and

motor behavioral. We found that apomorphine-induced turning

behavior in the LPS-treated group was significantly inhibited by

S14 treatment. Overall, the LPS rats treated with S14 were

indistinguishable from controls.

In conclusion, here we have shown that inhibition of PDE7

hinders dopaminergic cell death and glial activation in an animal

model of PD. The mechanisms that underlie these effects appear

to be an elevation of intracellular cAMP, which acts via the PKA-

CREB pathway. These results show for the first time that

inhibition of the PDE7 enzyme leads to dopaminergic neuronal

protection and therefore its inhibitors may exert useful therapeutic

actions in patients with PD, a hypothesis that is amenable to

clinical testing.

Materials and Methods

Animal experiments
All procedures with animals were specifically approved by the

‘Ethics Committee for Animal Experimentation’ of the Instituto de

Investigaciones Biomedicas (CSIC-UAM), licence number SAF

2010/16365, and carried out in accordance with the protocols

issued which followed National (normative 1201/2005) and

International recommendations (normative 86/609 from the

European Communities Council). Adequate measures were taken

to minimize pain or discomfort of animals.

LPS injection in vivo
Adult male Wistar rats (8–12 weeks old) were used in this study.

The animals, divided into four groups, with at least six rats in each

group, were properly anaesthetized and placed in a stereotaxic

apparatus (Kopf Instruments, CA). LPS (10 mg in 2.5 ml PBS)

alone or in combination with S14 (20 nmol) or with BRL50481

(60 nmol) were injected into the right side of the SNpc

(coordinates from Bregma: posterior - 4.8 mm; lateral +
2.0 mm; ventral: +8.2 mm, according to the atlas of Paxinos

and Watson [50]). The dose of LPS was chosen based in previous

published data [29,30,51]. The amount of S14 injected was

calculated taking into account the distribution volume of this

cerebral area and the effective dose observed in the in vitro

experiments. Control animals of the same age were injected with

PBS. Rats were then housed individually to recover and sacrificed

72 h after lesioning.

Histology and Immunohistochemistry
Seventy-two hours after lesioning, the animals were anaesthe-

tized and perfused transcardially with a 4% paraformaldehyde

solution. The brains were removed, postfixed in the same solution

at 4uC overnight, cryoprotected, frozen, and 30 mm coronal

sections were obtained in a cryostat. Free-floating sections were

processed for cresyl violet (Nissl stain) or immunohistochemistry

using the diaminobenzidine method as previously described [52].

To detect PDE7 in SNpc, rabbit anti-PDE7A and goat anti-

PDE7B antibodies (Santa Cruz Biotech) were used. For immuno-

detection of activated glia and dopaminergic neurons, a mouse

anti-CD11b antibody (Serotec, Germany) and a rabbit anti-

tyrosine hydroxylase (Chemicon/Millipore, USA) antibody, re-

spectively, were used. After being dehydrated, cleared, and

mounted with DePeX (Serva, Heidelberg, Germany), samples

were examined with a Zeiss (Oberkochen, Germany) Axiophot

microscope, equipped with an Olympus DP-50 digital camera,

and a Leica (Nussloch, Germany) MZ6 modular stereomicroscope.

Four animals from each experimental group were analyzed.

Neuronal integrity and specifically dopaminergic cell death was

assessed by counting the percentage of Nissl-stained and TH+ cells,

respectively, in the SNpc in four well-defined high magnification

(x400) fields per animal, using a computer-assisted image analySIS

software (Soft Imaging System Corp). Microgliosis was quantified

similarly.

Behavioural testing. Apomorphine-induced rotational

behavioural test was performed 3 weeks following LPS lesioning

of the SNpc. Rats were given a subcutaneous injection of

apomorphine (0.5 mg/kg in saline), then placed individually in

plastic beakers and videotaped for 30 minutes. Analysis of

completed (360u) rotations was made offline and expressed as

number of turns per minute. Rats showing more than six turns per

minute were considered as properly lesioned. Three different

experiments with al least 12 animals/experimental group were

performed.

cultures were treated with 6-OHDA in the absence or presence of S14 and the expression of TH+ cells was evaluated by immunofluorescence analysis
using specific antibodies, as described in Methods. Representative results of three independent experiments are shown. Scale bars, 20 mm. Nuclei
were counterstained with DAPI. Quantification of the numbers of immunoreactive cells was performed as described in Methods. Values represent the
mean 6 SD from three different experiments and twenty independent fields ($50 cells/field) per culture. ***p,0.001 versus 6-OHDA-treated cells.
doi:10.1371/journal.pone.0017240.g004
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Mesencephalic cell cultures
Cultures were derived from the ventral mesencephalon of rat

embryos at embryonic day 14. Briefly, rats were killed by cervical

dislocation and embryonic sacs dissected and collected in ice-cold

HBSS medium (Ca2+ and Mg2+ free). Ventral mesencephalon was

isolated, gently minced and triturated with a micropipette in HBSS

medium. Then the supernatant was collected, and centrifuged at

1200 xg/5 min. The pellet was resuspended in culture media (MEM

supplemented with 10% FBS, 10% HS, glucose 1 g/l glutamine

2 mM, sodium pyruvate 1 mM, non-essential aminoacids 100 mM,

penicillin 50 U/ml and streptomycin 50 mg/ml), and cells seeded

onto 24-well plates (56105 cells/well) or 96-well plates (16105 cells/

well). After 1 week in culture, cells were treated with LPS (1 mg/ml)

[53,54,55] or 6-OHDA (35 mM, Sigma), alone or in combination

with S14 (10 mM). The effective dose of S14 was determined based

on previous studies on EC50 [22]. After 24 h, cultures were

processed for immunocytochemistry and nitrite determination.

SH-SY5Y cell culture
The human neuroblastoma SH-SY5Y cell line was obtained

from Sigma-Aldrich and propagated in F12 medium/EMEM

containing glutamine (2 mM), 1% of non-essential amino acids

and 15% of fetal bovine serum (FBS), under humidified 5% CO2

and 95% air. On attaining semiconfluence, cells were treated or

not with 6-OHDA (35 mM, Sigma) for 24 h. Some cultures were

pretreated for 1 h with S14 (10 mM), Rolipram (30 mM, Tocris

Bioscience) or BRL-50481 (30 mM, Tocris Bioscience). To analyze

the role of cAMP, some plates were also preincubated with the

PKA inhibitor H-89 (20 mM, BIOMOL Research Laboratories) or

the cAMP antagonist Rp-cAMP (100 mM, BIOMOL Research

Laboratories) for 24 h before the addition of the different

compounds. At different times after treatments, cells were

processed for western blot, cell viability assay, LDH measurement,

nitrites release, and immunocytochemical analysis.

Cell viability assay
Cell viability was measured using the MTT assay (Roche

Diagnostic, GmbH), based on the ability of viable cells to reduce

yellow MTT to blue formazan. Briefly, cells were cultured in 96-

well plates and treated with the indicated compounds for 16 h, then

cells were incubated with MTT (0.5 mg/ml, 4 h) and subsequently

solubilized in 10% SDS/0.01 M HCl for 12 h in the dark. The

extent of reduction of MTT was quantified by absorbance

measurement at 595 nm according to the manufacturer’s protocol.

LDH release assay
Cytotoxicity was assessed by measuring the levels of lactate

dehydrogenase (LDH) released into the culture medium 16 h after

the different treatments. LDH activity was measured using a

Cytotoxicity Detection kit (Roche Molecular Biochemicals, Indianap-

olis, IN, USA) and quantified by measuring absorbance at 490 nm.

Nitrites measurement
Accumulation of nitrites in media was assayed by the standard

Griess reaction. After stimulation of cells with the different

treatments for 16 hours, supernatants were collected and mixed

with an equal volume of Griess reagent (Sigma- Aldrich). Samples

were then incubated at room temperature for 15 minutes and

absorbance read using a plate reader at 492/540 nm.

cAMP assay
Quantification of cAMP was carried out using the EIA (enzyme

immunoassay) kit from GE Healthcare. Briefly, SH-SY5Y cells

were seeded at 36104/well in 96-well dishes and incubated

overnight before the assay. After 1 h incubation with S14,

Rolipram or BRL50481, cAMP intracellular levels were deter-

mined following the manufacture’s instructions.

Immunoblot analysis
Proteins were isolated from brain tissue or cell cultures by

standard methods. Some SH-SY5Y cultures were pre-treated with

Rolipram (30 mM), BRL50481 (BRL, 30 mM), or S14 (10 mM) for

1 h before 6-OHDA (35 mM) addition and kept in these conditions

for 16 h. A total amount of 30 mg of protein was loaded on a 10%

SDS-PAGE gel. After electrophoresis, proteins were transferred to

nitrocellulose membranes (Protran, Whatman, Dassel, Germany)

and blots were probed with the indicated primary antibodies, as

previously described [56]. The antibodies used were the following:

rabbit anti-PDE7A (1:1000, Santa Cruz Biotech., USA), goat anti-

PDE7B (1:1000; Santa Cruz Biotech., USA), mouse monoclonal

anti-a-tubulin (1:5000; Sigma), rabbit anti-p-CREB (1:1000; Cell

Signaling) and rabbit anti-CREB (1:1000; Cell Signaling). All

incubations with primary antibodies were carried out overnight,

with gently shaking at 4uC. Secondary peroxidase-conjugated

donkey anti-rabbit and rabbit anti-mouse antibodies were from

Amersham Biosciences (GE Healthcare, Buckinghamshire, En-

gland) and Jackson Immunoresearch, respectively. Secondary

antibodies incubations were done at room temperature for 1 hour.

Values in figures are the average of the quantification of at least

three independent experiments corresponding to three different

samples.

Immunocytochemistry
At the end of the treatment period, SH-SY5Y or primary

mesencephalic cultures, grown on glass cover-slips in 24-well cell

culture plates, were washed with PBS and fixed for 30 min with

4% paraformaldehyde at 25uC and permeabilized with 0.1%

Triton X-100 for 30 min at 37uC. After 1 h incubation with the

corresponding primary antibody, cells were washed with PBS and

incubated with an Alexa-labeled secondary antibody (Invitrogen,

San Diego, CA) for 45 min at 37uC. Images were acquired using a

Radiance 2100 confocal microscope (Bio-Rad, Hercules, CA),

with a 350 nm diode laser to excite DAPI (4,6,diamidino-2-

phenylindole) a 488-Argon laser to excite Alexa 488 and a 647

laser to excite Alexa 647. Confocal microscope settings were

adjusted to produce the optimum signal-to-noise ratio. To

compare fluorescence signals from different preparations, settings

were fixed for all samples within the same analysis. The following

antibodies were used: rabbit anti-PDE7A (Santa Cruz Biotech),

goat anti-PDE7B (Santa Cruz Biotech), goat anti-Cox-2 (Santa

Cruz Biotech), goat anti-TNFa (Santa Cruz Biotech), rabbit anti-

Figure 5. Effect of S14 on dopaminergic cell death in vivo. LPS (10 mg) or vehicle was injected unilaterally into the adult substantia nigra pars
compacta (SNpc) of adult rats. A group of animals also received S14 (20 nmol) or BRL50481 (BRL, 60 nmol) together with LPS. After 72 h the brains
were removed and tissue sections were processed for (A) Nissl staining to label neurons or (B) tyrosine hydroxylase (TH) immunoreactivity to label
dopaminergic neurons. Scale bars, 500 mm. Insets scale bars, 100 mm. Quantification of the numbers of neurons in A or TH-immunoreactive (IR) cells
in B is shown. Values represent the mean 6 SD, expressed as a percentage of vehicle-treated animals, from three different experiments, four animals/
experiment/experimental group, and five independent sections per animal. ***p,0.001 versus LPS-treated animals.
doi:10.1371/journal.pone.0017240.g005
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Figure 6. Effect of S14 on in vivo inflammation and rotational behavior. Lipopolysaccharide (LPS, 10 mg) or vehicle was injected unilaterally
into the adult substantia nigra pars compacta (SNpc) of adult rats. A group of animals also received S14 (20 nmol) or BRL50481 (BRL, 60 nmol)
together with LPS. (A) After 72 h the brains were removed and tissue sections were processed for CD11b (OX-42) immunoreactivity lo label activated
microglia. Scale bars, 500 mm. Insets scale bars, 100 mm. Quantification of the reactive cells is expressed as the mean 6 SD, from three different
experiments, four animals/experiment/experimental group, and five independent sections per animal. ***p,0.001 versus LPS-treated animals. (B)
Behavioral analysis. Three weeks after treatment apomorphine-induced rotations were analyzed in control, LPS-injected, and LPS+S14-injected rats.
Values represent the means 6 SD from three different experiments. ***p,0.001, versus LPS-injected animals.
doi:10.1371/journal.pone.0017240.g006
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tyrosine hydroxylase (Chemicon/Millipore), mouse anti-tyrosine

hydroxilase (Sigma) and mouse anti-NeuN (Chemicon). For the

quantification of COX-2, TNF-a and TH immunoreactive cells,

the number of positive cells was quantified in 20 independent

random fields at x400 magnification.
Measurement of apoptosis. To calculate the extend of

apoptotic cell death, SH-SY5Y cells were treated or not with S14,

incubated with 6-OHDA for 16 h, and phosphatydilserine (PS)

exposure on the surface of apoptotic cells was detected by confocal

microscopy after staining with Annexin V-FITC (Bender

MedSystems, Vienna, Austria). Levels of active caspase-3 were

also determined using a specific rabbit anti-active caspase-3

antibody (R&D Systems). For the quantification of Annexin-V-

positive cells and active caspase-3 immunoreactive cells, the

number of positive cells was quantified as described above.

Statistics analysis
Statistical comparisons for significance among differents groups

of animals were performed by ANOVA followed by Newman-

Keuls’test for multiple comparisons. Student’s t-test was used to

analyze statistical differences between cells. Differences were

considered statistically significant at p,0.05.
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