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Abstract

In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as
somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is
experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that
Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been
proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial
differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explictly considered.
By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation
rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two
touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and
three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for
oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental
data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level
of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and
size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging
technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into
somitogenesis and other biological processes.
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Introduction

In the vertebrate embryo, tissue blocks called somites are laid

down in head-to-tail succession [1]. This process is known as

somitogenesis. The somites are laid down in pairs with one somite

to either side of the central body axis. The number of somite pairs

that are formed varies from species to species: zebrafish, chickens,

mice, and corn snakes form 31, 53, 65, and 315 pairs respectively

[2,3]. Somites give rise to the musculo-skeletal segments of the

neck, trunk, and tail [4]. Understanding the formation of somites is

a highly active area of research [2–8].

Somites derive from cells in the presomitic mesoderm (PSM) at

the tail end of the embryo (figure 1). Various experiments have

revealed that cells in the PSM oscillate in their expression of

certain genes that belong to the Notch signalling pathway [9–12].

These oscillations appear to be synchronised in neighbouring cells

and, in zebrafish at least, this appears to be due to Notch signalling

[1,6,13,14]. The oscillations in a particular PSM cell slow down as

the tail bud of the embryo grows away from it caudally. This is

believed to be related to a morphogen gradient. Wnt and

fibroblast growth factor (FGF) signalling molecules are produced

at the tail end of the PSM. The further from this signalling source,

the weaker the signal strength, and the slower the oscillations in

PSM cells [2,4,15,16]. At the point where the level of Wnt and

FGF falls below some critical value, oscillations stop altogether and

the cells form pairs of somites which bud off sequentially from the

anterior PSM to form the somitic mesoderm (figure 1). Each

somite has an antero-posterior polarity. The anterior portion of a

somite expresses a different set of genes to the posterior portion

[17]. The genes expressed in a somite depend upon the stage at

which the PSM oscillations in gene expression were arrested [1].

Somitogenesis is often said to proceed by a ‘‘clock-and-

wavefront’’ mechanism [18–20]. Here the term ‘‘clock’’ refers to

the oscillatory gene expression in the PSM and the term

‘‘wavefront’’ refers to the moving interface between the PSM

and the determined somite tissue. In one complete clock cycle a

new pair of somites is formed, and this corresponds to the time

taken for one complete oscillation of gene expression in the

posterior PSM [1]. In that somites are segmented tissue blocks which

form or are determined when they encounter the wavefront, the

somitogenesis clock is frequently referred to as the segmentation

clock and the wavefront as the determination wavefront.
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Mathematical models of biological processes can yield insight

that would be difficult to obtain by other means. Models of

somitogenesis have been appearing for over 30 years, evolving in

parallel with advances in experimental procedures and discoveries

(see [21] and references therein). Mathematical models provide a

theoretical framework for explaining observed phenomena and

their predictions can guide experimentalists in devising new

experiments. Indeed, the clock-and-wavefront mechanism for

somitogenesis was originally proposed as a mathematical model

and was based on minimal biochemical evidence [22]. It was only

later that experimental evidence began to mount in its favour,

allowing the finer details of the proposed mechanism to be

updated [1,6,8,23,24]. Examples of mathematical models of

somitogenesis include pattern formation models based on

reaction-diffusion assumptions [25–30] or various other mecha-

nisms [31–35] and cell-based models employing systems of

ordinary differential equations (ODEs) [36–40] or delay differen-

tial equations (DDEs) [1,6,21,41–45]. Many of these cell-based

models attempt to capture the oscillations in gene expression in

individual PSM cells, in some instances by artificial mathematical

constructions. For example, in an ODE model for the self-

repressing transcription factor Hes1 in mice, an unknown protein

was introduced to encourage the system to oscillate [36]. However,

by including delays for transcription and translation, it is possible

to obtain oscillatory dynamics in simple models of self-repressing

transcription factors without invoking the existence of unknown

proteins [1,6,45].

Despite the growing number of mathematical models of

somitogenesis, there seems to be a notable absence of a particular

kind of model in the literature to date. Specifically, there are, to

our knowledge, no models of somitogenesis that explicitly consider

the movement of protein and mRNA molecules within a cell. Yet

it is precisely the movement of molecules, and the molecular

interactions thereby caused, that determine the dynamics within a

cell. Indeed the importance of molecular movements in intracel-

lular processes has been recognised in various studies not directly

related to somitogenesis. For example, the process of diffusion, in

which molecules move passively from a region of high concentra-

tion to low concentration, has been studied in the context of

generic negative feedback loops [46–48]. The other main

mechanism of intracellular molecular movement is active

transport, in which molecules move along cytoskeletal elements,

typically from where concentration is low to where it is high, a

process requiring energy and mediated by motor proteins such as

kinesins or dyneins [49,50]. The impact of active transport on the

spatial distribution of intracellular molecules has so far been little

explored [51,52]. Given that chemical reaction systems, including

transcriptional control systems, are subject to stochastic fluctua-

tions, which become particularly significant when the numbers of

molecules of the interacting species are small, there has been a

growing tendency to incorporate stochastic effects into models of

intracellular processes [1,53–57].

In view of the observations in the last paragraph, we adopt, as

our purpose in this paper, the derivation and exploration of a

mathematical model of the segmentation clock in which the

nuclear and cytoplasmic diffusion of molecules is considered

explicitly. Our model will focus on neighbouring cells in the

zebrafish PSM. We will observe that self-repressing proteins within

each cell can oscillate in their concentrations and that the

oscillations in neighbouring cells can be synchronised by the

positive feedback regulation of Notch signalling. We will

demonstrate that these observations hold across a range of values

for our model parameters, including diffusion coefficients, and for

a variety of cell and nuclear shapes and sizes. For simplicity, we

will not incorporate active transport or stochasticity into our model

but this will be done in future work.

The format of this paper is as follows. In section 2.1, we describe

a biological mechanism that has been proposed for the

segmentation clock in zebrafish PSM cells. This mechanism

involves a core oscillator component in each cell as well as a

signalling component between neighbouring cells. In section 2.2

we translate the core oscillator component into a spatial

mathematical model. We simulate this model in section 2.2.1,

finding ranges of parameter values that yield oscillatory dynamics.

We also present spatial profiles of protein and mRNA, discuss the

interaction of the species in our model, and observe that

oscillations are robust to variety in cell and nuclear shape and

size. In section 2.3 we extend our core oscillator model to include

Notch signalling between two neighbouring cells. We simulate this

signalling model in section 2.3.1, finding parameter values that

Figure 1. Top view micrograph of formed and forming somites in a zebrafish embryo. The embryo is at 10-somite stage, stained by in situ
hybridization for deltaC mRNA. The deltaC gene exhibits oscillatory expression in the presomitic mesoderm (PSM). The oscillations are quickest in cells
at the tail end (posterior) PSM. Cells in the posterior PSM enter the anterior PSM and then the somitic mesoderm (the region of formed somites) as
the tail end of the embryo grows away from them. As the tail end grows it releases a Wnt and FGF signal. This gives rise to a morphogen gradient,
which causes the oscillations to slow down in cells the further they are from the tail end. Cells cease oscillating altogether and form somites as they
exit the anterior PSM. The spatio-temporal expression pattern of the her1 and her7 genes is very similar to the expression pattern for deltaC.
Reproduced from figure 1a in [5] under the Creative Commons Attribution License.
doi:10.1371/journal.pone.0016980.g001
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enable the oscillations in each cell to synchronise. Further spatial

profiles are presented and discussed, and further observations are

made on the robustness of our results to variety in cell geometries.

Ranges of parameter values that yield synchronised oscillations are

given in section 2.3.2. We draw conclusions and consider ways to

extend our work in the Discussion.

Results

2.1 The segmentation clock in zebrafish
Somitogenesis is not completely understood in any species but it

would appear to be more clearly understood in zebrafish rather

than, for example, chicks and mice. Consequently a significant

proportion of papers on the mathematical modelling of somito-

genesis have focused on zebrafish to date. In keeping with this

pattern, we shall restrict our own attention to zebrafish, and in

particular to the segmentation clock in the presomitic mesoderm

(PSM) of zebrafish. In future work, we will expand this perspective

by considering the determination wavefront in zebrafish and by

considering somitogenesis in other species.

Experimental evidence enabled Lewis to propose a simple

control mechanism for the segmentation clock in zebrafish [1].

Correct somite formation is dependent on oscillatory gene

expression in individual PSM cells but oscillations between

adjacent cells must seemingly also be synchronised. Oscillations

within a cell can be controlled by genes subject to a negative

feedback loop, where the gene products inhibit transcription by

binding to their promoters, whilst Notch signalling between

adjacent cells can synchronise oscillations in these cells. The

activity of genes that are not part of this control mechanism can be

regulated if, for example, they are downstream of the Notch

signalling pathway.

The specifics of the proposed mechanism of Lewis are as

follows. Two proteins, Her1 and Her7, combinatorially inhibit

their own genes as well as the expression of the deltaC gene.

Meanwhile, the DeltaC protein is exported to the cell membrane

where it binds to the Notch receptor on a neighbouring cell. The

Notch-DeltaC complex is then cleaved in two separate locations.

An intracellular fragment of Notch (called Notch intracellular

domain or NICD) in the neighbouring cell breaks off and

translocates to the nucleus where it positively regulates the

expression of the her1 and her7 genes.

By taking into account time delays for transcription and

translation, Lewis created a delay differential equation (DDE)

model for his proposed mechanism [1]. By exploring this model

numerically and analytically, he found that the negative feedback

of the inhibitory behaviour of Her1 and Her7 results in oscillatory

expression of her1, her7, and deltaC within a cell, whilst the positive

feedback of Notch-DeltaC signalling synchronises the oscillations

in neighbouring cells. Subsequent experimental work by Lewis and

co-workers has provided corroborative evidence for the proposed

mechanism and has allowed it to be refined [4,6].

We shall adopt the proposed mechanism of Lewis in this paper.

However, our investigation of the mechanism will be new, for as

we mentioned in the Introduction, we shall consider the explicit

diffusion of molecules within cells. Unlike Lewis, we shall also

model Notch and NICD explicitly.

2.2 The core oscillator
Let us begin by considering a mathematical model for the core

oscillator, that is, for the oscillatory dynamics within an individual

PSM cell. A cell circuitry schematic is given in figure 2. This

schematic is consistent with the mechanism of Lewis, as decribed

in the previous section (but see also figure 1B in [1] and figure 1B

in [5]). There are, additionally, some spatial assumptions. Proteins

are translated from mRNA by ribosomes in the cytoplasm. This

process is likely to occur at least some minimal distance from the

nucleus, so we assume that Her1, Her7, and DeltaC are translated

some minimal distance A from the nucleus. Since Her1 and Her7

proteins function as transcription factors, we assume that they can

diffuse in both the cytoplasm and the nucleus. By contrast, DeltaC

is synthesised for export to the cell membrane, so it is unlikely to

diffuse into the nucleus. Hence we assume that DeltaC is absent

from the nucleus. Finally, unlike the DDE model of Lewis [1,6],

we will not include time delays for transport, transcription, and

translation in our model. The duration of these processes will be

accounted for in our diffusion, transcription, and translation rates.

It is worth commenting on our assumption, made for simplicity,

that molecular movements are modelled only by diffusion. After all,

as noted in the Introduction, proteins can also be actively

transported from one region in a cell to another. For example,

DeltaC proteins are transported to the Golgi body after being

synthesised before moving to the cell membrane. Our model

assumptions are sufficient to qualitatively capture this behaviour. By

assuming that DeltaC proteins cannot enter the nucleus but can

only diffuse in the cytoplasm, we ensure that they will move from

where their concentration is high (near the nucleus, where they are

created) to where their concentration is low (the cell membrane).

Similarly our assumptions are sufficient to capture the behaviour of

Her1 and Her7 proteins; by assuming that Her1 and Her7 can

diffuse in the whole cell and can enter the nucleus, we ensure that at

least some of them will enter the nucleus. Active transport of DeltaC

to the cell membrane, and of Her1 and Her7 from the cytoplasm

into the nucleus, will be considered in future work.

The cell schematic in figure 2 is split into two compartments,

the cytoplasm and the nucleus. The equations for our model are

different in the different compartments. Our model will consist of a

system of partial differential equations (PDEs) with two indepen-

dent space variables, x and y. Let pher1(x,y,t)½ � and mher1(x,y,t)½ �
denote, respectively, the concentrations at time t of the Her1

protein and her1 mRNA at the point (x,y) in the cell. For ease of

notation, denote pher1(x,y,t)½ � as pher1½ � and mher1(x,y,t)½ � as

mher1½ �.
In the cytoplasm, suppose that Her1 diffuses with diffusion

coefficient Dpher1 and that it degrades with per molecule

degradation rate bpher1. Suppose also that the translation rate

per her1 mRNA molecule is aher1. To model our assumption above

that Her1, Her7, and DeltaC are synthesised at least some

minimal distance A from the nucleus, we define hr as follows: if r is

the distance of a point (x,y) in the cytoplasm from the nucleus,

then hr~0 when rvA and hr~1 otherwise. By our assumptions

we find that pher1½ � and mher1½ � satisfy the following PDE in the

cytoplasm:

L pher1½ �
Lt

~Dpher1+2 pher1½ �zhraher1 mher1½ �{bpher1 pher1½ �: ð1Þ

Now suppose in the cytoplasm that her1 mRNA diffuses with

diffusion coefficient Dmher1 and that it degrades with per molecule

degradation rate bmher1. Then mher1½ � satisfies the following PDE

in the cytoplasm:

L mher1½ �
Lt

~Dmher1+2 mher1½ �{cher1 mher1½ �: ð2Þ

By replacing ‘‘her1’’ by ‘‘her7’’ (respectively, by ‘‘deltaC’’) in (1)

and (2), we obtain PDEs for the Her7 protein and her7 mRNA

A Spatio-Temporal Model of Notch Signalling
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(respectively, for the DeltaC protein and deltaC mRNA) in the

cytoplasm.

In the nucleus, we suppose that the Her1 and Her7 proteins are

governed by the same PDEs as in the cytoplasm, with the omission

of their terms for translation (translation does not occur in the

nucleus). We also assume (as mentioned above) that the DeltaC

protein is absent from the nucleus since it is created for export to

the cell membrane. We assume that the PDE governing her1

mRNA ( mher1½ �) in the nucleus is the same as in the cytoplasm

(equation (2)), with the addition of a transcription term in the right

hand side of (2) that incorporates combinatorial inhibition due to

the Her1 and Her7 proteins. This transcription term is:

kher1

1z
pher1½ �
p0her

� �n
pher7½ �
p0her

� �n , ð3Þ

where kher1 is the basal transcription rate of her1 mRNA or the

transcription rate in the absence of inhibition from the Her1 and

Her7 proteins, p0her is the concentration of Her1 and Her7 that

reduces the transcription rate to half its basal value kher1, and n is a

Hill coefficient that determines the strength of the inhibition. A

larger Hill coefficient implies greater nonlinearity, or co-

operativity, in the interaction between the inhibitory protein and

the promoter for the gene being inhibited [45]. The transcription

rates for her7 mRNA and deltaC mRNA are also assumed to obey

(3), except that the basal transcription rate for her1 mRNA (namely

kher1) is replaced respectively by basal transcription rates for her7

and deltaC mRNA (namely kher7 and kdeltaC). We suppose in the

nucleus that her7 mRNA and deltaC mRNA satisfy the same PDEs

as they do in the cytoplasm but with the addition of their

respective transcription terms in their right hand sides.

Notice that we have assumed that her1, her7, and deltaC mRNAs

can be produced at any point in the nucleus. We make this

assumption for simplicity because, in fact, zebrafish have only two

genes each for her1, her7, and deltaC, so that transcription of each of

these mRNAs will only take place at two sites within the nucleus. It

is not unusual to make simplifying assumptions of this type; for

example, a number of studies have treated the nucleus as a well-

mixed compartment [46–48]. However, we will, in future work,

extend our model to incorporate transcription at specific sites in

the nucleus.

The full PDE system for our core oscillator model is stated

explicitly in the Supporting Information (Text S1) available online

with this article. In order to have a well-defined model, we require

initial conditions and boundary conditions. As in the DDE model

of Lewis [1,6], we choose zero initial conditions, that is, we choose

all initial mRNA and protein concentrations in both the nucleus

and cytoplasm to be zero. In terms of boundary conditions, we

choose zero flux at the cell membrane, ensuring that no molecules

Figure 2. Cell circuitry schematic for the zebrafish segmentation clock core oscillator mechanism. In the nucleus, the her1, her7, and
deltaC genes are transcribed to produce her1, her7, and deltaC mRNA respectively. These mRNAs diffuse into the cytoplasm where they are translated
to produce Her1, Her7, and DeltaC proteins. The Her1 and Her7 proteins then diffuse into the nucleus and combinatorially inhibit the transcription of
the her1, her7, and deltaC mRNAs. The DeltaC protein diffuses to the cell membrane and does not enter the nucleus. Zebrafish PSM cells vary in shape.
For simplicity we chose a square cell for this schematic.
doi:10.1371/journal.pone.0016980.g002
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are exported across it. At the nuclear membrane we choose zero

flux for the DeltaC protein to prevent it from entering the nucleus.

For all other variables, we choose continuity of flux at the nuclear

membrane, allowing import into and export out of the nucleus.

The boundary conditions are stated more explicitly in the

Supporting Information (Text S1).

2.2.1 Core oscillator simulations. Our core oscillator

model can be solved numerically by the finite element method

as implemented by the computer package COMSOL (see the

section on Experimental Procedures below).

Estimating the model parameters would seem to be a

prerequisite for performing simulations. However, our model is

new and not all of the parameters have been measured

experimentally. For example, the diffusion coefficients have not

been measured. Fortunately we can overcome the difficulty of

parameter estimation by a process called non-dimensionalisation

[58]. This process first involves rescaling the variables in our

model by positive constants called reference values. For example,

time t can be rescaled by dividing it by a reference time t, and the

spatial variables, x and y, can be rescaled by division by a

reference length L. The rescaled variables have no units associated

with them. Trivial calculations allow us to rewrite our model in

terms of the rescaled variables and in terms of parameters that

have no unit or dimension associated with them. This rewritten

model is said to be non-dimensionalised; the non-dimensionalised

model is qualitatively identical to the original dimensional model.

Next we can choose parameter values such that the non-

dimensionalised model, solved on a cell in which distance is

defined in terms of the non-dimensionalised spatial variables,

yields dynamics in qualitative agreement with the oscillatory

dynamics in an individual zebrafish PSM cell. We can then choose

the reference length L to be such that our simulated cell has the

size of a zebrafish PSM cell when distance is written in terms of the

dimensional spatial variables. We can also choose the reference

time t to be such that the period of oscillations in our simulations is

equal to the experimentally observed oscillatory period of 30

minutes at 28uC [1] when written in terms of the dimensional time

variable. (Notice that the period is known to depend on the

temperature at which the zebrafish embryos develop - a warmer

temperature results in a shorter period [59].)

Using our reference length and time, as well as our parameter

values for the non-dimensionalised model and biological mea-

surements that are available, we can calculate the remaining

reference values and values for the parameters in the dimensional

model. Then we will have found parameter values in the

dimensional model such that this model will yield oscillatory

dynamics with the experimentally observed period in a cell the size

of a zebrafish PSM cell.

We have non-dimensionalised our core oscillator model,

discovered non-dimensional parameters that yield sustained

oscillations, and calculated values for the dimensional parameters

in the Supporting Information. Parameter values that yield

sustained oscillations are the exception, not the rule.

Simulations for our non-dimensionalised core oscillator model,

performed on a hexagonal cell with a circular nucleus, are

demonstrated in figures 3, 4, and 5, and also in two Supporting

Information files (see ‘‘Animation S1’’ and ‘‘Animation S2’’).

Figure 3 demonstrates stable oscillations over time in the

concentrations of Her1 protein and her1 mRNA both in the

cytoplasm and the nucleus. Notice that the concentration of Her1

protein is higher in the cytoplasm than the nucleus. We will be

interested to see if this balance holds when we consider the active

transport of Her1 (and Her7) into the nucleus in future work.

As we noted in the Introduction, transcriptional control systems,

such as the zebrafish segmentation clock, are subject to stochastic

effects or noise arising from random fluctuations in the regulation

of gene expression [53,60]. The binding and dissociation of a gene

regulatory protein (such as Her1 or Her7) to and from its site on

DNA are stochastic processes, each described by a certain

probability of occurrence per unit time [1]. For large numbers

of proteins, these processes can be approximated by deterministic

mathematical models, such as those considered in this paper.

However, for small numbers of proteins, this approximation

becomes less accurate. To gain insight into the validity of our

approach, it is therefore sensible to calculate how many Her1 and

Her7 molecules are typically present in the nucleus in our

simulations. From the right plot of figure 3, we see that the average

concentration of Her1 protein in the nucleus is about 10{9M. But

as mentioned above, a zebrafish PSM cell has a nuclear diameter

of roughly 5mm, corresponding to a volume of roughly

6:5|10{14L if the nucleus is spherical. By a standard calculation,

we then find that the average number of Her1 protein molecules in

the nucleus is about 40. Similarly the average number of Her7

protein molecules in the nucleus is around 40. These numbers are

 

 

 

Figure 3. Core oscillator model simulation results showing sustained oscillations. Here we plot Her1 protein (red) and her1 mRNA (blue)
concentrations over time. The left plot shows concentrations in the cytoplasm and the right plot shows concentrations in the nucleus. The
concentrations are scaled by reference values. Thus, multiplying the Her1 protein concentration by 10{9M and the her1 mRNA concentration by
1:43|10{9M gives the true concentrations. All parameter values are stated in the Supporting Information. The other species in the core oscillator
model show qualitatively similar behaviour.
doi:10.1371/journal.pone.0016980.g003
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not low enough to invalidate our modelling approach. Yet they are

sufficiently low for us to consider incorporating stochastic effects

into our model in future work. Lewis has considered the role of

noise in his DDE model of the zebrafish segmentation clock [1].

Figures 4 and 5 show how the concentrations of her1 mRNA and

Her1 protein vary spatially throughout the cell over the fourth

period of the oscillations in figure 3 when the model has converged

to stable oscillatory behaviour. At the start of this period (t~90

Figure 4. Core oscillator model simulation results showing spatial distributions of her1 mRNA. The plots show her1 mRNA concentration
at six minute intervals over the fourth period of oscillations by which time transient behaviour has died down. The concentration is scaled by a
reference value (multiplying the concentration by 1:43|10{9M gives the true concentration). Parameter values are stated in the Supporting
Information.
doi:10.1371/journal.pone.0016980.g004

Figure 5. Core oscillator model simulation results showing spatial distributions of Her1 protein. The plots show Her1 protein
concentration at six minute intervals over the fourth period of oscillations by which time transient behaviour has died down. The concentration is
scaled by a reference value (multiplying the concentration by 10{9M gives the true concentration). Parameter values are stated in the Supporting
Information.
doi:10.1371/journal.pone.0016980.g005
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minutes), the concentration of her1 mRNA is low. However, the

concentrations of Her1 and Her7 proteins are also low, so that

her1 mRNA is little affected by negative feedback at this time.

Consequently, her1 mRNA levels rise, leading to increased

production of Her1 protein in the cytoplasm (t~96 minutes).

Similarly, Her7 protein levels rise in the cytoplasm. Her1 and

Her7 proteins then migrate into the nucleus and inhibit

transcription (t~102 minutes). With transcription inhibited,

mRNA synthesis is reduced, as a result of which there is less

mRNA to create protein, so protein levels fall (t~108 minutes). As

protein levels fall, protein inhibition of transcription lessens, so

transcription rates rise causing more mRNA to be made (t~120
minutes). This pattern now repeats. Our results for Her7 and

DeltaC proteins are similar to those for Her1 (except that DeltaC

is absent from the nucleus by assumption) and are hence omitted.

We performed simulations on a hexagonal cell because

zebrafish PSM cells are often this shape, though they can also

be approximately rectangular or rounded [61]. For our parameter

choices, the oscillatory dynamics that we have obtained are robust

to changes in the cell and nuclear shapes - oscillations can occur

for circular, elliptical, square, and hexagonal cell shapes, as well as

for circular and elliptical nuclei (see the Supporting Information).

Oscillations are also robust to changes in the size of the nucleus or

the cell. However, we have noticed that when the nuclear size is

decreased, then the average mRNA and protein concentrations

are also decreased. In any case our model predicts robustness of

oscillations to changes in the shape or size of the cell or nucleus.

This is a prediction that should be expected, given that our model

is based on experimental evidence that zebrafish PSM cells exhibit

oscillatory dynamics despite the fact that these cells must inevitably

vary a little in shape and size. Our observations on cell geometry

are only possible because of our explicitly spatial method of

modelling. Biological pattern formation would be impossible

without a certain robustness to cell shape.

The values that we have found for the dimensional parameters

are: all diffusion coefficients equal 0:0029mm2s{1, all degradation

rates equal 0:0032s{1, all translation rates equal 0:075s{1, all

basal transcription rates equal 1:53|10{10Ms{1, the concentra-

tion of Her1 and Her7 that reduces the transcription rate to half its

basal value is p0her~10{9M, the minimum distance of translation

from the nucleus is A~0:6mm, and the Hill coefficient n~3.

These dimensional values were found using the assumptions that a

zebrafish PSM cell has a length of roughly 12mm and a nucleus of

diameter 5mm, assumptions consistent with the literature and

recent experimental evidence [1,31,61,62]. To obtain our

dimensional parameter values, we used biological estimates in

[1,6] for rates such as transcription and translation. Given that the

different mRNA and protein species in the core oscillator all seem

to be controlled by the same negative feedback loop, it is not

necessarily inappropriate to suggest, for example, that they have

the same diffusion coefficient or the same degradation rate.

Moreover, Lewis simulated his DDE model by assuming that all

degradation rates were identical in [1] or almost identical in work

with Ozbudak in [6].

To our knowledge, diffusion coefficients for the species involved

in zebrafish somitogenesis are yet to be measured experimentally.

We therefore hope that our estimates inspire others to measure

these coefficients. Measurements of diffusion coefficients of

proteins within cytoplasm, nucleus, or within membranes suggest

that our estimates are of the right order of magnitude, particularly

given that our estimates (except for DeltaC protein) incorporate

diffusion through the nuclear membrane [63–65]. In future work,

we will model transport across the nuclear membrane explicitly by

taking the structure of the membrane into account.

Although Lewis uses a Hill coefficient of n~1 in his DDE model

[1,6], we were unable to find sustained oscillatory dynamics for

n~1. We have found sustained oscillatory dynamics for n~2 (with

different values for the other model parameters than those stated

above) but oscillations appear to be less robust to changes in the

parameters for n~2 than for n~3. A Hill coefficient of 3 implies

there is some co-operativity in the interaction between the

inhibitory protein and the promoter for the gene being inhibited

[45]. For simplicity we have investigated only integer Hill

coefficients. Discussion of the meaning and use of non-integer

Hill coefficients may be found in [66,67]. The interactions

governing somitogenesis in mice appear to be more complicated

than in zebrafish. Nevertheless it is of interest to note that the Hill

coefficient for the Hes1 oscillator in mouse somitogenesis has been

estimated by Zeiser et al to be about 3 [66].

For a given binding process between two species, there is an

association between the number of binding sites and the Hill

coefficient quantifying their interactions [39,41]. Hence studies of

the number of sites where Her proteins bind to their gene

promoters in zebrafish [68] are of potential interest in under-

standing the role of the Hill coefficient in our model. However, the

precise nature of the relationship between binding sites and Hill

coefficients remains a matter for discussion [69].

Finally we have explored ranges of parameter values for

which oscillations persist to 900 minutes when the cell is hexagonal

as in figures 4 and 5. By assuming that all the diffusion coefficients

are equal and holding all the other parameter values fixed,

we have found that sustained oscillations occur for diffusion

coefficients in the range 0:0019mm2s{1 to 0:0096mm2s{1, or

1:9|10{11cm2s{1 to 9:6|10{11cm2s{1. By assuming all the

degradation rates are equal and holding all the other parameter

values fixed as above, we have found that sustained oscillations

occur for degradation rates in the range 0:00066s{1 to 0:0039s{1.

Varying the Hill coefficient n but keeping the other parameters

fixed as above, we find sustained oscillations for n§3. We have

found ranges of values for the other model parameters such that

sustained oscillations occur; these ranges are given in table 1. See

section 2.3 in the Supporting Information file ‘‘Text S1’’ for more

details on our method of numerical exploration.

2.3 Notch signalling
In section 2.2 we discussed a model for the core oscillator

mechanism in an individual zebrafish PSM cell. In this section we

extend the core oscillator model to construct a model for two

neighbouring PSM cells which communicate by Notch signalling.

Although the role of Notch signalling in zebrafish somitogenesis is

not completely understood, a mechanism that fits experimental

observations has been proposed by Lewis to explain it [1,6]. We

outlined this mechanism in section 2.1. Figure 6 shows a cell

circuitry schematic consistent with the proposed mechanism. We

shall use figure 6 to construct our model for two neighbouring

PSM cells. Note that we shall attach the subscript i to dependent

variables in cell i (i~1,2) to show that these variables are

appropriate to that cell.

We begin our description of the signalling model by noting (as in

figure 6) that, inside each cell, the core oscillator mechanism holds

with the exception that the signalling upregulates the expression of

the her1 and her7 genes. Thus, the nuclear and cytoplasmic PDEs

of the core oscillator model hold in each cell except that the

transcriptional terms for the her1 and her7 mRNA PDEs in the

nucleus are adjusted.

To be more specific, the signalling causes Notch intracellular

domain (NICD) to be released into each cell, as explained in

figure 6. If we let NICD(x,y,t)½ �i~ NICD½ �i be the concentration
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of NICD at the point (x,y) in cell i (i~1,2) at time t, then the

transcriptional term for her1 mRNA in (3) becomes the following in

cell i:

kher1 1z
NICD½ �i

N0

� �m� �

1z
NICD½ �i

N0

� �m

z
pher1½ �i
p0her

� �n
pher7½ �i
p0her

� �n , ð4Þ

where N0 is a threshold concentration of NICD above which its

impact on transcription is stronger and where m is a Hill coefficient.

The new transcriptional term is an increasing function of NICD; the

more signalling, the more NICD will be released into each cell, and

the greater the upregulation of her1 expression. On the other hand,

there are physical limitations on how quickly transcription can

occur, which is reflected in the transcriptional term in (4) by

allowing it to saturate at the value kher1 as the NICD concentration

becomes suitably large. Ozbudak and Lewis consider a transcrip-

tional term as in (4) (with m~n~1) in a recent DDE model [6],

updated from a slightly different transcriptional term in an earlier

DDE model of Lewis [1]. Our transcriptional term for her7 mRNA

in the presence of signalling is identical to (4) except that the basal

transcription rate kher1 is replaced by kher7. We asume, as in [6],

that the transcriptional term for deltaC mRNA is unchanged in the

presence of signalling.

Table 1. Parameter ranges giving sustained oscillations in the core oscillator model.

Parameter Range giving sustained oscillations

Diffusion coefficients (all species) 0.0019 to 0:0096mm2s{1

Degradation rates (all species) 0.00066 to 0:0039s{1

Translation rates (of Her1, Her7, DeltaC proteins) §0:025s{1

Basal transcription rates (of her1, her7, deltaC mRNAs) §6:9|10{11Ms{1

Minimal distance A of translation from nucleus 0 to 1:4mm

Critical concentration p0her of Her1 and Her7 proteins 6|10{13 to 3:35|10{9M

Hill coefficient n §3

Ranges of parameter values in the core oscillator model that yield sustained oscillatory dynamics (simulating on a hexagonal cell up to 900 minutes). The ranges here
were calculated from table 1 in the Supporting Information file ‘‘Text S1’’, as explained in section 2.3 in that file.
doi:10.1371/journal.pone.0016980.t001

Figure 6. Cell circuitry schematic for Notch signalling between two neighbouring zebrafish PSM cells. Inside each cell, the core
oscillator mechanism described in figure 2 holds with the exception that Notch signalling positively regulates the expression of the her1 and her7
genes. The signalling mechanism is as follows. In the nucleus, notch mRNA is transcribed, which then diffuses into the cytoplasm and produces Notch
proteins by translation. These Notch molecules diffuse to the cell membrane where they function as receptors. DeltaC proteins from one cell bind to
Notch receptors in the neighbouring cell. Each Notch-DeltaC complex is cleaved in two separate locations, causing an intracellular fragment of Notch
(called Notch intracellular domain or NICD) to break off and translocate to the nucleus where it upregulates her1 and her7 gene expression. Zebrafish
PSM cells vary in shape. For simplicity we chose square cells for this schematic.
doi:10.1371/journal.pone.0016980.g006

A Spatio-Temporal Model of Notch Signalling

PLoS ONE | www.plosone.org 8 February 2011 | Volume 6 | Issue 2 | e16980



Now let us account for the creation and diffusion of the

signalling. The signalling mechanism is outlined in figure 6. In the

nucleus in each cell, we assume that notch mRNA is transcribed at

a rate knotch, that it diffuses at a rate Dmnotch, and that it degrades

at a rate bmnotch. The diffusion of notch mRNA causes it to move

out from the nucleus into the cytoplasm, where it continues to

diffuse and degrade. In the cytoplasm, notch mRNA produces

Notch protein by translation at a rate anotch. For Notch

translation, we retain the assumption from the core oscillator

model that translation occurs some minimal distance A from the

nucleus. In the cytoplasm, Notch proteins diffuse at a rate Dpnotch

and degrade at a rate bpnotch. The Notch proteins are created to

serve as receptors at the cell membrane, so we assume that they

cannot diffuse into the nucleus. It is trivial to convert the

assumptions in this paragraph into PDEs (see the Supporting

Information).

A little biological discussion is needed before we can make

further mathematical comments. Once Notch proteins reach the

cell membrane they function as receptors by binding DeltaC

proteins displayed at the surface of a neighbouring cell. After

binding, Notch releases its internal fragment NICD, which

translocates to the nucleus and initiates the transcriptional

response described above, and DeltaC protein (attached to an

extracellular fragment of Notch called Notch extracellular

domain or NECD) is endocytosed in the cell where it was

synthesised, an act believed necessary for the release of NICD

[70]. It has been suggested that DeltaC is recycled after

endocytosis [71], but since this has not been conclusively

demonstrated yet we shall, for simplicity, assume that endocy-

tosed DeltaC plays no role in our signalling model. Hence

for modelling purposes we shall assume that, at the cell

membrane of each cell, DeltaC is lost at the rate at which it

binds to Notch.

A Notch receptor is irretrievably altered by binding its

ligand, so it is believed that each receptor can fire only

once after it has bound its ligand [72]. Hence we assume that,

at the cell membrane of each cell, Notch is lost at the rate at

which it binds to DeltaC and NICD is released at this same

rate.

We model the communicating cell membranes in figure 6 as a

narrow region or strip, which we call the membrane subdomain.

Although molecules do not tend to wander freely between the

cell membranes of neighbouring cells, it is not unreasonable, in

terms of spatial modelling, to treat the communicating cell

membranes as a single region between which molecules can

wander freely, provided this region is sufficiently narrow and

only realistic molecular interactions are permitted. We suppose

that DeltaC and Notch from each cell diffuse into the

membrane subdomain (with diffusion coefficients DpdeltaC and

Dpnotch respectively) where they then continue to diffuse

(proteins are known to roam within a cell membrane) and

where they are subject to natural degradation (at rates bpdeltaC

and bpnotch respectively).

It is reasonable to assume in the membrane subdomain that the

rate of binding between cell i (i~1,2) Notch receptors and cell j
(j~1,2, j=i) DeltaC proteins is low if the concentration of cell i
Notch receptors is low, and is proportional (with constant of

proportionality b, say) to the concentration of cell j DeltaC

proteins if the concentration of cell i Notch receptors is high.

Then, if we let pnotch(x,y,t)½ �i~ pnotch½ �i denote the concentra-

tion of cell i Notch at the point (x,y) at time t and let

pdeltaC(x,y,t)½ �j~ pdeltaC½ �j denote the concentration of cell j
DeltaC at the point (x,y) at time t, the following choice for the

binding rate presents itself:

b
pdeltaC½ �j

p0d

� �
pnotch½ �i

M0

� �

1z
pnotch½ �i

M0

� � , ð5Þ

where p0d and M0 are threshold concentrations with intuitive

interpretations. In keeping with the biological discussion above, we

assume in the membrane subdomain that cell i Notch and cell j
DeltaC are both lost at the binding rate (5) and that cell i NICD is

released at the binding rate (5). Although it does not influence our

assumptions, it is of interest to note that cell-surface levels of Notch

protein are believed to be generally much higher than levels of

DeltaC protein. On the timescale of the segmentation clock, cell-

surface levels of Notch are unlikely to change significantly, an idea

that is implicitly assumed in the DDE model of Lewis [1,6].

To complete our description of the signalling mechanism, we

must explain how cell i NICD translocates from the membrane

subdomain to the nucleus of cell i. Thus, we assume in the

membrane subdomain that cell i NICD diffuses with diffusion

coefficient DNICD and degrades with degradation rate bNICD. Cell

i NICD is allowed to diffuse into the cytoplasm of cell i (but not

cell j), where it continues to diffuse and degrade, eventually

reaching the nucleus where it upregulates her1 and her7

transcription as in (4). NICD is not used up by its transcriptional

role; however, it does continue to diffuse and degrade within the

nucleus.

The full set of PDEs for our signalling model is stated in the

Supporting Information. For ease of reference, and given that a

central and new feature of our modelling approach is the explicit

interaction and movement of molecules at the cell membrane, we

also state here the PDEs for DeltaC, Notch, and NICD in the

membrane subdomain:

L pdeltaC½ �i
Lt

~DpdeltaC+2 pdeltaC½ �i{

b
pdeltaC½ �i

p0d

� �
pnotch½ �j

M0

� �

1z
pnotch½ �j

M0

� � {bpdeltaC pdeltaC½ �i
ð6Þ

L pnotch½ �i
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~Dpnotch+2 pnotch½ �i{

b
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p0d

� �
pnotch½ �i
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pnotch½ �i

M0

� � {bpnotch pnotch½ �i
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L NICD½ �i
Lt

~DNICD+2 NICD½ �iz

b
pdeltaC½ �j
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� �
pnotch½ �i

M0

� �

1z
pnotch½ �i
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� � {bNICD NICD½ �i,
ð8Þ

where 1ƒi=jƒ2.

As we did for the core oscillator model in section 2.2, we

suppose, for the signalling model, that the initial concentration of
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all species is zero. Our boundary conditions for the signalling

model are chosen to be consistent with the above description of

this model; they are stated in the Supporting Information.

2.3.1 Notch simulations. We explore the Notch signalling

model in a manner analogous to the exploration of the core

oscillator model in section 2.2.1. Thus we begin by observing that

the Notch signalling model can be solved numerically using

COMSOL. Not all of the model parameters have been measured

experimentally, so parameter estimation is not easy, but we can

circumvent this issue by simulating a non-dimensionalised version

of our model, seeking non-dimensional parameters that produce

numerical results that fit qualitatively with experimental

observations. Computationally it is straightforward to control the

time when transcription begins in each cell and when signalling

begins between the two cells. We seek non-dimensional

parameters such that each cell exhibits oscillatory dynamics in

the absence of signalling but such that oscillations in the two cells

are forced to synchronise after signalling begins.

Since each cell in the signalling model contains a core oscillator

mechanism, we retain the non-dimensional parameter choices

made in simulating the core oscillator model, which allows us to

retain the oscillatory dynamics discussed in section 2.2.1.

Numerical investigation allows us to find values for the remaining

parameters such that the oscillations in the two cells synchronise.

Parameter values that cause oscillations to synchronise are the

exception, not the rule. As we did for the core oscillator model, we

can use non-dimensional parameter values, reference values for

length and time, and available biological measurements to

calculate values for the dimensional parameters in the signalling

model. All of this has been done in the Supporting Information.

Simulations for our signalling model, performed on hexagonal

cells with circular nuclei, are demonstrated in figures 7, 8, 9, 10,

11, and 12, and also in two Supporting Information files (see

‘‘Animation S3’’ and ‘‘Animation S4’’). We denote as cells 1 and 2

the cells that are on the left and right respectively in figures 8, 9,

11, and 12.

Figure 7 demonstrates the total cell concentration of Her1

protein in cells 1 and 2 over time in three cases. In all cases,

transcription begins in cell 1 at time t~0 and in cell 2 when half

the core oscillator period (15 minutes) has elapsed. In the top plot,

signalling is not allowed for the entire simulation. Since the core

oscillators in each cell are identical, the oscillations in the two cells

remain perfectly out of synchrony. In reality no two cells are

identical, so that we might expect different cells to have slightly

different oscillatory periods and to slowly drift in and out of

synchrony in the absence of signalling. This would not necessarily

 

 

 

 

 

Figure 7. Plots of Her1 protein concentration produced from simulations of the Notch signalling model. Each plot shows the total
concentration of Her1 protein in cell 1 (blue) and cell 2 (red) over time. The concentration is scaled by a reference value (multiplying the
concentration by 10{9M gives the true concentration). In each plot, transcription begins in cell 1 at time 0 and in cell 2 when half the core oscillator
period (15 minutes) has elapsed. All parameter values are stated in the Supporting Information. Top: no signalling. The cells oscillate perfectly out of
synchrony. Middle: Notch signalling begins at time 150 minutes. Oscillations in the two cells synchronise by 550 minutes and the average
concentration is increased by approximately 20% compared to the case (top plot) in which no signalling occurs. Bottom: Notch signalling begins at
time 150 minutes but here we reduce by a factor of 10 (relative to the middle plot) the threshold concentration N0 of NICD above which its impact on
transcription is stronger. The oscillations synchronise by 400 minutes, the average concentration is further increased, and the amplitude of the
oscillations is notably reduced.
doi:10.1371/journal.pone.0016980.g007
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prevent Notch signalling from synchronising oscillations in

neighbouring cells, a result established in the DDE model of

Lewis [1] and confirmed in our PDE model in the Supporting

Information.

In the middle plot in figure 7, signalling begins at time 150

minutes, with synchrony occurring by 550 minutes. The oscillatory

period is slightly (but not significantly) reduced by Notch

signalling. This numerical result is consistent with recent

experimental observations, based on time-lapse microscopy, that

disruption of Notch-Delta increases the period [73]. Notice that

the signalling increases the average concentration of Her1 by

approximately 20%. This result is consistent with recent

experiments by Ozbudak and Lewis that have suggested that loss

of Notch signalling in zebrafish embryos causes a reduction of

around 20% in mean Her1 protein levels [6].

Synchrony can occur without significantly raising mean protein

concentrations but it takes longer. Synchrony and mean protein

and mRNA levels are influenced by varying the parameters, an

idea we discuss in reference to the parameter N0 which (recall

from section 2.3) is a threshold concentration of NICD above

which its impact on transcription is stronger. The impact of

decreasing this threshold concentration is shown in the bottom

plot of figure 7, which was made in the same way as the middle

plot except that N0 was decreased by a factor of 10. Synchrony

occurs faster than in the middle plot and the mean Her1

concentration is increased but the amplitude of the oscillations is

reduced. Decreasing N0 by a factor of 100 relative to the bottom

plot of figure 7 causes synchrony to occur faster still (result not

shown), increases the mean Her1 concentration further, and

forces oscillations to die out altogether - Her1 concentrations

stabilise at the same constant value. Loss of oscillations or

significantly reduced amplitude in oscillations will disrupt

somitogenesis since somite segmentation depends on oscillatory

gene expression [4].

Loss of oscillations for small N0 is readily explained in our

model. The transcription rate of her1 mRNA in (4) will saturate at

its basal rate kher1 if N0 is suitably small, and a similar remark

holds for her7 mRNA. Constant transcription of her1 and her7

mRNA will lead to constant translation of Her1 and Her7

proteins. This will prevent oscillatory dynamics in each cell since

oscillations in Her1 and Her7 drive the core oscillators.

Mathematically speaking, the impact on transcription of NICD

overexpression will be the same as reducing N0, so our comments

on the influence of small N0 on disrupting somitogenesis apply

equally well to the influence of overexpression of NICD.

Consistent with these observations is the recent experimental

result that heat-shock-triggered overexpression of NICD disrupts

the formation of somites [6].

Figures 8 and 9 were created with the same parameter values

used to create the middle plot in figure 7 and show respectively

how the concentrations of her1 mRNA and Her1 protein vary

spatially throughout the cell at intervals of 100 minutes. Initially

the cells oscillate out of synchrony and do not communicate.

Notch signalling begins at 150 minutes. Release of NICD from the

communicating cell membranes upregulates transcription of her1

mRNA in the side of each nucleus that is closer to the

communicating membranes. Although this is not obvious from

figure 8, it is clearly deducible from figure 9 which, at t~200
minutes, shows greater concentrations of Her1 protein on the sides

of the cells closest to the communicating membranes. This

Figure 8. Notch signalling model simulation results showing spatial distributions of her1 mRNA. The plots show her1 mRNA
concentration at 100 minute intervals. The concentration is scaled by a reference value (multiplying the concentration by 1:43|10{9M gives the
true concentration). The parameters used to create the middle plot in figure 7 are used here (see Supporting Information). Signalling between the
cells begins at 150 minutes and has clearly synchronised their behaviour by 600 minutes.
doi:10.1371/journal.pone.0016980.g008
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upregulatory influence continues until (t~600 minutes) the two

cells are in perfect synchrony.

Figure 10 demonstrates the total cell concentration of DeltaC

protein in cells 1 and 2 over time in three cases. These are the

same three cases as those presented in figure 7 for Her1 protein.

Thus, the top plot in figure 10 shows that DeltaC concentrations

oscillate out of synchrony in the two cells when they begin out of

synchrony and there is no signalling between them; the middle

plot shows that signalling beginning at 150 minutes can

synchronise the oscillations in the two cells by 550 minutes;

and the bottom plot shows that reducing N0, the critical

concentration of NICD, hastens the synchrony, which occurs

by 400 minutes.

Figure 10 is consistent with figure 7 in that the amplitude of the

oscillations is reduced by signalling. However, notice that whilst

the average Her1 concentration is increased by signalling (figure 7),

the average DeltaC concentration is reduced (figure 10). How do

we explain these results? Signalling releases NICD into each cell,

which upregulates the transcription of her1 and her7 mRNAs by

the transcriptional term in (4). This leads to more Her1 and Her7

protein being translated in the cytoplasm. Hence the average

concentrations of Her1 and Her7 are increased. The transcription

of deltaC mRNA is governed by negative feedback due to Her1

and Her7 (the transcriptional term for deltaC mRNA is (3) where

kher1 is replaced by kdeltaC). Consequently, increased levels of Her1

and Her7 reduce the average concentration of deltaC mRNA,

which causes less DeltaC protein to be translated in the cytoplasm

so that the average concentration of DeltaC is also reduced.

DeltaC is further reduced by being lost at the communicating cell

membranes when it binds to Notch receptors.

The signalling-induced reduction in deltaC mRNA and DeltaC

protein levels is apparent from figures 11 and 12, which show how

the concentrations of these species vary spatially throughout the

cell at intervals of 100 minutes. These figures were created with

the same parameter choices used to create the middle plots in

figures 7 and 10. Observe in figure 11 that the concentration of

deltaC mRNA is lower on the sides of the nuclei closer to the

communicating cell membranes. This occurs because its tran-

scription is lower here, due to the dependence of this transcription

on negative feedback from Her1 and Her7 and the higher

concentration of Her1 and Her7 on the sides of the cells closer to

the communicating cell membranes as depicted for Her1 in

figure 9. The lower concentration of deltaC mRNA on the sides of

the nuclei closer to the communicating cell membranes causes the

translation of DeltaC protein to be lower on these sides of the

nuclei, and, as noted in the previous paragraph, DeltaC is lost

when it binds to Notch at the communicating cell membranes.

These latter observations account for the spatial profiles of DeltaC

in figure 12.

Spatial profiles of Notch (results not shown) reveal that its

distribution is changed little by signalling. The concentration

oscillates at the communicating cell membranes but the changes

are scarcely discernible to the naked eye, which is why we do not

include these profiles. The amplitude of the oscillations in Notch

concentration are small compared to the average concentration in

our model, which is consistent with our earlier observation in

section 2.3 that, on the timescale of the segmentation clock, cell-

surface levels of Notch are unlikely to change significantly.

We discussed the robustness of oscillatory dynamics to changes

in the shape and size of the cell and nucleus for our core oscillator

Figure 9. Notch signalling model simulation results showing spatial distributions of Her1 protein. The plots show Her1 protein
concentration at 100 minute intervals. The concentration is scaled by a reference value (multiplying the concentration by 10{9M gives the true
concentration). The parameters used to create the middle plot in figure 7 are used here (see Supporting Information). Signalling between the cells
begins at 150 minutes and has clearly synchronised their behaviour by 600 minutes.
doi:10.1371/journal.pone.0016980.g009
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model in section 2.2.1. A similar robustness holds in terms of the

capacity for Notch signalling to synchronise oscillations in

neighbouring cells. Synchronisation can occur for rounded,

square, and hexagonal cell shapes, as well as for circular and

elliptical nuclei. It can also occur across a range of cell and nuclear

sizes. Given that defective pattern formation would probably kill

an embryo, it is reassuring that our signalling model possesses a

geometrical robustness (see Supporting Information for further

discussion and additional figures).

From the non-dimensional parameters used to create figures 8,

9, 11, 12, and the middle plots in figures 7 and 10, we found

dimensional parameters. Since our signalling model contains a

core oscillator in each cell, the dimensional parameters in our

signalling model that relate to these core oscillators are the same as

those stated in section 2.2.1. We can summarise all the signalling

model dimensional parameters as follows: all diffusion coefficients

equal 0:0029mm2s{1, all degradation rates equal 0:0032s{1, all

translation rates equal 0:075s{1, all basal transcription rates equal

1:53|10{10Ms{1, p0her~10{9M, A~0:6mm, n~3, m~1,

b~1:07|10{10Ms{1, N0~10{13M, and M0~10{12M.

2.3.2 Parameter ranges that yield synchronised

oscillations. In the Notch signalling model, we have explored

ranges of parameter values for which oscillations persist and are

synchronised by 900 minutes where signalling begins at 150

minutes (simulating on two hexagonal cells as in figure 8). By

assuming that all the diffusion coefficients are equal and holding

all the other parameter values fixed as above (final paragraph,

previous section), we have found that synchronised oscillations

occur for diffusion coefficients in the range 0:0015mm2s{1 to

0:0088mm2s{1, or 1:5|10{11cm2s{1 to 8:8|10{11cm2s{1. By

assuming all the degradation rates are equal and holding all the

other parameter values fixed as above, we have found

synchronised oscillations for degradation rates in the range

0:00085s{1 to 0:0039s{1. To the extremes of these ranges for

diffusion and degradation, the oscillatory amplitude varies and

synchrony is not completely perfect.

These ranges for the diffusion and degradation rates are very

similar to those needed for sustained oscillations in the core

oscillator model (see section 2.2.1 and table 1). However, we

obtain a different result for the negative feedback Hill coefficient n.

Varying this coefficient whilst keeping the other parameters fixed

as above, we find synchronised oscillations by 900 minutes only for

n~3 and n~4. Synchronised oscillations will also occur for n~5
though it takes longer than 900 minutes for exact synchrony to be

reached. We have seen that sustained oscillations occur in the core

oscillator model for any n§3 but in the signalling model we have

 

 

 

 

 

Figure 10. Plots of DeltaC protein concentration produced from simulations of the Notch signalling model. Each plot shows the total
concentration of DeltaC protein in cell 1 (blue) and cell 2 (red) over time. The concentration is scaled by a reference value (multiplying the
concentration by 10{9M gives the true concentration). In each plot, transcription begins in cell 1 at time 0 and in cell 2 when half the core oscillator
period (15 minutes) has elapsed. All parameter values are stated in the Supporting Information. Top: no signalling. The cells oscillate perfectly out of
synchrony. Middle: Notch signalling begins at time 150 minutes. Oscillations in the two cells synchronise by 550 minutes and, compared to the case
(top plot) in which no signalling occurs, the average concentration is decreased by a factor of 3 and the amplitude of the oscillations is notably
reduced. Bottom: Notch signalling begins at time 150 minutes but here we reduce by a factor of 10 (relative to the middle plot) the threshold
concentration N0 of NICD above which its impact on transcription is stronger. The oscillations synchronise by 400 minutes, the average concentration
is further decreased, and the amplitude of the oscillations is further reduced.
doi:10.1371/journal.pone.0016980.g010
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found that if n is suitably larger than 3 then signalling has little

impact on the dynamics. In fact, for n§10, we obtain results very

similar to those in the top plot in figure 7 in which no signalling

takes place. It would seem that the requirement for oscillations in

each core oscillator forces n to be bounded below by 3, whilst the

requirement for signalling to synchronise these oscillations in a

reasonable time bounds n above by 4. There are biological

implications: since the Hill coefficient n is a measure of co-

operativity between the inhibitory proteins (Her1 and Her7) and

the genes they inhibit (her1, her7, deltaC), our findings suggest that a

certain level of co-operativity is needed for oscillations but that too

much co-operativity weakens the impact of Notch signalling. This

is a matter that warrants further attention.

Ranges of values for model parameters that yield synchronised

oscillations in the Notch signalling model are presented in table 2.

Notice how we state in table 2 that there are synchronised

oscillations only when the positive feedback Hill coefficient m is 1.

In fact we have also found that synchronised oscillations occur for

m§6. Yet for m§6 the oscillatory period is tripled by the

signalling and the amplitude of the oscillations is increased by a

factor of more than 6. Notch signalling is unlikely to have such a

dramatic impact on the oscillations, according to experimental

studies of the effect of blocking Notch signalling [6]. Hence we

have chosen not to include the range m§6 in table 2.

The idea that signalling can synchronise oscillations whilst

dramatically increasing their period and amplitude was encoun-

tered by Lewis in exploring his DDE model which our PDE model

extends [1]. Lewis explained this result by observing that Notch

signalling creates its own feedback loop, which he writes as:

activated Notch in cell 1 ? her1/her7 in cell 1 —| deltaC in cell 1 ?

activated Notch in cell 2 ? her1/her7 in cell 2 —| deltaC in cell 2 ?
activated Notch in cell 1 (where ? denotes stimulation and —|
denotes inhibition). For a certain parameter relationship, this long

Notch feedback loop can replace, as the driving force behind

oscillations, the shorter feedback loop in which Her1 and Her7

inhibit their own synthesis. The DDE model of Lewis uses time

delays rather than diffusion to account for transport processes

and does not explicitly consider NICD or Notch, so the

parameter relationship that corresponds to this switch in driving

force is different in the model of Lewis compared to our

relationship that m§6s. Indeed, the parameter relationship used

by Lewis amounts to a qualitative change in the transcriptional

control of Her1 and Her7 in which these proteins no longer

directly inhibit their own synthesis [1]; a qualitative change of this

type does not occur in our model when we increase m from 1 to

be §6. For 2ƒmƒ5, the two cells in our model oscillate

together but the concentrations are not synchronised - for

example, the levels of Her1 protein are higher in cell 2. There is a

biological implication: given that m is a Hill coefficient measuring

co-operativity in the interaction between NICD and the genes for

her1 and her7, defective somites may form even if this co-

operativity is fairly weak (m§2).

Discussion

Mathematical models of somitogenesis have been appearing for

over 30 years, evolving in parallel with advances in experimental

procedures and discoveries. However, to our knowledge, there are

no models of somitogenesis that explicitly consider the diffusion of

protein and mRNA molecules within a cell. With a non-spatial

Figure 11. Notch signalling model simulation results showing spatial distributions of deltaC mRNA. The plots show deltaC mRNA
concentration at 100 minute intervals. The concentration is scaled by a reference value (multiplying the concentration by 1:43|10{9M gives the
true concentration). The parameters used to create the middle plot in figures 7 and 10 are used here (see Supporting Information). Signalling
between the cells begins at 150 minutes and has synchronised their behaviour by 600 minutes.
doi:10.1371/journal.pone.0016980.g011
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modelling approach, it is impossible to answer simple but

potentially important questions. For example, how fast do

molecules move inside a cell? How does the shape of a cell or its

nucleus, or the ratio of cell to nuclear size, influence the dynamics

within a cell, or the signalling dynamics between cells? Hence, in

this paper, we have derived a mathematical model of the zebrafish

segmentation clock in which the diffusion of molecules is

considered explicitly and in which the nucleus and cytoplasm

are treated as separate compartments. Our model has focused on

two adjacent cells in the presomitic mesoderm (PSM) which

communicate by Notch signalling.

Our model, built on previous work by Lewis et al [1,6], contains

a negative feedback loop within each cell. We have found by

simulation that this negative feedback loop can cause oscillatory

dynamics to occur inside each cell. Moreover we have found that

positive regulation of transcription due to Notch signalling can

Figure 12. Notch signalling model simulation results showing spatial distributions of DeltaC protein. The plots show DeltaC protein
concentration at 100 minute intervals. The concentration is scaled by a reference value (multiplying the concentration by 10{9M gives the true
concentration). The protein is absent from the nucleus by our modelling assumptions. The parameters used to create the middle plot in figures 7 and
10 are used here (see Supporting Information). Signalling between the cells begins at 150 minutes and has synchronised their behaviour by 600
minutes.
doi:10.1371/journal.pone.0016980.g012

Table 2. Parameter ranges giving synchronised oscillations in the Notch signalling model.

Parameter Range giving synchronised oscillations

Diffusion coefficients (all species) 0.0015 to 0:0088mm2s{1

Degradation rates (all species) 0.00085 to 0:0039s{1

Translation rates (of Her1, Her7, DeltaC, Notch proteins) §0:049s{1

Basal transcription rates (of her1, her7, deltaC mRNAs) §7:5|10{11Ms{1

Basal transcription rate knotch (of notch mRNA) §2:3|10{15Ms{1

Minimal distance A of translation from nucleus 0.24 to 1:08mm

Critical concentration M0 of Notch 0 to 10{6M

Critical concentration N0 of NICD 2|10{16 to 1:2|10{12M

Critical concentration p0her of Her1 and Her7 proteins 4|10{11 to 1:71|10{9M

Hill coefficient m 1

Hill coefficient n 3,4

Ranges of parameter values in the Notch signalling model that yield synchronised oscillatory dynamics (simulating on two hexagonal cells up to 900 minutes, where
signalling starts after 150 minutes). The ranges here were calculated from table 2 in the Supporting Information file ‘‘Text S1’’, as explained in section 3.3 in that file.
doi:10.1371/journal.pone.0016980.t002
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cause the oscillations in the two cells to synchronise. These results

are consistent with the weight of experimental evidence that

suggests the correct formation of somites is dependent on

oscillatory gene expression in individual PSM cells with oscillations

synchronised in neighbouring cells. An original feature of our work

is that we have explicitly accounted for cell membrane interactions

between Notch receptors and their DeltaC ligands, thereby also

allowing us to model the release of Notch intracellular domain

(NICD) into each cell. We achieved this by describing a binding

rate function between the receptors and their ligands.

Our simulation results are robust to changes in the shape and

size of the cells and their nuclei, a reassuring discovery given that

biological pattern formation would be impossible without a certain

robustness to cell shape and size. We have considered rounded,

square, and hexagonal cell shapes, circular and elliptical nuclei,

and different ratios of cell to nuclear size. Our explicitly spatial

modelling approach allowed us to estimate the diffusion

coefficients of the species in our model. We hope that our

estimates will inspire others to measure these coefficients, thereby

either confirming our estimates or providing new information by

which we could improve our model. Certainly imaging technology

has advanced in recent years, making it easier to measure diffusion

rates.

We have found ranges of values for our model parameters such

that oscillations synchronise in the two cells within a biologically

reasonable timescale. These parameters include diffusion coeffi-

cients, degradation rates, translation rates, basal transcription

rates, critical concentrations, the minimum distance of translation

from the nucleus, and Hill coefficients. In particular, our model

contains two Hill coefficients, one controlling the negative

feedback role of Her1 and Her7 proteins, the other controlling

the positive feedback of Notch signalling. The ranges of values for

Hill coefficients that yield synchronised oscillations are narrow,

indicating tight regulation of the feedback mechanisms. For the

negative feedback Hill coefficient, synchronised oscillations are

found only for the values 3 and 4, and for the positive feedback

Hill coefficient, synchronised oscillations are found only for the

value 1. In addition, we noticed during our simulation study that

oscillations can synchronise in the two cells even when the

diffusion coefficients in one cell are different to those in the other.

By plotting spatial profiles of the species in our model, we have

gained insight into the distribution and interaction of these species.

Animations provide further insight and are included as Supporting

Information files (see Animations S1, S2, S3, and S4).

In order to reproduce experimental observations, models of

intracellular oscillatory dynamics, including the model of Lewis

upon which our work builds [1,6], typically rely on a small number

of time delays, representing various transport and interaction

processes, that are incorporated into ordinary differential equa-

tions (ODEs) to create delay differential equations (DDEs). Our

results show that using a model of diffusion using partial

differential equations (PDEs) removes the need to rely on time

delays in order to faithfully reproduce experimental observations.

Moreover, models of PDEs enable us to account for the explicit

movement of molecules or to study the spatial distribution of

interacting species, neither of which is possible using systems of

ODEs or DDEs, even when such systems model nuclear and

cytoplasmic compartments separately [74,75]. In addition, our

PDE-based spatial model allowed us to control the distance from

the nucleus at which proteins were synthesised in the cells; in

essence, we were able to control the location of ribosomes.

Our spatial modelling approach can be applied to signalling

pathways other than Notch-Delta. For example, we are currently

applying it to the p53 pathway which regulates the cell cycle and is

found to be de-regulated in 50% of human cancers [76]. An

understanding of the spatial distribution of p53 within a cell is

likely to be of value to clinicians seeking to treat cancer by targeted

drug therapy.

Given that transcriptional control systems are subject to

stochastic effects, we shall consider stochasticity in future work,

for example by utilising the Gillespie algorithm [55–57]. In cells,

molecules move not only by diffusion but can also be actively

transported from a region of low concentration to a region of high

concentration. In future research, we will incorporate active

transport into our model. We also intend to further this work by

examining a bigger range of cell geometries, for instance by

looking at cell extensions, and by asking what happens when

transcription occurs only at very specific locations (genes) in the

nucleus, rather than at all points in the nucleus as assumed in

our model.

There is evidence for oscillatory gene expression during

somitogenesis in chicks and mice. Currently somitogenesis appears

to be more clearly understood in zebrafish than in chicks or mice

but in due course we envisage being able to write down

mathematical models appropriate to these latter creatures. Our

exploration in this paper has focused on the clock aspect of the

‘‘clock-and-wavefront’’ mechanism that has been used to describe

somitogenesis. As future research, we may consider extending our

model to contain a row of three or more cells, or a block of cells,

through which there could diffuse a wavefront in the form of a

morphogen gradient - for a given cell architecture, we could

assume that a signalling molecule such as Wnt or Fibroblast

Growth Factor could emanate from one end (the tail) of the

architecture. Finally we may consider seeking analytical results for

our model, exploiting symmetries to simplify this task.

Methods

The simulations presented in this paper were produced using

the COMSOL/FEMLAB package, which uses a finite element

technique for solving partial differential equations. In all

simulations, we used triangular basis elements, Lagrange quadratic

basis functions, and a backward Euler time-stepping method of

integration. Further details on COMSOL may be found online

[77].

Supporting Information

Text S1 This file includes the statement of the full system of

equations for our core oscillator and Notch signalling models,

details about their non-dimensionalisation, details about simulat-

ing these non-dimensionalised models, and calculations of

parameter values in the dimensional models. In addition, there

are figures demonstrating the robustness of our approach to

changes in cell and nuclear shape.

(PDF)

Animation S1 Animation of her1 mRNA concentration created

by a numerical simulation of the non-dimensionalised core

oscillator model, with parameters as in figure 3. Time and

concentration are shown in non-dimensional units.

(MP4)

Animation S2 Animation of Her1 protein concentration created

by a numerical simulation of the non-dimensionalised core

oscillator model, with parameters as in figure 3. Time and

concentration are shown in non-dimensional units.

(MP4)
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Animation S3 Animation of her1 mRNA concentration

created by a numerical simulation of the non-dimensionalised

Notch signalling model, with parameters as in the middle

plot in figure 7. Time and concentration are shown in non-

dimensional units.

(MP4)

Animation S4 Animation of Her1 protein concentration created

by a numerical simulation of the non-dimensionalised Notch

signalling model, with parameters as in the middle plot in figure 7.

Time and concentration are shown in non-dimensional units.

(MP4)
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