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Abstract

Background: The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an
assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug
resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel
integron gene cassettes.

Methodology/Principal Findings: We report the 1.8 Å crystal structure of Cass2, an integron-associated protein derived
from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-
binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such
as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is
evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is
capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein
interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain
transcriptional regulators.

Conclusions/Significance: Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-
binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2
family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary
precursors to multi-domain regulators associated with cationic drug compounds.
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Introduction

The Vibrio genus is ubiquitous and abundant throughout the

aquatic environment. It is clear that lateral gene transfer (LGT)

events play a major role in the evolution and adaptation of this

organism, with genetic interchange of Vibrio genes observed over a

wide range of phylogenetic distances [1]. Our analysis of V. cholerae

and V. vulnificus genomes suggests up to 20% of their content to

have arisen via this route. The continued emergence of novel

pathogenic clones carrying diverse combinations of phenotypic

and genotypic properties significantly hampers control of the

disease [2]. The emergence of V. cholerae O139, one of the two

strains responsible for epidemic Asiatic cholera, appears to be a

result of LGT from multiple and diverse descendants of the

seventh pandemic O1 El Tor strain [2,3]. Recent studies have

indicated that the O1 and O139 associated virulence genes (or

their homologues) are also dispersed among environmental strains

of V. cholerae [4,5]. LGT and acquisition of virulence genes is then

a very likely mechanism for the emergence of pandemic strains of

V. cholerae from non-pathogenic environmental strains [6,7,8,9].

The mobilization and integration of mobile gene clusters carrying

genes for multiple antibiotic resistance, although not directly

implicated in the mechanism of pathogenicity, are also thought to

significantly influence the epidemiology of cholera [10].

One important mediator of LGT involves mobile gene cassettes

clustered in association with integrons [11]. Gene cassettes are
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captured by integrons via their intrinsic site-specific recombination

system [12,13,14] and constitute the smallest known mobilisable

genetic element [7,13,15]. Integrons themselves can be found on

mobile elements as well as in the chromosome [7,15]. While most

integron cassette arrays contain relatively small numbers of

cassettes, extremely large arrays (numbering 100–200) appear

particularly prevalent for Vibrio species [8,16]. Rearrangements

and deletions/insertions of large portions of these mobile gene

arrays appear to be common events [6,14], and arrays can display

high levels of diversity even in strains that are otherwise closely

related. Independent studies continue to show that gene cassettes

possess a very high proportion of genetic novelty, whether derived

from defined strains [8,16] or from metagenomic surveys [17,18].

In this work, we focus on one integron gene cassette (Vch_cass2)

isolated from a strain of V. cholerae resident within a brackish

coastal environment in north-eastern USA. Initial sequencing

identified the gene cassette to encode a domain with some

homology to the AraC superfamily of transcription activators,

generally implicated in the regulation of stress response and

virulence [19]. These regulators are well characterized to be

modular systems, and include the AraC, MarR and MerR protein

families [20]. Generally, these are organized with a DNA-binding

domain that acts as a positive regulator of transcription fused to an

effector domain which provides a binding site for a specific

chemical activator molecule [20,21]. The modularity of these

systems provides capacity for complex regulatory networks, which

can also incorporate the membrane transporters for extrusion of

multiple toxic agents or drugs [22]. In this way, for example, the

AraC and MerR multi-domain regulators are organised to be

capable of recognizing the same array of toxic compounds

extruded by the transporters they themselves transcribe [23].

Our recovery of a gene cassette encoding a single and

independent effector-like domain is noteworthy as a likely

evolutionary precursor to a transcription regulatory system within

Vibrio spp. The structural and functional characterisation of this

novel integron-associated protein, named here Cass2, was thus of

immediate interest as a potential drug-binding factor, particularly

as the integron/gene cassette system is strongly associated with the

emergence of antibiotic and drug resistance [11]. We found the

protein structure to be representative of several single-domain

homologues, often mobile, within the genomes of related aquatic-

dwelling bacterial species. The origin of the gene cassette within an

environmental Vibrio species points to its potential as a mobile

element facilitating the spread of drug resistance and the

emergence of novel phenotypes.

Results

An Independent Effector-Binding Domain Related to the
AraC_E_bind Superfamily

The gene cassette named Vch_cass2 was one of a group of

integron gene cassettes isolated from OP4G, an environmental

strain of V. cholerae derived from a brackish coastal pond in

Massachusetts (USA). Partial genomic sequencing has established

this strain to have strong sequence identity (.90%) with known

pathogenic strains of V. cholerae (Boucher, unpublished). The

encoded protein sequence, Cass2, displays signature motifs that

associate it with the superfamily AraC_E_bind (cl01368, sm00871

[24], pfam06445), named for the effector domain of the AraC/

XylS transcription activators [21]. Members of this superfamily

regulate diverse bacterial functions, including sugar catabolism

and responses to stress and virulence [19]. As outlined in Figure 1,

several multi-domain protein families incorporate an effector

domain of this type (usually C-terminal in position), often in

conjunction with a helix-turn-helix DNA-binding domain. This

allows transcription activation of cognate promoters to be enabled

through the highly conserved DNA-binding domain in response to

effector binding [21,25]. However, in the case of Vch_cass2,

sequence searches (both gene and protein levels) established it to

be representative of an entirely distinct family of independent

single-domain proteins, represented by over 1200 homologs across

a range of organisms. A phylogenetic analysis of these sequence

relatives (Figure 2) places Cass2 in a distinct clade (75–79%

amino acid identity) sourced from a variety of marine-dwelling

bacteria. While Cass2 clearly clusters with homologs from specific

Vibrio spp (bootstrap value of 100%), a related but distinct clade

displaying ,40% amino acid identity is evident within Shewanella

genomes. Representative protein sequences for members of these

two clades are aligned with that of Cass2 in Figure 3.

Importantly, like Vch_cass2, the genetic context for many of its

homologs indicate an association with LGT. Those relatives

displaying highest sequence homology are also encoded within

gene cassette elements (e.g. V. cholerae MZO-2 and AM-19226),

while others are found adjacent to transposon features (V. vulnificus

CMCP6).

Crystal Structure of Cass2
Structure determination by x-ray crystallography revealed the

protein Cass2 to be a monomer organised into a barrel-like form

comprising an antiparallel b-sheet of eight strands (Figure 4a).

Flanking the concave face of the central sheet are two separated

helical elements, in which helices a1 (residues 20–24) and a2 (31–

45) are aligned to one side, and helix a3 (104–118) to the other.

The topology of the domain highlights its pseudo two-fold

symmetry, which is based on repeating b-b-a-b-b motifs.

Subdomain I (residues 9–91) superimposes over subdomain II

(residues 1–8, 92–149) with an rmsd of 1.7 Å (calculated on 37 Ca

atoms), and directly aligns elements b2, a2, b3 and b4 with b6, a3,

b7 and b8, respectively. Despite the low sequence identity of the

two subdomains (,12%), the structural superposition coherently

maps side chains Phe14, Leu34, Trp35, Tyr56 and Val69 from

subdomain I to those of Phe97, Leu110, Trp111, Tyr136 and

Val142 in subdomain II. These recurring side chains stabilise

packing of the helices to the b-sheet and form critical elements of

the ligand-binding site.

Within both subdomains of Cass2, a relatively flexible loop is

located C-terminal to the helical portion, i.e. forming connections

Figure 1. Domain analysis of Cass2 sequence. Six groupings are
identified to contain AraC_E_bind (pfam06445) domains in a variety of
architectures. The number of sequences found in each grouping (May,
2010) is indicated by frequency.
doi:10.1371/journal.pone.0016934.g001

Structure of V. cholerae Drug-Binding Protein
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between a2–b3 (residues 46–50) and a3–b7 (residues 119–130)

segments. These loops project from the top and bottom of the

sheet, respectively (orientation as depicted in Figure 4). Additional

areas of flexibility (as evidenced by elevated B-factors) reside within

subdomain I, provided by the loops connecting sheet strands b3–

b4 and b4–b5 of the structure.

The central cavity enclosed between the helices of Cass2 is

largely hydrophobic in nature, and aromatic side chains

predominate. However, a single acidic group (Glu134, originating

from strand b7) is buried deep within this cleft, flanking the pseudo

two-fold axis of the protein structure. The polarity of this side

chain is stabilised by hydrogen bonds to side chains of Tyr56,

Tyr136, and Trp111 (Figure 4B). Between the helical edges of the

cavity and directly above the topological switch-point of the sheet

(i.e. b3/b7), density is observed corresponding to a polyethylene

glycol (PEG) molecule captured during crystallization of Cass2.

Hydrophobic side chains from helices a2 (Trp35, Tyr39) and a3

(Pro104, Val107, Ile108, Trp111) and the b7/b8 interstrand loop

(Tyr136) are within 4 Å of this ligand. Some additional density can

be distinguished in our maps belonging to a second (non-definable)

ligand, extending further along this same cavity to Trp115.

The sequence alignment for the two distinct clades of Cass2
relatives from Vibrio and Shewanella (Figure 3) highlights that

conserved sequence segments are distributed throughout the

domain, most strongly within structural components making up

the central cavity. All of the side chains listed above as interacting

with bound PEG, as well as Glu134, are conserved across the

Cass2 sequence family (Tyr39 being conservatively replaced in

Shewanella strains) (Figure 3). The domain we define here thus

provides a common framework for a hydrophobic ligand chemistry.

Figure 2. Phylogenetic tree of Cass2 sequence with evolutionary distances. Bootstrap values $80% are shown over the internodes for 36
sequence homologues. Protein names are annotated as in the NCBI database and distinguished as: EB, transcription activator, effector binding; AraC,
transcription regulator, AraC family; HP, hypothetical protein or OP, orphan protein. Boxed clade contains sequence of interest; its relatives shown in
bold are known to be gene cassettes from integron cassette arrays.
doi:10.1371/journal.pone.0016934.g002
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Structural Relationship to Effector-Binding Domains
Searches for structural homologues of Cass2 revealed several

fold relatives with overlapping biological functions associated with

transcription regulation. Close spatial alignment was found to

putative transcription regulation protein from Staphylococcus aureus

(PDB 3LUR), the C-terminal domain of Rob transcription factor

from E. coli (PDB 1D5Y) [26], the C-terminal drug-binding

domain of the multi-drug efflux transporter regulator BmrR from

Bacillus subtilis (PDB 3D6Z) [27], and the gyrase inhibitory protein

GyrI/Sbmc from E. coli (PDB 1JYH) [28]. Despite their highly

diverse sequences (with only 15–26% identity to Cass2), these

three structures overlay well with that of Cass2, with rmsd values

of 1.9, 2.1, 2.5 and 2.4 Å, respectively. Some members of the

BmrR subfamily, those of the MerR transcription activator

systems [20], had already been detected as remote relatives of

Cass2 within our initial sequence searches (outlined in Figure 1).

The E. coli Rob and GyrI domains are also members of the AraC/

XylS family of transcription factors; Rob is known to control

diverse regulons in prokaryotes [26] and GyrI plays a role in

protecting cells against the ribosomally synthesized peptide

antibiotic, microcin B17 [28]. Both GyrI and the C-terminal

domain of Rob have been speculated to be ligand-binding

domains, although the physiological ligands have not been

identified.

Amongst these five structural relatives (overlaid in Figure 5), all

display a similar disposition of secondary structure elements, the

greatest variation occurring in the region corresponding to helices

a2 and a1 of Cass2. A glutamate residue is preserved midway

across the sheet in all the proteins, stabilised within a hydrophobic

environment by surrounding Tyr side chains. The closest

structural homolog from Staphylococcus aureus (PDB 3LUR), retains

many of the hydrophobic side chains of the central cavity, but also

possesses a cluster of polar residues (Cys, Gln and Met) not present

in Cass2 (Figure 5C).

Figure 3. Multiple alignment of Cass2 and sequence homologs. Cass2 sequence is aligned with representative strains from Vibrio: Vv, Vibrio
vulnificus CMCP6 (AE016795.2); Vh, Vibrio harveyii ATCC-BAA-1116 (YP_001448888.1); VcM, Vibrio cholerae MZO-2 (ZP_01980402.1); VcA, Vibrio
cholerae AM-19226 (YP_002176820.1). Representative sequences are also included from the related clade of Shewanella homologs: Sb185, Shewanella
baltica OS185 (YP_0013657); Sb223, Shewanella baltica OS223, (YP_0023586). Secondary structure representation is as derived from crystal structure
of Cass2 (this work). Residues completely conserved in all homologs are shaded red, partially conserved residues are green. Active site residues are
starred, residues conserved in both subdomains I and II are also indicated (filled square).
doi:10.1371/journal.pone.0016934.g003
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For BmrR, known to bind a diverse group of hydrophobic

cationic compounds, several crystal structures of its complexes

have been determined: those with rhodamine 6G [27], tetra-

phenylphosphonium (TPP) [29] and berberine [27]. In our

structure of Cass2, the site occupied by PEG correlates closely

with the location of the cationic drug-binding cavity of BmrR

[27,29]. Within the BmrR-TPP complex [29], the phenyl ligand

substituents are seen to stack with hydrophobic side chains which

include Tyr51 (from strand b3) and Ile71 (strand b4). Nearby, the

charged Glu134 residue is stabilized by hydrogen-bonding to the

internal tyrosine side chains (Y33, Y68, Y110). Although not all

cavity-forming residues of Cass2 have directly conserved

sequence locations in BmrR, a similar binding framework is

common to both homologs, as depicted in Figure 5B.

The crystal structure of the Cass2-PEG complex displays a

markedly distinct conformation in the region C-terminal to helix

a2. Brennan’s team have proposed that hinge opening of BmrR in

the vicinity of helix a2, as well as repositioning of Tyr33

(corresponding to Cass2 Tyr39), results in the exposure of the

central cavity for interaction with the cationic ligand [29]. The

loop segment following helix a2 in Cass2 appears to be relatively

flexible in our structure, and it is thus feasible that access to the

ligand site in the gene cassette domain might occur by a similar

helix-opening mechanism, perhaps coupled in this case with

expulsion of the interior side chain Tyr39.

Ligand Binding Capacity of Cass2
Although the natural ligand of Cass2 is unknown, it is clear

that the domain contains a binding site suitable for hydrophobic/

cationic compounds, compatible with that seen in its structural

homologs. Tryptophan fluorescence was used to test for

interactions of Cass2 with a set of cationic compounds known

to associate with the related bacterial transcription regulators:

TPP, benzalkonium chloride, chlorhexidine [30]. The site-specific

mutant (E134Q)Cass2, designed to neutralise the electrostatic

effects of Glu134, was additionally probed in these titrations.

Cass2 contains three tryptophan residues, two of which (Trp35,

Trp111) are observed to be in close contact to PEG from helices

a2 and a3 within the binding cleft. The third side chain (Trp115

on helix a3) is somewhat more remote along the ligand cavity; it

exhibits multiple rotamer forms in the crystal, possibly due to

accommodation of other ligand molecules.

Initial fluorescence measurements in the presence of excess

quantities of all three compounds detected a blue shift (5 nm) from

the emission maximum of Cass2 in its apo form (349 nm). This is

consistent with loss of solvent exposure of the Trp residues, such as

might occur as the cavity closes upon ligand binding. For all three

compounds at sub-micromolar concentrations, significant quench-

ing (up to 60%) of the intrinsic fluorescence emission of Cass2
was observed in a concentration-dependent manner, as illustrated

for the titration with TPP in Figure 6. All interpolated KD values

were determined to be in the sub-micromolar range (Table 1). The

monovalent compound benzalkonium chloride, smallest of the

three compounds tested, displayed the strongest binding

(KD = 0.1 mM). The binding affinity determined for TPP

(KD = 0.2 mM) indicates a tighter interaction with Cass2 than

has been reported for the fold relative BmrR [27].

Mutation of the central glutamate sidechain of Cass2 had little

effect on its strength of binding to the monovalent compounds

tested (TPP, benzalkonium chloride). For the divalent compound

chlorhexidine, the affinity for the E134Q mutant appears to have

been somewhat enhanced (KD = 0.10 mM). The electrostatic role

of this glutamate thus appears to be tempered in the case of

Cass2, presumably due to the large number of hydrophobic

contacts within the internal binding cavity.

Our results are consistent with the earlier binding studies of

BmrR to three cationic compounds (Table 1) and crystal structures

obtained for the resulting complexes [27]. Substitution of the

Figure 4. Three-dimensional crystal structure of Cass2 at 1.8 Å. A) Structure coloured by secondary structure elements: strands b1 (residues
1–6), b2 (9–18), b3 (52–57), b4 (67–73), b5 (85–89), b6 (92–100), b7 (131–135) and b8 (141–147) and helices a1 (20–24), a2 (31–45) and a3 (105–118). A
loop region of poor density connecting a3 to b7 (residues 120–122) is represented by dotted line. A bound molecule of PEG (yellow) occupies the
active site. N-terminal tag residues forming part of strand b1 are shaded orange. B) Depiction of side chains within 4 Å of the PEG molecule are
depicted, including surrounding water molecules. Polarity of Glu134 is neutralised by polar groups of Tyr 56, Tyr136 and Trp111 side chains.
doi:10.1371/journal.pone.0016934.g004
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central glutamate reside of BmrR (alanine and glutamine

variants) resulted in unpredicatable binding affinities for TPP,

berberine and rhodamine 6G. This led the Brennan group to

propose that the overriding enthalpic contributors to binding

affinity are the Van der Waals and stacking interactions between

protein and drug compound, rather than charge-charge interac-

tions [27]. This is consistent with our observation of little

alteration of tight binding of TPP to Cass2 with loss of the

glutamate charge.

Given we can demonstrate that Cass2 successfully binds the

same cationic compounds known to associate with transcriptional

regulators, minimal inhibitory concentration (MIC) assays were

undertaken to determine if the Vch_cass2 gene could directly confer

resistance to Vibrio cells growing on media containing these

compounds. Laboratory strains Vch_cass2+ and Vch_cass2 were

prepared, but in the presence of all compounds, no difference in

cell growth was observed for the two strains. The inability of

Vch_cass2+ gene to directly confer resistance to cationic com-

pounds points to the need for protein factors in addition to the

effector domain to be present for effective regulation of their

cellular metabolism.

A Conserved Protein-Binding Interface
Two sequence segments of the Cass2 sequence family not

directly associated with the ligand-binding cleft stand out as

strongly conserved. One encompasses the sequence motif -YESD-

located from Tyr59 within the b3/b4 loop. When mapped onto

the three-dimensional fold of Cass2, these side chains, in addition

to residues Phe63, Thr64 and Ala66, cluster along a projected

surface feature well to the ‘‘base’’ of the binding cleft (depicted in

Figure 7A). An additional conserved segment, -VWxYF- (from

Val114 in Cass2), is the origin of exposed Trp and Phe side

chains which elongate the same surface. The entire region is

relatively flexible in the crystal structure, with high B-factors

observed for the loop residues.

A possible role for this surface becomes evident when, for

instance, the structure of Cass2 is overlaid with that of the two-

domain Rob transcription factor [26]. This highlights a remark-

able preservation of molecular properties of this surface in both

systems (Figure 7B). In the Rob protein, the site clearly forms the

interface between the effector-binding (C-terminal) and DNA-

binding (N-terminal) domains. Despite being a single module,

Cass2 retains some of the hydrophobic features of the interface,

as well as possessing protruding charged side chains, including

Arg149 (as its C-terminal residue). In the Rob structure, the

analogous side chain at this location (Arg288) participates in an

electrostatic interaction across to the neighbouring DNA-binding

domain. Thus, Cass2 gives every appearance of being suitably

organised for interaction with a protein partner with features

common to the helix-turn-helix domains utilised by its sequence

relatives.

It should be noted that the organization of both Cass2 and

Rob differ completely from the situation found in the BmrR fold

homolog, the interdomain interface of which is located on the

opposite side of the effector-binding module [31]. The BmrR

interaction interface entails the packing of the DNA-binding

domain of each monomer against the drug-binding domain of its

dimerisation partner [31]. Amongst the structural elements

necessary for stabilizing this interaction, a 10-residue loop from

the drug-binding domain intercalates helices a39 and a49 of the

DNA-binding domain. The corresponding loop in Cass2,

connecting strands b7 and b8, is relatively short (136–140) and

unlikely to participate in a similar interaction. The absence of a

linker helix in Cass2, oriented on the same side as the domain

interface and essential for dimerisation in BmrR, further rules out

this region as a putative protein-binding interface.

Figure 5. Structural homologs of Cass2. A) Stereo superposition
(wall-eyed view) of Cass2 crystal structure (red), C-terminal domain of
Rob transcription factor, E.coli (purple, PDB 1D5Y) [26], gyrase inhibitory
protein GyrI, E.coli (orange, PDB 1JYH) [28], C-terminal drug-binding
domain of BmrR, B. subtilis (green, PDB 3D6Z) [27]. B) Overlay of active
site of drug-bound BmrR (green, PDB 2BOW) on Cass2 (red) identifies
analogous positions of ligand binding residues. Bound TPP and PEG
molecules depicted in black. Coordinates of sidechain Tyr33 of BmrR are
separately taken from PDB 1R8E [66]. C) Overlay of putative
transcription regulation protein from Staphylococcus aureus (cyan,
PDB 3LUR) on Cass2 (red) identifies altered chemistry of cavity
residues.
doi:10.1371/journal.pone.0016934.g005
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Discussion

Our experimental evidence establishes that the gene cassette

Vch_cass2 encodes a single and independent binding domain for

cationic compounds. The structure (and sequence) of its protein

product Cass2 readily confirms its homology to effector-binding

domains associated with the AraC/XylS and MerR family of

transcription regulators. These well-characterized factors are

mediators of bacterial antibiotic and multi-drug resistance through

their ability to both recognise effector molecules and to regulate

transcription of the appropriate efflux system [21,25,30]. Although

these multi-domain proteins usually possess similar DNA-binding

domains, it is through variation of the effector-binding domain

that response and binding is adapted to a range of ligand types.

The crystal structure of Cass2 depicts PEG in a binding site

organised with features reminiscent of those of the effector

modules of bacterial regulators [27,29]. Our fluorescence assays

confirmed Cass2 to be particularly well adapted for tightly

binding the cationic drugs which serve as ligands to the AraC/

MerR family. Hydrophobic forces appear to predominate within

the binding interactions, and (unlike BmrR) the Cass2 domain is

capable of binding monovalent and bivalent ligands. Within the

structural framework of Cass2, a distinct loop feature extending

from helix a2 edging the central sheet (residues 41–46) is proposed

to undergo structural rearrangement so as to facilitate ligand entry.

Significant sequence homologies are found between Cass2 and

genes from a group of phylogenetically-related Vibrio and

Shewanella species. The crystal structure presented here therefore

defines the paradigm fold for a new family of effector-binding

proteins prevalent within these marine-dwelling species. Sequence

variation between the two related groups of proteins is restricted to

the putative hinge region (C-terminus of helix a2) as well as strand

b4. Thus a slightly altered ligand accessibility may have evolved

for the distinct clades outlined here.

The association of the Vch_cass2 gene with mobile DNA

elements, also notably evident for its group of related homologs,

emphasises the mechanism by which these binding modules can be

laterally transferred between species. While the presence of a

DNA-binding partner appears necessary for transcription regula-

tion, we cannot rule out the possibility that the biological function

of Cass2 itself may be to provide a self-contained low-level

multidrug resistance system, capable of sequestering drugs and

preventing them from reaching further intracellular targets. The

role of cationic drugs in treatment of cholera and inhibition of

cholera toxin-internalization has been previously reported

[32,33,34]. The depiction in this work of a novel effector domain

capable of binding cationic compounds is therefore of immediate

interest, given that these are encoded within the mobile integron

gene cassette system.

We have, however, noted surface features in the Cass2
structure consistent with a protein interaction site adjacent to

the active-site cavity. We propose this to comprise a potential site

for interaction of the effector-binding module with a specific DNA-

binding domain, so as to mimic the organisation of the multi-

domain transcription regulators. This is congruent with the more

general observation that two interacting prokaryotic proteins, not

necessarily encoded by neighbouring genes, may be found fused as

a single chain homolog in another organism [35,36,37]. Such

component proteins might be engaged in either direct physical

interaction or an indirect functional association [35]. Sequence

searches were conducted to locate any likely companion module(s)

for Cass2 in V. cholerae; no sequence homolog of the single-

domain protein MarA (from E. coli) [38] was found amongst gene

cassettes from the same environmental isolate as Cass2. However,

wider sequence searches across published Vibrio genomes do reveal

the existence of single-domain homologs (ZP_01062623.1;

ZP_01976746.1) containing the helix-turn-helix motifs present in

both MarA and Rob relatives.

The overall structure of the Cass2 protein and its relationship

to other members of the AraC/XylS and MerR family reinforces

Figure 6. Titration of Cass2 with cationic ligand. Fluorescence quenching is plotted during tetraphenylphosphonium chloride (TPP) binding to
Cass2 (m) and free tryptophan (&) for A) wild-type and B) E134Q mutant forms of the protein. Relative fluorescence quenching (DF) values were
calculated by non-linear regression plot for C) wild-type and D) mutant, leading to determination of KD values (0.2 mM). Fluorescence emission was
monitored at 350 nm following excitation at 295 nm (slit widths 10 and 5 nm, respectively).
doi:10.1371/journal.pone.0016934.g006

Table 1. Ligand binding affinities (KD (mM)) of Cass2 and
BmrR for cationic compounds.

Cass2a BmrR

wt E134Q wt E134Q

monovalent:

benzalkonium chloride 0.1060.50 0.3060.06 - -

tetraphenylphosphonium
(TPP)

0.2060.08 0.2060.13 74.0620.5b; 62.6063.30

100c

divalent:

chlorhexidine 0.2060.05 0.1060.02 - -

atryptophan fluorescence quenching experiments (this work), 24uC, pH 7.5.
bfrom isothermal titration calorimetry binding assays [27].
cfrom equilibrium dialysis methods [23,69].
doi:10.1371/journal.pone.0016934.t001
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the notion that gene cassettes within integron arrays generally

move and rearrange independently of one other. Given that many

cassettes encode single small domain proteins, loss of intervening

attC site sequences may lead to permanent fusion of gene cassettes

so as to instead encode a multi-domain polypeptide that confers

advantage. Our recovery of an independent single domain with

effector-binding capacities is significant as a possible evolutionary

precursor to the multi-domain transcription regulators, of which

the AraC and MerR families are examples.

Evidence for fusion events in the evolution of MerR regulators

has previously been outlined [18,31]. For example, the tipA gene of

S. lividans encodes single and two domain gene products. The full-

length gene product (TipAL) comprises an N-terminal helix-turn-

helix domain which auto-regulates the tipA gene in conjunction

with a thiostrepton-binding domain. In vast molar excess,

however, a shorter in-frame translational product (TipAS)

comprising solely the drug-binding domain is independently

transcribed [39,40,41]. Thus new types of transcriptional regula-

tors are likely to evolve via gene fusion events incorporating

different effector-binding domains coupled to DNA-processing

modules. The depiction in this work of a novel effector domain

encoded within an integron gene cassette suggests that integrons

play an important role in this evolution of complex multi-domain

proteins.

Materials and Methods

Gene Isolation
Strain OP4G of V. cholerae was isolated from a brackish coastal

pond (Oyster Pond, Falmouth, MA, USA) as follows. Several

water samples (1 ml) were spread directly agar containing on

thiosulfate/citrate/bile salts/sucrose (TCBS; commonly used to

isolate members of genus Vibrio) [42] and incubated overnight at

37uC. Isolated colonies of a yellow colour (i.e. sucrose positive)

[43] were picked and re-streaked on tryptic soy broth media. After

further overnight incubation, isolated colonies were picked and re-

streaked on TCBS media and again incubated overnight. This

procedure was repeated twice to ensure pure cultures of the

isolates, on which cassette-PCR [44] was performed to isolate

integron gene cassettes, including Vch_cass2.

Protein Preparation
Cass2 was produced recombinantly in Escherichia coli strain

BL21-CodonPlus (DE3)-RIPL (Stratagene) with an N-terminal

affinity tag (MGSSH6SSGRENLYFQG-Cass2) using the plasmid

p15TV-L. Cass2 was derivatized with selenomethionine (SeMet),

as provided within the M9 SeMet media kit (Medicilon, Shanghai)

supplemented with antibiotics (ampicillin (100 mg/ml), chloram-

phenicol (25 mg/ml)). Cells were grown at 37uC until OD600 1.2

and induced with 1 mM IPTG (Medicilon, Shanghai) prior to

overnight growth at 25uC. Harvested cells (from 1 l culture) were

frozen in Buffer A (50 mM HEPES buffer (pH 7.5), 500 mM

sodium chloride, 5 mM imidazole, 5% glycerol) and sonicated in

the presence of protease inhibitors (phenylmethylsulphonyl

fluoride (0.5 mM) and benzamidine (1 mM).

Following storage (80uC), the soluble cell fraction was loaded onto

Ni-nitroloacetic affinity media (Qiagen) washed with Buffer A and

eluted with Buffer A containing 250 mM imidazole. After addition

of ethylenediamine tetraacetic acid (EDTA, 1 mM), purified Cass2
was dialysed into Buffer B (10 mM HEPES buffer (pH 7.5),

500 mM sodium chloride) and concentrated to ,20 mg/ml for

crystallization. The reducing reagent tris-(2-carboxyethyl)-phos-

phine (0.5 mM) was added to all purification buffers.

(E134Q)Cass2 was prepared using a commercial kit (Quik-

change II, Stratagene). The recombinant protein was prepared

with E. coli BL21 (DE3) Rosetta cells (Merck) in Luria Bertani (LB)

medium at 37uC. Following induction (0.2 mM IPTG) and growth

at 20uC for 5 h, cells were recovered and the mutant protein

isolated from the soluble fraction by batch affinity chromatogra-

phy (HisTrap, GE Healthcare). Protein buffers were as above.

Figure 7. Potential protein-binding interface in Cass2. A) Ribbon structure of Cass2 coloured according to sequence conservation across the
Vibrio and Shewanella clades (red, fully conserved; green, homologous; see Figure 3). Conserved residues cluster in the PEG-binding cavity and a
separate putative protein-binding surface. B) Features of the protein-binding surface in Cass2 (red) overlay with those of the interface between
effector-binding (purple) and DNA-binding (blue) domains of the two-domain Rob protein (PDB 1D5Y) [26]. Inset shows magnified view of domain
interface of Rob and analogous key residues in Cass2.
doi:10.1371/journal.pone.0016934.g007
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Crystallization and Structure Determination
Using sitting-drop format, crystals of Cass2 were grown to

diffraction quality in 0.1 M citric acid (pH 3.50), 25% (w/v) PEG-

3350. The crystals (P3221 space group; a = 59.38 Å, b = 59.38 Å,

c = 95.76 Å) were cryo-protected by immersion in paratone-N

(Hampton Research) prior to flash freezing. Diffraction data was

collected at 100 K using synchrotron radiation at the selenium K

absorption edge (beamline 19-ID, APS, Argonne National

Laboratory).

Diffraction data to 1.8 Å was processed using MOSFLM [45],

SCALA [46] and CCP4 software [47]. The structure was solved

by SAD using modules of the Phenix suite [48], with anomalous

scattering substructure searches and density modification from the

AutoSol wizard [49] identifying five Se sites. A preliminary model

(88 residues, overall model-map correlation of 0.56) was built and

visualized in Coot [50] and monitored throughout refinement

(ADIT server) [51]. AutoBuild [52] was used for iterative model

building, and the resulting model subjected to 20 macro-cycles of

combined TLS, occupancy, coordinate and individual ADP

refinement in phenix.refine [53]. An elongated electron density

clearly visible in the Fourier difference map during the last

refinement cycles was modelled using coordinates for polyethylene

glycol (PEG 4000) from the HIC-Up database [54]. Data and

refinement parameters are summarized in Table 2.

The structure of Cass2 reveals one chain per asymmetric unit,

with electron density visible for 153 residues, including 7 residues

of the affinity tag. No density was observed for residues 120–122

(Ser-Glu-His). Residues SeMet1 (strand b1), SeMet24 (helix a1)

and Trp115 (helix a2) showed alternative conformations, sugges-

tive of increased mobility within these portions of the molecule.

The Ramachandran plot shows .96% of residues in most

favoured regions; one outlier (Ser61; average B-factor = 50.1)

occurs within an elongated loop (residues 58–66) connecting

strands b3 and b4 of the central b-sheet.

Sequence and Structure Analysis
Sequence homology searches of the non-redundant database (as

at Nov, 2009) were performed using PSI-BLAST with a set

threshold E-value ,10210 and iterated until convergence (11

rounds) [55]. A TBLASTn search was also performed against the

translated nucleotide sequence database of the Vibrio genus. The

retrieved amino acid sequences (248 in total) were subjected to a

phylogenetic analysis using a suite of programs within the Mobyle

web interface [56]. Multiple sequence alignments were generated

using ClustalW [57] and edited using Bioedit [58] to remove gaps.

The Phylip package [59] within the Mobyle portal was used to

generate a distance matrix tree using Protdist and Neighbor. The

confidence of nodes in amino acid analyses was estimated by 1,000

bootstrap replicates generated using SEQBOOT and compiled in

a consensus tree with CONSENSE. The resulting tree was viewed

with the Drawgram application. CD-Search and CDART tools of

NCBI [60] were used to identify related sequence families of

Cass2 and to locate homologs within other domain organizations

(as at May, 2010). DALI [61] and PDBeFold (previously SSM)

[62] servers were used to identify structural homologs of the crystal

structure, as was the SCOP database [63].

Binding Assays by Intrinsic Tryptophan Quenching
Fluorescence assays were used to detect binding of compounds

to Cass2 and related mutants. Concentrated ligand solutions in

Buffer B were titrated into a 400 ml sample of protein (180 nM in

Buffer B) and Trp fluorescence monitored. As a control, each

compound was also titrated into a 1.3 mM sample of tryptophan

(99% purity) in Buffer B, a concentration selected as yielding

similar fluorescence to the initial Cass2 sample prior to titration.

Fluorescence intensities were recorded at 22uC with a PerkinEl-

mer LS55 fluorescence spectrophotometer using a 1 cm60.2 cm

quartz cell. When subjected to an excitation wavelength of 295 nm,

Cass2 displayed maximum emission at 34961 nm (apo form) and

34461 nm (fully bound). Thus, fluorescence quenching was

monitored by recording emission at 350 nm for all samples

following excitation at 295 nm (slit widths 10 and 5 nm,

respectively) with an integration time of 5 s. All readings were

corrected for buffer background emission and sample dilution.

Inner-filter effects were measured by titrating each compound into a

1.3 mM sample of tryptophan in Buffer B and the relative

fluorescence quenching (DF) corrected as follows [64]:

DF = (F02FC (FW0/FWC))/F0 where F0 = fluorescence intensity

of protein sample, FC = fluorescence intensity of protein with

added compound, FW0 = fluorescence intensity of free tryptophan

solution, FWC = fluorescence of tryptophan solution with added

compound.

Standard deviation was calculated for the individual DF values

from three independent experiments. For the determination of

dissociation constants (KD) for the interactions, DF was plotted

against compound concentration and fitted to the following

equation by non-linear regression using Kaleidagraph (Synergy

software):

Table 2. Selected crystallographic statistics for Cass2
structure determination.

Data collection

Resolution (Å) (outer shell) 1.8 (1.90 - 1.80)

Unique reflections 18598

Completeness (%) (outer shell) 99.6 (99.7)

I/s(I).(outer shell) 21 (3.6)

Multiplicity 9.9

Rmerge
a (outer shell) 0.062 (0.561)

Anomalous completeness (outer shell) 99.7 (99.8)

Anomalous multiplicity (outer shell) 4.8 (4.6)

SAD Phasing statistics

Number of SeMet 4

Extent of anomalous signal (Å)b 2.4

Refined sites 11

Figure of meritc

acentric, centric, overall 0.419, 0.133, 0.384

Refinement statistics

Solvent content, VS (%) 50.82

Rcryst/Rfree 0.185/0.227

Reflections in Rcryst/Rfree 34832/1782

Resolution range (Å) 35.04-1.8

Mean B-factor (Å2) 27.22

r.m.s.d. bond lengths (Å)c, bond angles (u)d 0.008, 1.2

Ramachandran plote

favoured (%),allowed (%),outliers 96.8, 99.4, 1

aSSi|Ih2Ihi|/SSiIh, where Ih is the mean intensity of reflection h,
bAccording to AutoSol wizard in Phenix [49],
cAccording to Phaser [67] in Phenix [48] with resolution 47.88 – 1.80,
dFrom ADIT Validation server [51],
eFrom Molprobity [68].
doi:10.1371/journal.pone.0016934.t002
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DF = ((DFb2DFf) [Cass2])/(KD+[Cass2]))+DFf where DF is the

relative fluorescence quenching, DFb is the maximum relative

fluorescence quenching (ligand-saturated Cass2); DFf is the

relative fluorescence quenching of unbound Cass2.

Inhibition Assay
Plasmid pJAK16+Vch_cass2 was prepared and conjugated into

Vibrio sp. DAT722 [16] to create strain Vch_cass2+. Minimal

inhibitory concentration (MIC) assays were conducted with the

cationic agents in 96-well plate format using a broth micro-dilution

technique [65]. Vch_cass2+ and Vch_cass22 (control strain: Vibrio

sp. DAT722+pJAK16 plasmid without Vch_cass2 gene) were

grown overnight (37uC) in LB/salt medium. Subcultures (1/100,

1/20 dilutions) were grown at 37uC until OD600 value 0.6. Wells

were inoculated with 10 ml subculture following further dilution

(1/100 in LB/salt medium), and growth monitored by recording

OD595 after 16 h.

PDB Accession Number
Coordinates and structure factors for Cass2 are deposited as

PDB file 3GK6.
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