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Abstract

Background: Epilepsy is a severe neurological disorder affecting a large number of individuals, yet the underlying genetic
risk factors for epilepsy remain unclear. Recent studies have revealed several recurrent copy number variations (CNVs) that
are more likely to be associated with epilepsy. The responsible gene(s) within these regions have yet to be definitively linked
to the disorder, and the implications of their interactions are not fully understood. Identification of these genes may
contribute to a better pathological understanding of epilepsy, and serve to implicate novel therapeutic targets for further
research.

Methodology/Principal Findings: In this study, we examined genes within heterozygous deletion regions identified in a
recent large-scale study, encompassing a diverse spectrum of epileptic syndromes. By integrating additional protein-protein
interaction data, we constructed subnetworks for these CNV-region genes and also those previously studied for epilepsy.
We observed 20 genes common to both networks, primarily concentrated within a small molecular network populated by
GABA receptor, BDNF/MAPK signaling, and estrogen receptor genes. From among the hundreds of genes in the initial
networks, these were designated by convergent evidence for their likely association with epilepsy. Importantly, the
identified molecular network was found to contain complex interrelationships, providing further insight into epilepsy’s
underlying pathology. We further performed pathway enrichment and crosstalk analysis and revealed a functional map
which indicates the significant enrichment of closely related neurological, immune, and kinase regulatory pathways.

Conclusions/Significance: The convergent framework we proposed here provides a unique and powerful approach to
screening and identifying promising disease genes out of typically hundreds to thousands of genes in disease-related CNV-
regions. Our network and pathway analysis provides important implications for the underlying molecular mechanisms for
epilepsy. The strategy can be applied for the study of other complex diseases.
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Introduction

Epilepsy is a brain disorder involving recurrent seizures of any

type, and is one of the most common neurological disorders

affecting young people. Despite numerous efforts to elucidate its

pathological basis, the genetic and environmental factors underlying

epilepsy have remained unclear, a fact that may be partially

attributable to the complex subtypes of the disorder. Current studies

in the field, including genome-wide association (GWA) studies of

other neurological disorders, have suggested that rare variants, such

as large deletions or duplications, may play important roles in the

pathogenesis of similarly complex diseases [1].

A number of studies aiming to identify such rare variants have

been conducted, and have successfully revealed several loci and

genes conferring susceptibility to epilepsy, such as deletions at

15q13.3 [2] and 16p13.11 [3]. The association of copy number

variations (CNVs) with epilepsy has gained recent attention, and

has served to expand our knowledge of epileptic pathogenesis.

However, these CNV regions are typically large and contain many

genes, so it is not surprising that it still remains unclear which are

responsible for the disease [4]. To effectively approach the

prioritization of these candidate genes, one can incorporate

evidence from both the transcriptome and proteome level, in

order to investigate the genetic signals interactively and system-

atically [5–6].

To this end we performed an integrative analysis of CNV data,

gene association data accessed via the HuGE Navigator [7],

protein-protein interaction (PPI) data, and gene expression data.

By applying a graphic algorithm, we constructed subnetworks for

CNV genes and for previously studied genes separately, in the

context of the whole human PPI network. A comparison of the

genes comprising the two networks revealed 20 overlapping genes,

which hold high priority as candidates for epilepsy. Most of these

candidate genes could connect in a molecular network featuring
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gamma-aminobutyric acid (GABA) signaling and BDNF/MAPK

signaling pathways. Incorporation of an expression dataset from

Gene Expression Omnibus (GEO) further highlighted two genes,

CHRNA7 and GABRA1, which are differently expressed between

epilepsy patients and controls. Finally, we performed pathway

enrichment analysis of the two subnetworks, followed by

examination of crosstalk between enriched pathways. These

results showed that neurotransmitter related pathways, immune

related pathways, and kinase regulatory pathways are significantly

enriched and clustered into functional groups.

Materials and Methods

Data sources
Copy number variation data was collected from a recently

published study, which conducted genome-wide screening of

CNVs for epilepsy disorders [3]. A total of 3812 patients with a

diverse spectrum of epilepsy syndromes and 1299 neurologically

normal controls were genotyped primarily using the Illumina

Human 610-Quad genome-wide genotyping array. We collected

373 genes (denoted as ‘‘CNV-genes’’) that were located in the

heterozygous deletion regions greater than 1 Mb observed in

epilepsy patients (see Table 1 in ref. [3]). As reported in the

original work, genes fully or partially covered by these regions

were listed and thus used in our analysis.

The HuGE Navigator is an integrated knowledge base of

human genome epidemiology, focusing primarily on the continual

collection of epidemiologic and genetic studies, including publica-

tions of genetic variants, gene-disease associations and gene-gene

or gene-environment interactions [7]. We specifically searched the

Phenopedia page for epilepsy related association studies and

reported genes. Using the exact match of term ‘‘epilepsy’’, we

retrieved 165 genes annotated in the HuGE database (as of April

23, 2010). We also checked other epilepsy related keywords (e.g.,

‘‘epilepsies, myoclonic’’) to search the HuGE database and could

only find a small number of genes, most of which were already

included in the 165 gene list. Thus, the 165 genes (hereafter

denoted as ‘‘HuGE-genes’’) were included in our analysis.

Specifically, Heinzen’s data was not included in the HuGE

database at the time we retrieved the data, thus, the two gene sets

are independent. Of note, the HuGE database collects published

genetic studies without distinguishing positive or negative

associations. Because replication rate of association is very low in

psychiatric genetics [8], and we attempted to include potential

candidate genes for convergent analysis, we included all of them in

this work.

We downloaded a comprehensive human PPI dataset from the

PINA platform (http://csbi.ltdk.helsinki.fi/pina/). PINA collected

and manually curated PPI data from six major PPI databases

(HPRD, IntAct, DIP, MINT, BioGRID, and MIPS/MPact) and

its data was derived from high-throughput experiments and

literature supported by experiments. Approximately 10,000 nodes

and ,50,000 interactions were included in the dataset as of

August, 2009. We used this dataset to construct a human PPI

network (i.e., interactome), upon which we performed follow-up

subnetwork analysis.

Subnetwork construction
We sought to identify connections among the CNV-genes and

HuGE-genes, hypothesizing that genes susceptible to epilepsy
would not be working independently, but instead would interact
with one another. We used the Steiner minimum tree algorithm
[9] to search for subnetworks in the human PPI network to
highlight genes of interest. The Steiner tree algorithm was initially
designed for searching a weighted network, and aims to determine
the least cost connected subgraph spanning a gene subset of special
interest. A detailed description of the algorithm can be found in
the original work [9]. In our application, since our PPI network is
unweighted, the execution of Steiner tree was simplified to
construct a connected subgraph spanning a maximum proportion
of our interesting nodes, e.g., the encoded proteins of CNV-genes
or HuGE-genes, and impeded by the restriction of minimizing the
nodes not belonging to the interesting nodes.

Integration with expression data
To integrate gene expression information, we downloaded an

expression dataset from GEO (http://www.ncbi.nlm.nih.gov/geo/,
accession number: GSE20977). This dataset was also part of
Heinzen’s work [3]. Blood samples from 7 epilepsy patients with
16p13.11 heterozygous deletions and 8 normal controls were studied
to estimate gene expression levels using Illumina Human HT-12 v3
microarrays [3]. The initial aim of this dataset was to evaluate the
impact of the deletion on gene expression. The data had been
previously normalized using robust spline normalization, and probes
with the maximum intensity were chosen to represent each gene. We
used a two-sided t-test to identify significant differentially expressed
genes between epilepsy patients and controls.

Pathway enrichment and pathway crosstalk
We used the Ingenuity Pathway Analysis (IPA) system (http://

www.ingenuity.com) to perform pathway enrichment tests. To

compute a P value for each pathway, IPA implements Fisher’s

exact test. We defined significant pathways as those with the

number of genes of interest $5 and P value ,0.01.

For pathway crosstalk, we considered paired pathways with no less

than 3 overlapping genes. To measure the gene-set overlap score, we

followed the algorithm proposed by enrichment map, a package for

Cytoscape [10], and investigated two measures of gene-set overlap:

the Jaccard Coefficient JC~
A\Bj j
A|Bj j, and Overlap Coefficient

OC~
A\Bj j

min Aj j, Bj jð Þ, where A and B denote two pathways. We took

the average of the two measurements as the score defining pathway

crosstalk, represented visually as a graph [11].

Table 1. Function enrichment of the subnetwork genes.

Diseases and disorders P-valuea #molecules

CNV-subnetwork

Neurological disease 9.41610211–3.5661025 132

Cancer 2.22610210–5.7061025 102

Genetic disorder 1.2361029–7.6061026 176

Psychological disorders 1.2361029–3.2461025 57

Reproductive system disease 2.2261029–4.7861025 49

HuGE-subnetwork

Neurological disease 2.02610252–5.6261027 143

Genetic disorder 4.47610237–5.1561027 165

Psychological disorders 4.34610227–4.7961027 81

Skeletal and muscular disorders 1.54610225–5.1561027 112

Organismal injury and abnormalities 9.49610220–5.9261027 54

aP-values were calculated by Fisher’s exact test, indicating probability of the
association of the candidate genes with the canonical pathway from chance.
Each disease category has several pathways, thus, the range of their P-values is
provided.

doi:10.1371/journal.pone.0017162.t001

Convergent Analysis of Epilepsy Candidate Genes
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Results

Figure 1 illustrates our stepwise procedure to reduce the pool of

CNV-genes. Starting with two gene sets (i.e., CNV-genes and

HuGE-genes), we first constructed subnetworks for either gene set

by incorporating an established human interactome and imple-

menting a Steiner minimum tree algorithm. Comparison of the

two subnetworks revealed 20 overlapping genes of high priority.

We investigated the function and relationships of these 20 genes,

and further incorporated gene expression data to highlight two

genes deemed by our evidence as most relevant to epilepsy. To

further provide insights on the functional level, we then performed

pathway enrichment of genes in the resultant subnetworks,

examined crosstalk quantitatively between significant pathways,

and organized them in a graphical functional map.

Subnetwork construction of CNV-genes and HuGE-genes
There are 373 CNV genes reported in Heinzen’s work [3]. The

constructed CNV-subnetwork using the Steiner minimum tree

algorithm contains two types of nodes: 149 are of CNV-genes that

could be connected using the Steiner tree algorithm, and 126 were

additionally recruited in the process of subnetwork construction.

The remaining CNV-genes either lacked annotated interactions

with other proteins in the PPI network or would have included too

many unrelated nodes to connect them, thus, they were not

included for further analysis.

The same procedure was performed for HuGE-genes. As of

April 23, 2010, there were 165 genes annotated by HuGE as

related to epilepsy. Using the Steiner tree algorithm, we analyzed

these genes and constructed a HuGE-subnetwork containing 202

nodes, 127 of which belonged to the initial HuGE-gene list, while

75 were recruited additionally.

High-priority candidate genes from both subnetworks
On the gene level, we identified 20 genes in common between

the two subnetworks, and assigned them high-priority (Table 1) as

candidate genes for epilepsy. Five genes, ABCB1, ABCB4,

CHRNA7, GABRA1, and GABRG2, are located within reported

CNV regions and have been studied previously for their

association with epilepsy as collected by HuGE. AGL and

AP4M1 were found only within CNV genes, while ATXN1, BDNF

and NPY were annotated solely in HuGE. The other genes are

neither located in CNV regions nor collected by HuGE. They

were identified during the process of constructing the subnetworks;

thus, they are important for the structure of both subnetworks. Of

note, the gene ankyrin 3, node of Ranvier (ankyrin G), or ANK3,

has been reported in previous GWA studies to be associated with

schizophrenia [12] and bipolar disorder [13].

Using the Network Analysis tool in the IPA system, we observed

that 17 of the overlapping 20 genes appear in the top network,

which is significant for functional association with ‘‘carbohydrate

metabolism, lipid metabolism, and molecular transport’’ (Figure 2).

Three genes, UBB, GABRA1, and GABRG2, are constituents of the

GABA signaling pathway and are connected with other molecules

through protein-protein interaction (e.g., GABRG2 and CANX) or

regulation of gene expression (e.g., GABRA1 was observed to

decrease the expression of BDNF). We also observed molecules and

complexes such as BDNF, MAPK1, PRKACA, and the NMDA

receptor, which are known to participate in diverse neurodevelop-

mental processes. Interestingly, several hormone-related proteins

and hormone receptors were also included in the network, including

the estrogen receptor and neuropeptide Y (NPY).

CHRNA7 and GABRA1 as differently expressed genes
We used the microarray data to compare gene expression levels

between epilepsy patients and normal individuals. A two-sided t-

test was performed to identify genes showing significant differential

expression (DE genes). We identified 1278 genes having P , 0.05,

including three genes discussed in the original study: NDE1,

C16orf63 and KIAA0430 [3].

To further prioritize candidate genes for epilepsy, we examined the

expression levels of the genes in the subnetworks. A few of these genes

were found to be significantly differentially expressed between

epilepsy patients and normal controls, including 12 genes from the

CNV-enriched subnetwork and 12 genes from the HuGE subnet-

work. Interestingly, two of these genes appear in our list of high-

priority genes, namely CHRNA7 (P = 0.014) and GABRA1 (P = 0.016).

Pathway enrichment and crosstalk
We used the Ingenuity Pathway Analysis (IPA) system to

analyze the CNV-subnetwork and HuGE-subnetwork, respective-

ly. In the ‘‘Disease and Disorder’’ category of IPA system,

‘‘neurological disease’’ is the most significant category for both

CNV-subnetwork and HuGE-subnetwork (Table 2), supporting

the hypothesis of the involvement of neurological dysfunction in

epilepsy. We also observed ‘‘genetic disorder’’ and ‘‘psychological

disorders’’ as significant in both networks. While these results are

expected for the HuGE-genes, which were derived from previous

studies that often tested the neurological hypothesis of this disease,

the findings based on CNV-genes, which derived from an

unbiased genome-wide CNV dataset published recently and have

not been included in IPA yet, are important for understanding the

molecular mechanism of epilepsy.

In the pathway enrichment analysis, 129 canonical pathways

were nominally enriched in the CNV-subnetwork (Fisher’s exact

test, P , 0.01 and number of interesting genes $5, Table S1), and

75 in the HuGE-subnetwork (Table S2). We further investigated the

relationships among these pathways to identify general biological

features of epilepsy genes. Specifically, we examined crosstalk

among these pathways by computing overlap scores based upon

shared genes between any two pathways, and represented them

graphically using Cytoscape. In Figure 3, nodes represent significant

Figure 1. Convergent functional analysis of CNV genes for
epilepsy. PPI: protein-protein interaction. DE gene: differently
expressed genes in epilepsy patients and normal individuals.
doi:10.1371/journal.pone.0017162.g001

Convergent Analysis of Epilepsy Candidate Genes
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pathways and edges indicate crosstalk between them. A connection

(i.e., represented as an edge) is established if two pathways share $3

genes, and is assigned a weight as the corresponding overlap score

(see Materials and Methods), represented by the width of the edge in

Figure 3. To highlight highly related pathways, only the top scored

connections and corresponding pathways are shown in Figure 3.

For CNV pathways, top scored connections are those scored within

the top 1%, while for HuGE pathways we included the top 5%

Figure 2. Molecular network of high-priority genes. Shaded nodes are genes from both CNV and HuGE networks. Green nodes are annotated
in association with epilepsy. Cyan nodes are annotated in association with schizophrenia. Red edges are from epilepsy nodes to nearest-neighbors.
Blue edges are from schizophrenia nodes to nearest-neighbors.
doi:10.1371/journal.pone.0017162.g002

Table 2. Evidence of high-priority candidate genes for epilepsy.

Gene symbol Gene name CNV-gene HuGE-gene

ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1

ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1 Y Y

ABCB4 ATP-binding cassette, sub-family B (MDR/TAP), member 4 Y Y

AGL Amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase Y

ANK3 Ankyrin 3, node of Ranvier (ankyrin G)

AP4M1 Adaptor-related protein complex 4, mu 1 subunit Y

ATXN1 Ataxin 1 Y

BDNF Brain-derived neurotrophic factor Y

CANX Calnexin

CHRNA7 Cholinergic receptor, nicotinic, alpha 7 Y Y

GABRA1 Gamma-aminobutyric acid (GABA) A receptor, alpha 1 Y Y

GABRG2 Gamma-aminobutyric acid (GABA) A receptor, gamma 2 Y Y

HAX1 HCLS1 associated protein X-1

MAPK1 Mitogen-activated protein kinase 1

MDFI MyoD family inhibitor

NPY Neuropeptide Y Y

PRKACA Protein kinase, cAMP-dependent, catalytic, alpha

RXRA Retinoid X receptor, alpha

UBB Ubiquitin B

UBQLN4 Ubiquilin 4

doi:10.1371/journal.pone.0017162.t002

Convergent Analysis of Epilepsy Candidate Genes
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because the number of significant pathways is less than that of the

CNV-subnetwork. Figure 3 includes the resulting 40 pathways and

44 connections/edges from CNV-pathways and 47 pathways and

48 connections from HuGE-pathways. Four of the pathways were

overlapped.

Four groups were automatically formed by our analysis of

pathway crosstalk, which we termed ‘‘functional groups’’. As

shown in Figure 3, group 1 and group 2 are formed by the CNV-

and HuGE-subnetworks respectively, and each contains several

immune pathways and kinase regulatory pathways. IL-3 signaling,

IL-15 signaling, and IL-17 signaling were significantly enriched in

the CNV-subnetwork and clustered in group 1. Their crosstalk

involved JAK2, MAPK1, PIK3R1, and PIK3R3, which appear in

all three pathways and are included in the CNV-subnetwork.

Similarly, in group 2, which mainly consisted of HuGE-pathways,

IL-6 and IL-10 signaling pathways were observed and found to be

connected through the pathway ‘‘role of macrophages, fibroblasts

and endothelial cells in Rheumatoid Arthritis’’. No edge is

indicated between the IL-6 and IL-10 pathways because their

overlap score failed to meet the cutoff, but they share a number of

common genes, including IL1A, IL1B, IL1R1, IL1RN, IL6, and

TNF. Group 1 also contains the ERK/MAPK signaling pathway,

a pathway known to work in tandem with the BDNF/Trk

signaling pathway to regulate gene expression and trafficking

during central nervous system (CNS) development [14–15].

Within group 2, the p38 MAPK signaling pathway was also

observed. The HuGE-subnetwork also formed a group including

neurotransmitter pathways, such as the G-protein coupled

receptor and cAMP-mediated signaling pathways, and androgen

signaling pathways (group 4). The CNV-subnetwork formed a

group of several cancer pathways (group 3), which might be due to

the tendency of cancer genes to have more interactions with other

proteins in the PPI network, thus influencing their recruitment

during CNV-subnetwork construction.

Discussion

We collected four types of high-throughput datasets for epilepsy

disorders and performed integrative analysis using bioinformatics

Figure 3. Pathway crosstalk and functional map of the CNV-subnetwork and HuGE-subnetwork. We indicate each pathway as a gene
set. Significant pathways (nodes) are connected based on their overlap of component genes and are represented as edges. Node color indicates gene
set membership, i.e., green pathways are enriched in the CNV-subnetwork; blue pathways are enriched in the HuGE-subnetwork; purple pathways are
enriched in both subnetworks. Node size is proportional to the total number of encoded proteins of CNV-genes and HuGE-genes mapped in each
pathway. Edge width is proportional to the overlap score of the related pathways (see Materials and Methods). The legend in the bottom shows the
node size (i.e., the number of interesting proteins in each pathway) and edge width (i.e., the extent of the overlap between two nodes).
doi:10.1371/journal.pone.0017162.g003

Convergent Analysis of Epilepsy Candidate Genes
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approaches. Following a stepwise enrichment procedure, we

constructed PPI subnetworks enriched with CNV genes or

previously studied candidate genes for epilepsy. The overlap

between the two subnetworks comprised 20 genes, 17 of which

were included in a molecular network relevant to GABA signaling

and neurodevelopmental events. Interestingly, two of the overlap

genes, CHRNA7 and GABRA1, were also shown to be significantly

differentially expressed between epilepsy patients and normal

controls. Furthermore, functional enrichment of the two subnet-

works and examination of pathway crosstalk highlighted shared

‘‘neurological disease’’ in the disease category and immune/

kinase-regulatory/neurotransmitter related pathways in the ca-

nonical pathway category.

In the molecular network containing 17 of the 20 high priority

genes (Figure 2), we observed GABA signaling related genes,

BDNF/MAPK pathway genes, estrogen receptor and NPY and

their intimate interactions. Three genes from the GABA signaling

pathway, including two GABA A (GABAA) receptor subunits,

GABRA1 and GABRG2, were included. GABA is well studied as the

primary inhibitory neurotransmitter in mammalian brain, and

synaptic inhibition is largely mediated by fast activation of GABAA

receptors. Seizure is associated with imbalance of excitatory and

inhibitory synaptic activities, the latter of which is believed to be

associated with GABA, and deregulated expression and altered

function of GABAA receptors has been previously observed in

different types of epilepsy. For example, increased expression of

GABAA receptors was observed in the hippocampus of patients

with temporal lobe epilepsy [16–17], and an Ala322Asp mutation

in GABRA1 was found in juvenile myoclonic epilepsy patients

[18–19]. Additionally, many current pharmacological treatments

for epilepsy target elements of the GABA signaling pathway,

including GABA receptors and transporters. The observation of

GABRA1 and GABRG2 in our network provides strong evidence of

the association between GABAA receptors and epilepsy. GABRA1

was also identified to be differently expressed between epilepsy

patients and controls in our analysis of expression data.

BDNF is one of the neurotrophins, a large family that promote

the growth, survival, and differentiation of cells in the CNS. These

actions of neurotrophins are mediated by several cell surface

receptors including TrkA, TrkB and TrkC, which in turn activate

G-proteins and signaling cascades through intracellular tyrosine

kinase receptors and ultimately induce downstream gene expres-

sion and regulation. In our subnetwork, we observed an active

regulatory relationship between BDNF and MAPK1, which is also

a member of Erk1/2 dimer in MAPK/ERK signaling pathways.

These on some level reflect the complex role that BDNF may play

in epilepsy, e.g., increased expression of BDNF during seizures of

temporal lobe epilepsy patients as well as animal models have been

observed frequently, although it is not clear whether seizures or

injury increase expression of BDNF, or whether BDNF promotes

epileptogenesis by increasing excitability [20].

Within our top-scoring network (Figure 2), we also observed the

estrogen receptor and NPY. These inclusions are interesting given

prior hypotheses regarding the role of estrogen and neuropeptide

signaling in seizure disorders [21–22]. Estrogen, in particular, has

been previously implicated as a modulator of GABAergic function

[23]. Indeed, many antiepileptic therapies are known to interact

with estrogen signaling by inhibiting aromatase (e.g., oxacarbaze-

pine, phenobarbital, phenytoin, valproate) [24], linking estrogens

to globulins (e.g., carbamazepine) [25], or directly binding to

estrogen receptors (e.g., gabapentin) [26]. NPY, also included in

the network, has been shown to co-localize and interact with

estrogen [27–28]. NPY has been shown to play an important role

in GABAergic interneuron regulation of excitability, and has been

demonstrated to have neuroprotective effects against kainate-

induced excitotoxicity, both in vivo and in vitro [29–30]. Further

investigation of estrogen and NPY in relation to epilepsy may be

promising in the search for effective antiepileptic therapies.

Interestingly, within the network, we also observed several genes

previously reported to be associated with schizophrenia, including

ABCB1, ANK3, ATXN1, BDNF, CHRNA7, GABRA1, GABRG2,

NPY, and PRKACA [31], indicating their potential co-morbidity.

The co-morbidity between schizophrenia and epilepsy has been

aware for a long time by many aspects of the two diseases. For

example, genetic studies have shown that the human leucine-rich,

glioma inactivated family genes were linked to both epilepsy and

schizophrenia [32]; and anticonvulsant drugs have been widely

used in the treatment of psychiatric disorders. Among the genes we

identified, mutation of CHRNA7 has been observed in previous

schizophrenia studies [33]. CHRNA7 locates in 15q13.3, a region

having recurrent deletion reported in epilepsy [2], late-onset

Alzheimer’s disease [34], mental retardation [35], seizures [35],

and autism [36], among other pathologies. Furthermore, ANK3

has been found to be associated with schizophrenia [12] and

bipolar disorder [13]; however, to our knowledge, it has not been

well studied in epilepsy yet. These results may further help us to

understand the relations between epilepsy, schizophrenia, and

other psychiatric disorders.

Our pathway enrichment analysis of the two subnetworks and

the follow up investigation of pathway crosstalk revealed several

functional groups of interest. Of note, the pathway crosstalk map

showed more similarity between the two subnetworks on the level

of pathways and functional mechanisms than observed at the gene

level. For example, groups 1 and 2 consist of pathways from

different subnetworks, yet share a number of immune-related

pathways. These observations indicate the common involvement

of immune, neurotransmitter, and cell signaling pathways in

epilepsy, and reveal that close interactions between these pathways

allow for a system of complex regulation.

While genes from our CNV analysis were identified from large-

scale genotyping of epilepsy patients and can be considered as de

novo, the HuGE genes have been studied in previous publications

and are thus ‘‘known’’ candidate genes. The subset of genes

common to both lists is of particular interest, as it represents a

consensus between multiple lines of evidence. However, the

original gene lists shared only 5 genes, and their interrelationships

remain unclear. Using our network based method, we expanded

this overlap to 20 genes in the context of a PPI network, and

further demonstrated their relationship in a small molecular

network.

Many methods and approaches have been proposed to identify

disease candidate genes, such as single variant or gene analysis,

haplotype analysis, meta-analysis of variants, epistatic analysis,

genome-wide associate studies (GWAS), multiple dimensional

evidence-based approaches, and network and pathway approaches

[37–39]. While each of these methods has its advantages (e.g.,

GWA studies can examine one to several million SNPs at one

time), it also has some disadvantages. For example, analysis of

individual variants or genes could only detect genetic signal at one

specific locus. Many genes are expected to be involved in complex

diseases such as psychiatric disorders, but their risk might be too

moderate or weak to be detected in a typical association study. On

the other hand, most computational approaches to identifying or

predicting disease genes require a pre-defined set of ‘‘golden

standard genes’’[40]. Comparing with those methods, our

convergent strategy does not rely on golden standard genes, while

it examines many genes simultaneously. Although it has limitations

such as incompleteness of the dataset, it provides an alternative

Convergent Analysis of Epilepsy Candidate Genes

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e17162



and potentially effective approach to identifying disease candidate

genes from a variety of genetic and genomic datasets.

As above, a potential limitation of our work is the incomplete-

ness of the datasets we used. For example, caution should be taken

when using all the available ‘‘disease genes’’ in the HuGE

database, as some might represent negative results and cause noise

in convergent analysis. Furthermore, the CNV regions used in our

study were greater than 1 Mb in length. There might also be

important genes in smaller regions or in deleted regions, which

were not immediately available from the original publication [3].

However, the CNV regions we used in the current study were

directly from the original publication and were of high quality [3].

Nevertheless, our convergent strategy was able to identify 20 high-

priority genes within strong biological context. Inclusion of more

complete datasets or other types of datasets in future will greatly

improve the quality of the current work.

In conclusion, we proposed a stepwise enrichment procedure to

converge CNV genes by incorporating publically available high-

throughput datasets. By applying a subnetwork construction

algorithm, we established a subnetwork for CNV genes, as well

as for a set of previously reported genes for epilepsy. The overlap

between the two subnetworks constitutes a high-priority candidate

gene set for epilepsy. Integration of additional gene expression

data further narrowed the candidate gene list to two of special

interest. This procedure is extensible to other disorders.
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