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Abstract

Background: Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting
approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of
these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal
stem cells (hBMSCs) regarding effectivity, cell viability, long term metabolic cell activity, chondrogenic differentiation and
hBMSC secretion profile. We additionally examined the capacity of synovial cells to endocytose SPIO from dead, labeled
cells, together with the use of magnetic resonance imaging (MRI) for intra-articular visualization and quantification of SPIO
labeled cells.

Methodology/Prinicipal Findings: Efficacy and various safety aspects of SPIO cell labeling were determined using
appropriate assays. Synovial SPIO re-uptake was investigated in vitro by co-labeling cells with SPIO and green fluorescent
protein (GFP). MRI experiments were performed on a clinical 3.0T MRI scanner. Two cell-based cartilage repair techniques
were mimicked for evaluating MRI traceability of labeled cells: intra-articular cell injection and cell implantation in cartilage
defects. Cells were applied ex vivo or in vitro in an intra-articular environment and immediately scanned. SPIO labeling was
effective and did not impair any of the studied safety aspects, including hBMSC secretion profile. SPIO from dead, labeled
cells could be taken up by synovial cells. Both injected and implanted SPIO-labeled cells could accurately be visualized by
MRI in a clinically relevant sized joint model using clinically applied cell doses. Finally, we quantified the amount of labeled
cells seeded in cartilage defects using MR-based relaxometry.

Conclusions: SPIO labeling appears to be safe without influencing cell behavior. SPIO labeled cells can be visualized in an
intra-articular environment and quantified when seeded in cartilage defects.
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Introduction

Articular cartilage provides low friction and allows for efficient

load bearing and distribution in synovial joints. Cartilage is

avascular, aneural and lacks lymphatic drainage. Consequently,

natural repair mechanisms are underprovided, giving cartilage a

very limited intrinsic regenerative capacity [1]. Current cell-based

cartilage repair techniques aim at restoration of the functional

properties of damaged cartilage. Human bone marrow-derived

mesenchymal stem cells (hBMSCs) and chondrocytes are two cell-

types currently used for these approaches [2,3,4,5]. hBMSCs can

be either implanted in focal defects, or injected intra-articularly to

repair more generalized cartilage lesions like osteoarthritis [4,5].

Chondrocytes are mainly being used for implantation in focal

cartilage defects, a procedure known as autologous chondrocyte

implantation (ACI) [2,3]. Despite the improvements made in cell-

based cartilage regeneration in the past decades, repaired cartilage

does not entirely resemble native cartilage and can not guarantee a

permanent solution at this moment [6].

To elucidate the relevant repair mechanisms and for optimiza-

tion of cell-based therapies, it is necessary to determine the fate of

implanted cells. Superparamagnetic iron oxides (SPIOs), such as

ferumoxides, have already been used clinically for cell labeling and

in vivo cell tracking in dermal oncology, neural regeneration and
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pancreatic islet transplantation [7]. No negative effects of the

labeling procedure have been reported in these initial clinical

studies. Before implementing this approach to an orthopedic

application, any possible negative influence of SPIO labeling on

cell behavior must be ruled out. Besides repopulation of damaged

tissue through proliferation and differentiation of hBMSCs,

secretion of certain trophic factors by transplanted hBMSCs has

more recently been suggested as a possible mechanism by which

hBMSCs promote tissue regeneration [8]. These bioactive

molecules could provide a regenerative microenvironment to

initiate a self-regulated regenerative response. To our knowledge,

the effects of SPIO labeling on factors secreted by hBMSCs have

not been investigated before. Another point of interest is the

feasibility of tracking SPIO-labeled cells within the joint in relation

to other anatomical structures, using a clinical magnetic resonance

imaging (MRI) protocol, in a model of clinically relevant size. For

these purposes, it must be checked how long cells retain the SPIO

label and it should be validated if generated MRI signals arise

from originally labeled cells. Next to cell visualization, quantifi-

cation of labeled cells implanted in cartilage defects by MRI could

provide an exquisite opportunity to longitudinally map the role

and contribution of implanted cells to cartilage repair. The aim of

this study was to label hBMSCs using SPIOs and evaluate the

effects of iron incorporation on cell viability, long term metabolic

cell activity, differentiation and secretion profile. Furthermore we

examined the SPIO retention of labeled cells and the capacity of

synovial cells to endocytose SPIO from dead, labeled cells. Finally,

we studied the use of MRI for accurate intra-articular visualization

and quantification of SPIO labeled cells.

Results

Labeling effectivity and cell behavior
hBMSCs were efficiently labeled with ferumoxides-protamine

sulfate complexes (Figure 1A). We observed a labeling efficiency

ranging from 41.2633.5% at an SPIO dose of 2.5 mg/cm2 to

94.567.8% at an SPIO dose of 25 mg/cm2 (Figure 1B) with

resulting average total iron loads (TILs) of cells ranging from

4.062.9 pg/cell to 19.566.1 pg/cell (Figure 1C). Both labeling

efficiency and TIL increased in relation to SPIO labeling dose up

to a dose of 10 mg/cm2. The higher SPIO dose of 25 mg/cm2 did

not significantly increase labeling efficiency (P = 0.42) or average

TIL (P = 0.50). hBMSC viability was not influenced by SPIO

labeling for dosages up to 25 mg/cm2 (Figure 1D). Additionally,

SPIO labeling did not inhibit cell metabolic activity compared to

unlabeled controls for at least seven days (Figure 1E). Based on

these results an SPIO dose of 10 mg/cm2, corresponding to a final

labeling concentration of 50 mg/ml SPIO, was considered optimal

and used in all further experiments.

Chondrogenic differentiation was studied in cell pellets

consisting of labeled and unlabeled cells at different ratios (0, 10,

50 and 100% of labeled cells). Differentiation was unaffected in all

pellets containing labeled hBMSCs (10–100%) compared to

control pellets consisting of unlabeled cells only. All pellets

displayed a cartilaginous extracellular matrix rich in GAG and

collagen type II (Figure 2A–H). Moreover, quantitative measure-

ments revealed SPIO-labeled hBMSCs to produce comparable

amounts of GAG (Figure 2I). In addition, gene expression of

collagen type II was unaltered in SPIO-labeled hBMSCs after

chondrogenic differentiation (Figure 2J).

To evaluate the influence of iron incorporation on cell

secretions, we tested six cytokines containing anti- and pro-

inflammatory cytokines as well as growth factors. No effect of

SPIO-labeling on the secretion profiles was found (Table 1). SPIO-

labeled hBMSCs produced comparable quantities of the anti- and

pro-inflammatory cytokine IL-6 (P = 0.39) and the growth factor

VEGF (P = 0.31) compared to unlabeled control cells. Further-

more, SPIO labeling did not induce the production of the pro-

inflammatory cytokines TNFa and IFNc, the anti-inflammatory

Figure 1. Labeling human Bone Marrow stroma-derived mesenchymal Stem Cells (hBMSCs) using Superparamagnetic Iron Oxides
(SPIO). Perl’s iron stain showing effective endocytosis of SPIO (A), leading to labeling efficiencies of approximately 95% (B) and a total iron load of
approximately 20 pg/cell (C). SPIO labeling did not impair cell viability (D) or subsequent metabolic cell activity (E) at any dose used. Results shown
for triplicate samples from three hBMSC donors.
doi:10.1371/journal.pone.0017001.g001
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cytokine IL-10 or the growth factor FGF2. These four factors were

not detectably secreted by control or SPIO-labeled hBMSCs.

Cell visualization by MRI
All cell doses injected intra-articularly could be visualized by

MRI. The number of injected cells was related to the number and

extent of areas with signal loss detected by MRI (Figure 3A–D,

arrows). Injected hBMSCs were found scattered throughout the

joint, clearly distinguishable from anatomical structures in all

conditions. In addition, presence of labeled cells did not interfere

with regular evaluation of knee anatomy.

For cell implantation experiments we created cartilage defects of

75 ml in porcine osteochondral plugs in vitro (Fig. S1A). Labeled

hBMSCs implanted in cartilage defects were homogenously

distributed and could be clearly distinguished from surrounding

bone and cartilage by MRI. The extent of signal loss in the seeded

plugs was dependent on the labeled cell dose used (Figure 3E–I).

The minimal labeled cell concentration we could visualize was

0.46106/ml. To show the potential applicability of this technique

in a clinical ACI-like procedure, we subsequently implanted

labeled hBMSCs in a cartilage defect in an intact porcine knee. In

this setting the SPIO-labeled cells were also clearly distinguishable

from the surrounding tissues (Figure 3J). Post MRI, Perl’s iron

Figure 2. Chondrogenic differentiation of hBMSCs is not affected by SPIO labeling. Collagen II immunohistochemistry and Perl’s iron stain
demonstrated SPIO labeling to have no effect on pellet size or collagen II production, while iron remained present in differentiated pellets (A–D).
Glycosaminoglycan deposition was also unaffected, as can be seen by thionin stain (E–H) and DMB assay (I). Gene expression of collagen II was
unaltered by SPIO labeling (J). All analyses were performed after 35 days of differentiation. Insets display low magnification overviews of the entire
pellets. Results shown for triplicate samples from two hBMSC donors.
doi:10.1371/journal.pone.0017001.g002

Table 1. Cytokine secretion of hBMSCs.

Cytokine (all values
in pg/ml) Control cells SPIO-labeled cells

TNFa #d.l. #d.l.

IFNc #d.l. #d.l.

IL-6 4896613 3306242

IL-10 #d.l. #d.l.

VEGF 1936103 2656102

FGF2 #d.l. #d.l.

hBMSC secretion profile of four cytokines and two growth factors was not
influenced by SPIO labeling. Cytokines were measured in serum free 24 hour
supernatant of labeled and unlabeled cells. SPIO did not induce the secretion of
pro-inflammatory cytokines (TNFa, IFNc), nor did it alter the secretion of the
anti- and pro-inflammatory cytokine IL-6 or the growth factor VEGF. The anti-
inflammatory factor IL-10 and growth factor FGF2 were not secreted at a
detectable level by control or SPIO-labeled cells. TNF-a: tumor necrosis factor-
alpha, IFN-c: interferon-gamma, IL: interleukin, VEGF: vascular endothelial
growth factor, FGF: fibroblast growth factor, #d.l.: below detection level
(10 pg/ml). Results shown for duplicate samples from five hBMSC donors.
doi:10.1371/journal.pone.0017001.t001
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stain confirmed SPIO positive cells to be present inside the defect

(Fig. S1B).

A point of interest is whether observed areas with signal loss are

generated by originally labeled cells, since SPIO remains in the

joint after labeled cells die. The joint cavity is lined by an inner

layer of synovial tissue that contains macrophages. We investigated

the capacity of synovial cells to endocytose SPIO from labeled

cells, by seeding dead or living GFP-SPIO co-labeled chondrocytes

on synovial tissue explants. In the synovium samples seeded with

living GFP-SPIO co-labeled cells, GFP+ cells were observed

immediately after seeding (Fig. S2A). Moreover, GFP+-SPIO+ cells

were found after the co-culture period of five days, suggesting

these cells to be originally labeled chondrocytes (Figure 4A and

4B). When seeded with dead GFP-SPIO co-labeled cells,

fluorescence microscopy confirmed the vast majority of cells to

have died directly following the freeze-thaw procedure (Fig. S2B).

After five days of co-culture, 88.4611.4% of the SPIO+ cells were

GFP̄ in these samples, indicative of iron re-uptake by synovial cells

(Figure 4C–E). Next to this, extracellular SPIO aggregates were

found attaching to the synovial membrane (Figure 4D inset). In

samples seeded with living chondrocytes, 25.5610.5% of SPIO

positive cells showed no GFP signal either. Whether this was due

to extinguishing GFP signal from originally labeled chondrocytes,

synovial re-uptake of SPIO from living cells, or caused by iron re-

uptake from seeded cells that died during the co-culture period,

could not be determined.

Cell quantification by MR-based relaxometry
In addition to visualization of seeded cells by MRI, we were able

to quantify the concentration of hBMSCs seeded in defects in vitro

by applying a R2* mapping technique, in which R2* = 1/T2*

(Figure 5A–E). A linear relationship between R2* values and

Figure 3. MRI visualization of SPIO-labeled hBMSCs in an intra-articular environment. Injected cells were visualized in a dose dependent
manner (A–D, in-plane resolution 2736273 mm; slice thickness 600 mm). Cells were found scattered throughout the joint (arrows) and could be
discerned from intra-articular structures. Labeled cells implanted in cartilage defects in vitro were homogeneously distributed and imaged in a
comparable way; dose dependent and clearly distinguishable from structures like cartilage and bone (E–I; in-plane resolution 78678 mm; slice
thickness 1500 mm). After implanting cells in a cartilage defect in an intact porcine knee, MRI showed the cells inside the defect (J; in-plane resolution
2736273 mm; slice thickness 400 mm). In (A); b: bone; c: cartilage; c.l.: cruciate ligament. Intra-articular cells in porcine knees were imaged as a single
sample for one donor. hBMSCs implanted in cartilage defects in vitro were imaged in duplicate samples from two hBMSC donors.
doi:10.1371/journal.pone.0017001.g003
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labeled cell concentrations of 0.46106–2.66106 cells/ml was

found (Figure 5F). R2* values ranged from 45622 -

4606120 ms21 for these labeled cell concentrations. Below

0.46106 cells/ml, SPIO-generated R2* signal was insufficient for

reliable differentiation from defects seeded with unlabeled

hBMSCs. At the very high labeled cell concentration of 136106

labeled cells/ml R2* values could no longer be determined, since

the values exceeded those measurable with our clinical acquisition

parameter range. At this high SPIO concentration a signal-to-

noise ratio of approximately 1.6 was obtained, which signifies that

the signal loss was not reliably discernable from background noise.

Discussion

Cell-based cartilage repair techniques are developing rapidly,

and the use of hBMSCs as a treatment for focal cartilage defects

and osteoarthritis shows promising results [5,9]. Clinically

translatable cell tracking represents a vital tool to aid in the

elucidation of the repair mechanisms of these therapies, and in

further improving them. In this study we have shown that SPIO

labeling of hBMSCs is effective and does not impair cell viability,

long term metabolic cell activity, chondrogenic differentiation, or

the secretion of a panel of six cytokines involved in inflammation

and tissue regeneration. We were able to accurately visualize intra-

articular SPIO-labeled hBMSCs and quantify cells seeded in

localized cartilage defects by means of an R2* mapping MRI

technique.

Regarding the influence of SPIO labeling on chondrogenic

capacity of BMSCs, some discrepancies can be found in recent

reports. Some groups mention no influence of SPIO labeling on

chondrogenic differentiation of BMSCs [10,11], whereas others do

report a negative effect [12,13]. These conflicting data could be

due to the wide variety in protocols for SPIO labeling and

chondrogenic differentiation used. Furthermore, the influence of

cellular iron load on chondrogenic differentiation has been

described [13,14]. As reported in this paper we found no SPIO-

related negative effects in our chondrogenic assays with freshly

isolated cells. However, we have observed inhibitory effects if we

used cryopreserved cells in pellets containing $50% labeled cells,

although pellets with 10% labeled cells appeared unaltered (Fig.

Figure 4. SPIO re-uptake by human synovial explants. Fluorescent images and Perl’s iron stain of GFP-SPIO co-labeled chondrocytes seeded
on synovial explants. GFP+-SPIO+ cells, indicating originally seeded chondrocytes, were seen in samples seeded with living cells (A,B). In samples
seeded with dead cells, GFP̄-SPIO+ cells were found, indicating SPIO re-uptake by synovial cells (C,D). Furthermore, extracellular SPIO aggregates were
observed attached to the synovial explants (D, inset). Approximately 90% of SPIO+ cells in samples seeded with dead chondrocytes were not
originally labeled cells, compared with 25% of SPIO+ cells in samples seeded with living cells (E). Arrows indicate SPIO containing cells. Results shown
for triplicate samples from two synovium donors.
doi:10.1371/journal.pone.0017001.g004
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S3A–D). Therefore we recommend further investigation regarding

this subject when using cryopreserved hBMSCs.

Besides cell proliferation and differentiation, other hBMSC

capacities are relevant in regenerative medicine as well. Recently,

secretion of trophic factors was postulated as a possible role for

hBMSCs in cartilage regeneration [8]. We demonstrated that the

hBMSC secretion profile of six important factors involved in

inflammation and cell growth was not affected by SPIO. Previous

research has shown that SPIO labeling does not impair hBMSC

immunomodulatory capacities in a mixed lymphocyte reaction

[15]. Furthermore, it has been described that gene expression of

neural stem cells, with the exception of iron homeostasis related

genes, remains largely unaltered after SPIO labeling [16]. We

report, to our knowledge, for the first time the influence of SPIO

labeling on cell secretions at a protein level. These findings could

be relevant for other regenerative medicine fields using hBMSCs,

like cardiology, neurology and organ transplantation [17]. In

summary we found no deleterious effects of our labeling procedure

on cell functionality. When labeling only part of the applied cells,

which in our experiments sufficed for accurate intra-articular MRI

traceability, the risk of possible negative effects will even be further

diminished.

In order to translate our labeling method to a cell tracking

approach in an intra-articular environment, we investigated the

MRI traceability of clinically used amounts of SPIO-labeled cells

in a joint model of a clinically relevant size. Jing et al. previously

visualized cells labeled with SPIO in rabbit knee joints by MRI

[18]. Through the use of a clinical phased-array head coil and

specific MRI parameters we were able to increase MRI resolution

(in plane resolution 2736273 mm), which is higher than in other

studies performing intra-articular cell tracking or general clinical

anatomical intra-articular imaging by MRI [19,20]. This enabled

dose-dependent visualization of labeled cells and discrimination

from intra-articular structures like cruciate ligaments, cartilage and

subchondral bone. Following our in vitro cell implantation

experiments, we visualized SPIO-labeled cells implanted in an

Figure 5. Quantification of SPIO-labeled cells implanted in cartilage defects in vitro. Transverse R2* maps from identical osteochondral
plugs as shown in figure 3, visualize the differences in labeled cell concentrations (A–E; in-plane resolution 1566156 mm, slice thickness 700 mm). A
linear relationship between labeled cell concentration and R2* value was found in a range of 0.46106–2.66106 cells/ml (F). Grey voxels inside the
defects represent positions where R2* values could not be obtained due to a too low (mainly in A,B) or too high (mainly in E) local concentration of
SPIO. Results shown for duplicate samples from two hBMSC donor for samples containing 0; 1.36105; 4.06105 and 1.36106 cells/ml. Samples
containing 4.06104; 8.06105 and 2.66106 cells per ml were scanned in duplicates for one hBMSC donor.
doi:10.1371/journal.pone.0017001.g005
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ACI-like procedure in an intact porcine knee. Air artifacts show up

as hypointensities on MRI, which interferes with the signal loss

generated by labeled cells. To avoid these artifacts, we were

obliged to perform this operation under water. This is impracti-

cable in a clinical setting indicating that immediately post-

operative this technique can be used to visualize cells that

remained in the defect, but that the technique is unsuitable to

discern labeled cells that might have leaked in the intra-articular

space. These leaked-out cells could be identified after intra-

articular air has resolved, which in our personal clinical experience

occurs within a day.

SPIO for cell-labeling has great clinical potential, but

unfortunately the label will dilute upon cell division. This could

limit the duration that cells can be accurately detected by MRI.

Previous results from our group and others show an approxi-

mate 75% decrease in SPIO positive cells after 7 days of

expansion in culture [21] and a total loss of iron after 5–8 cell

divisions in rapidly dividing HeLa cells [22]. On the other hand,

duration of traceability increases with slower proliferating cells,

and SPIO could be detected after 44 days in non-dividing

human MSCs [22]. Accordingly, our group previously reported

traceability in vivo of SPIO labeled human MSCs in a

subcutaneous mouse model for at least seven weeks post labeling

[10]. In additional experiments we found a marked decrease in

SPIO-generated signal voids from proliferating labeled hBMSCs

over a period of 14 days in vitro, representing 5–6 cell divisions

(data not shown). How long SPIO labeled cells can be detected

in an intra-articular environment remains to be studied in an in

vivo model.

Another point regarding accurate detection of labeled cells is the

fact that cell death will not result in the disappearance of the label.

SPIOs released from these cells could lead to misinterpretation of

MR images. Pawelczyk et al. have previously shown approxi-

mately 10–20% of local macrophages to become SPIO positive

after injection of SPIO-labeled BMSCs in a subcutaneous

inflammation mouse model [15]. Synovium contains the majority

of macrophages present in synovial joints. We observed the vast

majority of SPIO+ cells to be non-originally labeled after applying

dead, labeled cells on synovial explants. In the case of cell

implantation in a cartilage defect, SPIO re-uptake by host cells

might be of less consequence because there is no direct contact

between the cells seeded in the defect and the synovial membrane.

Nonetheless, before clinical application we recommend in vivo

animal studies using intra-articular cell tracking by MRI in

combination with histological confirmation of the localization of

originally labeled cells. This would enable the correct interpreta-

tion of obtained MR images.

Besides visualizing cells, we were able to quantify beforehand

known cell concentrations implanted in cartilage defects in a

clinically relevant cell-concentration range. To our knowledge, this

has not been reported before in a model comprising biological

tissue. Rad et al. were unsuccessful in translating their SPIO-

labeled cell quantification experiments to an ex vivo setting [23],

and Politi et al. did not validate their ex vivo quantification results

afterwards [24]. Since the original concentration of applied cells is

known in an ACI procedure, and seeded in a confined volume, it is

possible to quantify the total amount of labeled cells and follow

them in the same patient in subsequent MRI sessions. Since both

hBMSCs and chondrocytes can be labeled using SPIO [25,26],

these findings indicate the potential of SPIO labeling for tracking

cells in numerous orthopedic treatments and many other

regenerative medicine fields [27]. Cell visualization and especially

quantification using MRI can be a major step towards improve-

ment in all these applications.

In summary, we consider SPIO labeling to hold great potential

for clinically translatable cell tracking using MRI in cell-based

cartilage repair. In an experimental setting this would show the

distribution and diffusion of the applied cells, thereby elucidating

the regenerative mechanisms and providing opportunities to

improve current repair strategies. The use of MRI has the

advantage of simultaneous cell tracking and evaluation of cartilage

regeneration in one MRI session.

Materials and Methods

Ethics Statement
All human samples were obtained after approval by the

Erasmus MC medical ethical committee. hBMSCs were isolated

from heparinized femoral-shaft marrow aspirate of patients

undergoing total hip arthroplasty (after written informed consent;

protocol # MEC-2004-142). Articular cartilage and synovial

explants were obtained as redundant material from patients

undergoing total knee replacement surgery. All patients implicitly

consented to the use of these tissues for scientific research (protocol

# MEC-2004-322).

Cell isolations and cultures
hBMSCs and human chondrocytes were isolated and cultured

using previously described procedures [28,29]. All isolated cells or

explants were cultured in DMEM containing 10% FCS, 50 mg/ml

gentamicin and 1.5 mg/ml fungizone (defined as standard

medium) unless stated otherwise. hBMSCs were cultured using

additional 1 ng/ml FGF2 and 161024 M vitamin C. All hBMSCs

and chondrocytes were used at passage 2–5 in labeling

experiments.

SPIO labeling
SPIO labeling was performed using ferumoxides (EndoremH,

Guerbet S.A., Paris, France) complexed to protamine sulfate (LEO

Pharma N.V., Wilrijk, Belgium) as described earlier [25]. For

removal of extracellular iron, cells were washed with PBS

containing heparin 10 U/ml (LEO Pharma B.V., Breda, the

Netherlands). SPIO labeling mix was made at a constant

concentration of 100 mg/ml ferumoxides with 5 mg/ml protamine

to ensure identical particle formation [30]. Cells were labeled with

doses ranging from 2.5–25 mg/cm2 of ferumoxides.

Labeling efficiency, chondrogenic differentiation and
functional assays

Histological iron detection was performed using a Perl’s iron

stain (Klinipath BVBA, Duiven, the Netherlands) according to the

manufacturer’s protocol. Labeling efficiency was determined in

triplicate samples for three donors by manually counting labeled

cells stained with Perl’s iron [25]. Total iron load was measured in

triplicate samples from three donors by inductively coupled plasma

- optical emission spectroscopy [25]. Cell viability was evaluated

by trypan blue exclusion. After labeling, cells were seeded in 96-

well plates at a density of 10,000 cells per well. AlamarBlueH
(Invitrogen, Breda, the Netherlands) was used according to

manufacturer’s protocol for longitudinal measurement of meta-

bolic cell activity at day 0, 3 and 7.

Chondrogenic differentiation was performed in triplicate samples

on hBMSCs pellets from two donors according to previously

reported protocols [31]. Chondrogenically differentiated hBMSCs

were stained using a collagen II monoclonal antibody (II-II6B3;

Developmental Studies Hybridoma Bank, Iowa City, IA) and

thionine stain [31,32]. hBMSCs used for gene expression analysis

and glycosaminoglycan (GAG) measurements were chondrogeni-

Cell Quantification by MRI in Cartilage Repair

PLoS ONE | www.plosone.org 7 February 2011 | Volume 6 | Issue 2 | e17001



cally differentiated in alginate beads [33] using an otherwise

identical differentiation protocol. RNA extraction, cDNA synthesis,

real-time RT-PCR and collagen II primers for gene expression

analysis were described earlier [34]. GAG measurements were

performed using a dimethylmethylene blue (DMB) assay [35].

To investigate the influence of SPIO labeling on cytokines

secreted by hBMSCs, labeled and unlabeled cells from five donors

were cultured for 24 hours in serumfree standard medium

supplemented with ITS+1 (serum replacement; BD Bioscience,

Bedford, MA) in a 1:100 v/v ratio. Secretion of tumor necrosis

factor-alpha (TNF-a), interferon-gamma (IFN-c), interleukin (IL)-

6, IL-10, vascular endothelial growth factor (VEGF) and fibroblast

growth factor 2 (FGF2) were analyzed in duplicate samples using a

human Cytokine Bead Array flexsets (BD Bioscience, Breda, the

Netherlands) according to the manufacturer’s protocol. Flow

cytometric measurements were performed on a FACSCanto II

(BD, San Jose, CA, USA) and analyzed using FACSDiva software

version 6.1.2 (BD Biosciences).

Intra-articular cell injections and cell implantations
Due to the ex vivo nature of our MRI experiments, all cells were

fixed in 4% formalin prior to injection or implantation. SPIO-

labeled hBMSCs were injected ex vivo into porcine knees (Yorkshire

6 Landrace, 35 kilograms, age 4–5 months) in a dose range of

0.16106 to 56106 labeled cells (injected in 100 ml physiological

saline). For cell implantation, osteochondral plugs with a diameter

of 8 mm were harvested from porcine femoral condyles ex vivo.

Circular full-cartilage defects of 6 mm diameter (approximate

volume of 75 ml) were created in those plugs. Cells from two

donors were suspended in 1% Agar (Fluka BioChemika, Sigma-

Aldrich, Buchs, Switzerland) in saline before implantation. A total

of 16106 cells were seeded per defect in vitro (cell concentration of

136106 cells/ml), containing 0.3 – 100% labelled cells (i.e.

0.046106–136106 labeled cells/ml). Cell implantation was also

performed ex vivo in an intact porcine knee according to previously

described autologous chondrocyte implantation (ACI) procedures

[2]. The knee joint was opened and a circular cartilage defect was

created (diameter 6 mm; volume 75 ml). A periosteal flap was

sutured on top of the defect using PDS 6-0 sutures (Johnson &

Johnson, New Brunswick, New Jersey) and fibrin glue (TissucolH
Duo 500, Baxter, Uden, the Netherlands) was applied at 90% of

the edges of the flap as a sealant. 16106 SPIO-labeled cells

suspended in 1% Agar, were seeded into the defect and fibrin glue

was used to seal the final 10% of the periostal flap margin. The

joint was closed in layers afterwards. All surgical procedures -

except the cell seeding and fibrin glue application - were

performed under water in order to prevent air artifacts on MRI.

Validation SPIO-generated signal
To validate if SPIO-generated signal was related to originally

labeled cells, or that SPIO particles were taken up by host cells,

human green fluorescent protein (GFP) transfected chondrocytes

were co-labeled with SPIO. Cells were lentivirally transduced and

constitutively expressed GFP under the control of a CMV

promoter (SHC003 vector, Sigma-Aldrich MissionH, shRNA

library). To investigate the fate of SPIO after cell death, we

considered the cell type used for labeling less relevant and chose

chondrocytes over hBMSCs due to their substantially higher

transduction efficiency. 256104 GFP+-SPIO+ cells were seeded in

duplicates on synovial explants from two human donors. Cells

were alive or killed (by repeated free-thaw cycles) before seeding.

Cells and synovial explants were co-cultured for five days.

Fluorescent images were made from frozen sections using an

Axiovert s100 microscope (Carl Zeiss B.V., Sliedrecht, the

Netherlands). Subsequently, samples were stained using Perl’s

iron stain and corresponding fields of view were evaluated by light

microscopy. GFP and SPIO containing cells were determined by

manually counting a minimum of 100 cells per sample.

Magnetic Resonance Imaging
Scanning was performed on a clinical 3.0T MRI scanner

(General Electric Healthcare, Milwaukee, Wisconsin). A 3D SPGR

sequence was used to scan labeled hBMSCs in vitro (TR 87.7 ms, TE

15.1 ms, FOV 17 mm, matrix 5126512, scanning time 11 min.

35 sec.) in combination with a custom made receive-only surface

coil with a diameter of 1 cm. Scanning of injected or implanted

hBMSCs in intact porcine knees was performed using a FIESTA-

3D sequence (TR 7.9 ms, TE 2.2 ms, FOV 140 mm, matrix

5126256, scanning time 28 min. 46 sec.) and a clinical phased-

array head coil. Images of hBMSCs implanted in defects in vitro were

obtained by a Spin Echo sequence (TR 1500 ms, TE 40 ms, FOV

40 mm, matrix 5126512, scanning time 14 min. 42 sec.) and a

custom made receive-only surface coil with a diameter of 3 cm.

R2*-mapping was performed in duplicate samples for two hBMSC

donors by a SPGR sequence (TR 45 ms, TE 4–120 ms, FOV

40 mm, matrix 2566256, scanning time 21 min. 21 sec.). R2*

values were calculated and validated by mono-exponential curve

fitting (MATLAB 7.0.1, MathWorks, MA). Voxels with an r2,0.95

were excluded from the measurements.

Statistical analysis
Statistical differences between different treatment groups were

analysed by the paired Student t-test (normality test p.0.05). P-

values of #0.05 were considered statistically significant. All

numerical data are presented as mean 6 standard deviation.

Supporting Information

Figure S1 In vitro and ex vivo cell implantation
procedures. Osteochondral plugs with a diameter of 8 mm

were created from the femoral part of porcine knees (A). Ex vivo,

post-MRI Perl’s iron stain shows macroscopically the presence of

blue, iron containing cells in the defect (B). Dotted line in (A)

represents created defect. Intra-articular cell implantation in a

porcine knee was performed for one donor.

(TIF)

Figure S2 Cell seeding on synovial explants. Fluorescent

images directly after seeding GFP+-SPIO+ cells on synovial

explants showing abundant GFP signal in samples seeded with

living cells (A), while GFP signal is absent in samples seeded with

dead cells (B). This confirmed that the vast majority of killed cells

had not survived the multiple freeze-thaw procedures. Represen-

tative images are shown for triplicate samples from two synovium

donors.

(TIF)

Figure S3 Chondrogenic differentiation of cryopre-
served SPIO-labeled hBMSCs. Perl’s iron stain (A–D) and

collagen II immunohistochemistry (A–C) of chondrogenically

differentiated cryopreserved hBMSCs. SPIO labeling of 10% of

the cells did not influence pellet size or collagen II deposition

compared to control cells (A and B). Using 50% of SPIO-labeled

cells did negatively influence these outcome measures (C). Pellets

consisting of 100% of labeled cells disintegrated within 7 days,

showing viable and iron containing cells on a cytospin (D). Results

shown for triplicate samples from two hBMSC donors.

(TIF)
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