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Abstract

Cynomolgus monkey and rhesus monkey are used in drug metabolism studies due to their evolutionary closeness and
physiological resemblance to human. In cynomolgus monkey, we previously identified cytochrome P450 (P450 or CYP) 2C76
that does not have a human ortholog and is partly responsible for species differences in drug metabolism between
cynomolgus monkey and human. In this study, we report characterization of CYP2C93 cDNA newly identified in cynomolgus
monkey and rhesus monkey. The CYP2C93 cDNA contained an open reading frame of 490 amino acids approximately 84—
86% identical to human CYP2Cs. CYP2C93 was located in the genomic region, which corresponded to the intergenic region
in the human genome, indicating that CYP2C93 does not correspond to any human genes. CYP2C93 mRNA was expressed
predominantly in the liver among 10 tissues analyzed. The CYP2C93 proteins heterologously expressed in Escherichia coli
metabolized human CYP2C substrates, diclofenac, flurbiprofen, paclitaxel, S-mephenytoin, and tolbutamide. In addition to a
normal transcript (SV1), an aberrantly spliced transcript (SV2) lacking exon 2 was identified, which did not give rise to a
functional protein due to frameshift and a premature termination codon. Mini gene assay revealed that the genetic variant
IVS2-1G>T at the splice site of intron 1, at least partly, accounted for the exon-2 skipping; therefore, this genotype would
influence CYP2C93-mediated drug metabolism. SV1 was expressed in 6 of 11 rhesus monkeys and 1 of 8 cynomolgus
monkeys, but the SV1 in the cynomolgus monkey was nonfunctional due to a rare null genotype (c.102T>del). These results
suggest that CYP2C93 can play roles as a drug-metabolizing enzyme in rhesus monkeys (not in cynomolgus monkeys),
although its relative contribution to drug metabolism has yet to be validated.
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monkey CYP2C20 and rhesus monkey CYP2C74, both orthologous
to human CYP2C8, as CYP2C8. Macaque CYP2C8 shows 92%
sequence identity to human CYP2C8, while macaque CYP2C43
and CYP2C75 are 91-93% identical to both human CYP2C9 and

Introduction

The cytochrome P450 (P450 or CYP) superfamily contains a large
number of genes, 57 functional genes and 58 pseudogenes in human

(see http://drnelson.uthsc.edu/cytochromeP450). One of its sub-
families, the CYP2C subfamily, comprising CYP2C8, CYP2C9,
CYP2C18, and CYP2C19 in human, metabolizes approximately
20% of all prescribed drugs, including ibuprofen, phenytoin,
tolbutamide, and warfarin [1]. Between human and mouse, the
number of CYP2Cs differs, indicating the difficulty in determining
orthologous relationships of C1P2Cs between the two species [2].
This suggests that the data from rodent must be cautiously
interpreted and extrapolated to human.

For macaques, including cynomolgus monkey (Macaca fascicu-
laris) and rhesus monkey (Macaca mulatta), the species used in
preclinical studies, five CYP2C ¢cDNAs have been identified in
cynomolgus monkey and rhesus monkey, CYP2C8, CYP2C18,
CYP2C43, CYP2C75, and CYP2C76 [3,4,5,6,7,8]. After consult-
ing with the P450 Nomenclature Committee (http://drnelson.
uthsc.edu/cytochromeP450), in this paper, we designate cynomolgus
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CYP2C19. In contrast, macaque CYP2C76 cDNA is only 70-72%
identical to any human CYP2Cs [6,8]. The investigation of
CYP2C76 revealed that CYP2C76 is not orthologous to human
genes [6] and that CYP2C76 is at least partly responsible for the
difference in drug metabolism between macaque and human [9].
Therefore, identification and characterization of the macaque-
specific genes are important for understanding the differences of
drug metabolism in the two species.

Macaques are essential for biomedical research of not only drug
metabolism, but also neuroscience and behavior. Recently, the
rhesus monkey genome has been sequenced [10] and now can be
utilized to understand the similarities and differences between
macaques and human in biomedical research. We have made
extensive efforts to identify and characterize potential species-
specific genes relevant to drug metabolism in macaque. In this
paper, we report the identification of CYP2C93 in cynomolgus
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monkey and rhesus monkey. This novel CYP2C had a relatively
low sequence identity to human and macaque CYP2Cs. For
functional characterization of CYP2C93, mRNA expression was
determined in various tissues and protein expression was analyzed
in liver. Moreover, to assess orthologous relationships to human
genes, the location of CYP2C93 in the macaque CYP2C cluster was
determined. Finally, the metabolic capacity of CYP2C93 was
analyzed using heterologously expressed macaque CYP2C pro-
teins and human CYP2C substrates (diclofenac, flurbiprofen,
paclitaxel, S-mephenytoin, and tolbutamide). Further, the exon 2-
skipped transcript variant identified in the course of this study was
also characterized.

Methods

Ethics statement

All animal experiments (sample collection) were reviewed and
approved by the Institutional Animal Care and Use Committee
of Shin Nippon Biomedical Laboratories, Ltd. (approval no.
PRF6043). All animals, housed and handled in strict accordance
with good animal practice under supervision of veterinarians,
received environmental enrichment and were monitored for
evidence of disease and changes in attitude, appetite, or behavior
suggestive of illness. In accordance with the recommendations of
Weatherall report, “The use of non-human primates in research,”
every effort was made to alleviate animal discomfort and pain by
appropriate and routine use of anesthetic and/or analgesic agents.

Materials

Diclofenac, flurbiprofen, paclitaxel, S-mephenytoin, and tolbuta-
mide were purchased from Sigma-Aldrich (St. Louis, MO).
Oligonucleotides and TagMan probes were synthesized by Invitro-
gen (Tokyo, Japan) and Biosearch Technology Japan (Tokyo,
Japan), respectively. All other reagents were purchased from Wako
(Osaka, Japan) unless otherwise specified.

Tissue samples and preparation of RNA and genomic
DNA

Tissue samples were collected from 6 cynomolgus monkeys (3
males and 3 females from Indochina, 4-5 years of age, weighing
3-5 kg) and total RNA was extracted from the tissues as previously
described [6]. The tissue samples collected were brain, lung, heart,
liver, kidney, adrenal gland, jejunum, testis, ovary, and uterus,
which were used to analyze the tissue expression pattern of
CYP2C93 mRNA. Similarly, total RNA was also extracted from
liver samples of 11 rhesus monkeys (5 males and 6 females from
China, 7 years of age, weighing 3-5 kg) and 8 cynomolgus
monkeys (from Indochina or Indonesia, 4-5 years of age, weighing
3-5 kg), which were used to analyze expression of CYP2C93
transcript variants. For the same animals, genomic DNA was
extracted from whole blood samples using the PUREGENE DNA
isolation kit (Gentra Systems, Minneapolis, MN) or from liver
samples using the DNeasy Blood & Tissue kit (QIAGEN,
Valencia, CA) according to the manufacturer’s instructions.

Cloning and sequencing

Reverse transcription (RT)-polymerase chain reaction (PCR)
was performed as previously described [6] using total RNA
extracted from cynomolgus monkey (mfI'l) and rhesus monkey
(mm35) liver. Briefly, the first-strand cDNA was generated in a
mixture containing 1 pg of total RNA, oligo (d'T), and SuperScript
II RT reverse transcriptase (Invitrogen) at 37°C for 1 h. The
subsequent PCR was carried out with the generated cDNA as a
template using KOD Plus DNA polymerase (Toyobo, Osaka,
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Japan) according to the manufacturer’s protocol with a thermal
cycler (Applied Biosystems, Foster City, CA). PCR conditions
include an initial denaturation at 95°C for 2 min and 35 cycles at
95°C for 20 s, 58°C for 20 s, and 72°C for 2 min, followed by
a final extension at 72°C for 10 min. The primers used were
5"-ATGTCTGGAGAAGAGAAGGC-3" and 5'-GACTTGCA-
GGTGACAAAAGATCA-3'. The amplified cDNAs were, after
addition of an A-overhang, cloned into pCR2.1-TOPO vectors
using TOPO TA Cloning Kit (Invitrogen) and the inserts were
sequenced using ABI PRISM BigDye Terminator v3.0 Ready
Reaction Cycle Sequencing Kit (Applied Biosystems), followed by
electrophoresis with an ABI PRISM 3730 DNA Analyzer (Applied
Biosystems).

5’ rapid amplification of cDNA ends

To verify the translational initiation codon of the cDNA
sequence, 5" rapid amplification of cDNA ends (RACE) was carried
out with liver total RNA of cynomolgus monkey (mfF1) and rhesus
monkey (mm35) using 5 RACE System for Rapid Amplification of
c¢DNA Ends (Invitrogen) according to the manufacturer’s protocol.
The primers for 5" RACE were as follows: 5'-CAACTCCTCCA-
CAATAC-3" for RT reaction, 5'-CGCAGTCCTCAATGCTT-
CTCTTA-3" for the initial PCR, and 5'-CCAAAATTTCG-
CAAGGTCAAA-3' for the nested PCR. The PCR products were
cloned into pCR2.1-TOPO vectors and the inserts were sequenced
as described earlier.

Analysis of CYP2C93 transcripts

Expression of CYP2C93 transcript variants (SV1 and SV2),
retaining and lacking exon 2, respectively, was assessed by R'T-
PCR with additional liver total RNAs of 7 cynomolgus monkeys
and 10 rhesus monkeys. RT products generated as described
earlier were used for PCR that was performed with gene-specific
primers (10 pmol), 0.2 mM dNTPs, 2 mM MgCly, and 1 unit of
AmpliTaq Gold DNA polymerase (Applied Biosystems) in a total
volume of 20 pul. PCR conditions were as follows: 95°C for
10 min; 30 cycles at 95°C for 15 s, 60°C for 30 s, and 68°C for
1 min; final extension at 68°C for 5 min. The primers used were
5-TCCTTTCACTCTGGAGACAGAGTTC-3" and 5'-CCA-
AAATTTCGCAAGGTCAAA-3'. The reaction was run on an
agarose gel to visualize the amplicons.

Sequence analysis

Sequence data were analyzed with DNASIS Pro (Hitachi
Software, Tokyo, Japan) and the Genetyx system (Software
Development, Tokyo, Japan). Multiple alignment of amino acid
sequences was performed using the ClustalW program and the
results were used to create a phylogenetic tree by the neighbour-
joining method. A homology search was conducted using BLAST
(National Center for Biotechnology Information). The human,
chimpanzee, orangutan, rhesus monkey, and marmoset genome
data were analyzed using BLAT (UCSC Genome Bioinformatics).
The P450 amino acid sequences found in GenBank were used for
the analysis, including human CYP2A6 (NP_000753), CYP2C8
(NP_000761), CYP2C9 (NP_000762), CYP2C18 (NP_000763),
and CYP2C19 (NP_000760); cynomolgus monkey CYP2C8
(P33262), CYP2C18 (ABB87194), CYP2C43 (AAZ29452),
CYP2C75 (AAZ29451), and CYP2C76 (AAZ29453); rhesus
monkey CYP2C8 (NP_001035300), CYP2C43 (NP_001035329),
CYP2C75 (NP_001035301), and CYP2C76 (NP_001171259);
marmoset CYP2C8 (BAF37097); dog CYP2C21 (AACO05209)
and CYP2C41 (NP_001003334); and rat CYP2C6 (P05178),
CYP2C7 (NP_058854), CYP2Cl11 (NP_062057), CYP2C12
(NP_113760), CYP2C13 (NP_612523), CYP2C22 (NP_612521),
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and CYP2C23 (NP_114027). Amino acid sequences deduced from
the cynomolgus and rhesus monkey CYP2C93 cDNAs identified
in this study were also used for the analysis. A one-base deletion in
exon | of the cynomolgus monkey CYP2C93 cDNA was filled in
with thymine, the nucleotide found in wild-type animals.

Analysis of CYP2C93 genomic arrangement

Analysis of bacterial artificial chromosome (BAC) clones was
performed using the rhesus monkey C1YP2C BAC clones (BACPAC
Resources, Oakland, CA) as previously described [6] with the
following modifications. PCR amplification was performed using
the CYP2C BAC DNA as a template with gene-specific primers
(5 pmol), 0.5 mM dNTPs, 2 mM MgCly, and 1 unit of AmpliTaq
Gold DNA polymerase (Applied Biosystems) in a total volume of
20 ul. PCR conditions were as follows: 95°C for 10 min; 30 cycles
at 95°C for 20 s, 55°C for 20 s, and 72°C for 1 min; and a final
extension at 72°C for 10 min. The CYP2C93 primers used were;
5'-CTGGTGCTCTGTCTCTCCTGTT-3" and 5-TGCTGA-
AAGATTTGCTGATATTC-3' for the 5’ end, and 5'-CTGAA-
ATCTCTTACTGATTTAAAGGC-3" and 5'-TCTGGTATGA-
AGGTAGCATAGAAACAAG-3' for the 3’ end of the gene. The
primers for CYP2C8 and CYP2C76 were the same as previously
described [6].

Amplification of CYP2C93 exons

The gene fragments containing exon 1 or exons 2/3 were
amplified for identification of genetic polymorphisms. Exon 6 was
amplified to complete the CYP2C93 sequence because the gene
sequence around exon 6 was not found in the rhesus monkey
genome data. PCR was carried out with cynomolgus monkey
genomic DNA using 5 pmol of each primer, 0.5 mM dNTPs,
2 mM MgCly, and 1 unit of LA Taq DNA polymerase (Takara,
Tokyo, Japan) in a total volume of 20 pl. The primers used were
5"-CCTTGACTCCAATCCAATGC-3" and 5'-CCAAAATGT-
TTCTCCACTCACA-3" for exon 1, and 5'-GTTCTCCTG-
ACCTCCGTTTC-3" and 5'-CTGGAACCCAGGTTTATGC-
T-3" for exons 2/3, and 5'-GACCTTCCCAGGCTTCAG-3’
and 5'-TCCTATTTTGGCAAACACCA-3' for exon 6. Thermal
cycler conditions were as follows: 95°C for 2 min; 35 cycles at
95°C for 20 s, 55°C for 30 s, and 72°C for 5 min; and a final
extension at 72°C for 20 min. The PCR products were cloned into
pCR-XL-TOPO vectors using TOPO XL Cloning Kit (Invitro-
gen) according to the manufacturer’s protocol, followed by
sequencing of the inserts as described earlier.

Real-time RT-PCR

The expression level of the CYP2C93 mRNA was measured as
previously described [6] using the primers and a probe specific for
CYP2C93 mRNA with the following modifications. Briefly, the RT
reaction was carried out using random primers (Invitrogen) as
described above; one twenty-fifth of the volume was used for the
subsequent PCR. The amplification was carried out in a total
volume of 25 pl using TagMan Universal PCR Master Mix
(Applied Biosystems) with an ABI PRISM 7500 sequence detection
system (Applied Biosystems) according to the manufacturer’s
protocol. The primers employed were 5'-GAGTGGCAACTT-
TAAGAAAAGTGAAA-3" and 5'-TCTGGTATGAAGGTAG-
CATAGAAACAAG-3', and the probe was 5'-FAM-CTCAA-
TGCCACTCCCACTGCCAAA-BHQ-3'". The final concentra-
tion of the primer set and the probe was 600 and 200 nM,
respectively. The primers and probes of CYP2C8, CYP2C43,
CYP2C75, and CYP2C76 mRNAs were as described previously
[6]. The relative expression level was determined by normalization

@ PLoS ONE | www.plosone.org

Cloning and Characterization of CYP2C93

of the raw data to the 18S ribosomal RNA level based on three
independent amplifications.

Heterologous protein expression in Escherichia coli

For characterization of CYP2C93 proteins, CYP2C93v1l and
CYP2C93v2, corresponding to CYP2C93 transcript variants, SV1
and SV2, respectively, expression plasmids were generated and the
proteins were expressed as previously reported [6,11]. A total of
three expression plasmids were constructed based on cynomolgus
monkey CYP2C93 SV1 and SV2 c¢DNAs, and rhesus monkey
CYP2C93 SV1 ¢cDNA. CYP2C93 SV1 and SV2 ¢DNAs isolated
from cynomolgus monkey contained a one-base deletion
(c.102T>del); therefore c.102 was filled in with thymine, using the
QuikChange XL IT kit (Stratagene) according to the manufacturer’s
protocol, to generate plasmids for cynomolgus monkey CYP2C93.
The primers used were 5'-CCTGGCCCCACtCCTCTCCCTAT-
TATTGG-3" and 5'-CCAATAATAGGGAGAGGaGTGGGGC-
CAGG-3' where the lower case letters indicate the nucleotides to be
altered. The insert sequences were confirmed by sequencing. Using
these plasmids as templates, PCR was performed to modify the N-
terminus of the expressed protein to enhance protein expression as
described previously [6]. The PCR primers used were 5'-
GGAATTCCATATGGCTCTGTTATTAGCAGTTTTTCTC-
TGTCTCTCCTGTTTGCTTCT-3" and 5'-GCTCTAGACTT-
AACCTTCTTCAGACAGGAGT-3'. Expression plasmids of cy-
nomolgus monkey CYP2C8, CYP2C43, CYP2C75, and CYP2C76
proteins were prepared as described previously [6]. Protein
expression in . coli using the expression plasmids and membrane
preparations from the E. coli cell were performed as described
previously [6,11]. The content of P450 protein and NAPDH-P450
reductase in each membrane preparation was determined as
described previously [11].

Enzyme assays

Cynomolgus and rhesus monkey CYP2C93 proteins, along
with cynomolgus monkey CYP2C8, CYP2C43, CYP2C75, and
CYP2C76 proteins, were analyzed for drug-metabolizing capability
using human CYP2C substrates, diclofenac, flurbiprofen, paclitaxel,
S-mephenytoin, and tolbutamide, as described previously [12,13,14].
Briefly, a typical incubation mixture (0.25 ml) contained recombinant
CYP2C protein (5 pmol) or cynomolgus monkey liver microsomes
(0.1 mg protein/ml), an NADPH-generating system (0.25 mM
NADP?, 2.5 mM glucose 6-phosphate, and 0.25 unit/ml glucose 6-
phosphate dehydrogenase), and substrate (50 uM diclofenac,
100 uM flurbiprofen, 100 uM paclitaxel, 200 pM S-mephenytoin,
or 1 mM tolbutamide) in 50 mM potassium phosphate buffer
(pH 7.4). Reactions were incubated at 37°C for 15 min and
terminated by adding 0.25 ml of ice-cold acetonitrile. After
centrifugation at 900 g for 5 min, metabolites from diclofenac and
flurbiprofen in the supernatant were determined by high-perfor-
mance liquid chromatography with ultraviolet and fluorescence
detectors, respectively. Metabolites of other substrates were
determined, after extraction with ethyl acetate and evaporation to
dryness, by high-performance liquid chromatography with an
ultraviolet detector. For kinetic analysis, each substrate (0-5000 pM
tolbutamide, 0-200 uM diclofenac, and 0-200 uM flurbiprofen)
was incubated with recombinant CYP2C93v1 at 37°C for 15 min
in the presence of an NADPH-generating system as described
above. Kinetic parameters were calculated from a fitted curve by
non-linear regression (mean * SE).

Minigene experiments

To characterize the genetic variant (IVS2-1G>T) possibly
responsible for the exon 2-skipping, mini gene plasmids were
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constructed for i wvitro splicing analysis. The CTP2C93 gene
fragment from exon 1 to exon 3 was amplified by PCR using the
genomic DNAs derived from cynomolgus monkey (mfF1)
expressing CYP2C93 SV1 and SV2, and rhesus monkey (mm35)
expressing CYP2C93 SVI. PCR and subcloning into pCR-XL-
TOPO vectors were performed as described above for amplifica-
tion of exon 6. The PCR primers used were 5'-CCTTGACTC-
CAATCCAATGC-3" and 5'-CTGGAACCCAGGTTTATG-
CT-3'. The resultant pCR-XL-TOPO plasmids contained either
the CYP2C93 gene fragment of the cynomolgus monkey with
IVS2-1G or IVS2-1T, or the CYP2C93 gene fragment of the
rhesus monkey with IVS2-1G. To obtain the CYP2C93 gene
fragment of the rhesus monkey with IVS2-1T, the mutation IVS2-
1G>T was introduced into the CYP2C93 gene fragment of the
rhesus monkey with IVS2-1T in the pCR-XL-TOPO plasmid,

mmCYP2C93 1:MDPFVVLVLC LSCLLLFSLW RQSSGRGKLP
mfCYP2C93 1:MGPFVVLVLC LSCLLLLSLW RQSSGKGKLP

* EkkkkkkkE kkkhEh kR

SRS-1

EhkkE KEEE

NILOLDIRNI
NILOLDIRNI

FkkkkkkkkE FEhhkEREE
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using the QuikChange XL II kit (Stratagene) according to the
manufacturer’s instructions. The primers used were 5'-CTC-
CTTTCCCA(TTCTCAAAACTC-3’ and 5'-GAGTTTTGAG-
AAaTGGGAAAGGAG-3" where lower case letters indicate the
nucleotides to be changed. Next, each pCR-XL-TOPO plasmid
containing either of these four CYP2C95 gene fragments was used
as a template for PCR that was performed using KOD Plus DNA
polymerase as described earlier, except that the annealing step was
performed at 65°C for 20 s. The PCR primers used were 5'-
CACCTAAGAAGAGAAGGCTTCAATGG-3" and 5'-TCAA-
TTGGTTTTTCTCAACTCCTCCA-3’. The PCR products
were cloned into pcDNA3.1D/H5-His-TOPO vectors using the
pcDNA3.1  Directional TOPO Expression Kit (Invitrogen)
according to the manufacturer’s instructions. Each plasmid insert
was verified by sequencing. The resultant plasmids contained the

—
GEEFSERGAL 100
GEEFSERGAL 100

Fkkk ok kEE R

SKL YGPVFTVYFG LKPTVVLHGY E
L YGPVFTVYFG LKPTVVLHGY E

kEkEEEEF RS kkkkkhrkdE hkF

ok

————————
mmCYP2C93 101:PLIERSQKGH GIIFSTGKRW KEMRRFSLLT LRNFGMGKRS IEYCVQKEAR CIVEELRKTN ASPCDPTFIL GCAPCNVICS IVFONRFQYE DEKNFEERMER 200
mfCYP2C93 101:PLIERSQKGH GIIFSTGKRW KEMRRFSLLT LRNFGMGKRS IEDCVQOKEAR CIVEELRKTN ASPCDPTFIL GCAPCNVICS IVFONRFQYE DKNFLTLMER 200

kkkkkkkkkk khkE Kk *hFk Kok kkkkdhkd FkkkEhkhhk FF hkkkhkhd hkkkkkkk ok kkokkhkhhkd kkkkkhkkdhk khkkkkhk ok ok kFkkr ek kb

— SRS-2

mmCY¥P2C93 201:FNENFRIAST FWIQVCNIFP

SRS-3
FLIDYFPGTH NKFLKNGAFT KSYILEKVKE HOQ!
mfCYP2C93 201:FNENFRIAST PWIQVCNIFP FLIDYFPGTH NKFLKNGAFT KSYILEKVKE HQESLDINNP RDFIDCFLIK MEQEKDNQQS EFTVENI

—
LDINNP RDFIDCFLIK MEQEKDNQQS EFTVENLVST VFDLEVAGTH 300
ST VEDLEFVAGTH 300
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— SRS4
mmCYP2C93 301:TTSTTLRYGL LLLLKHPEVT
mECYP2CY3 301:TTSTTLRYGL LLLLK

SRS-5

AKVQEEIDHV IGRHRSPCMQ DRSHMPYMDA VLHEIQRYID LIPNGLLHTV TSDIKFRNYL IPKGTNIVPS LTSVLYDDKE 400
/T AKVQEEIDRV IGRHRSPCMQ DRSHMPYMDA VLHEIQRYID LIPNGLLHTV TSDIKFRNYL IPKGTNIVPS LTSVLYDDKE 400
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e SRS-6
mmCYP2C93 401:FPNPEVFDPG HFLDESGNFK KSENFMPFSA GKRICVGEGL ARMELFLFLT TILONFNLKS LTDLKALNAT PTAKGLVSML PSYQICFTPV 490
mECYP2CS3 401:FPNPEVFDPG HFLDESGNFK KSENFMPFSA GKRICVGEGL ARMELFLFLT TILONFNLKS LTDLKALNAT PTAKGLVSML PSYQICFTPV 490
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No amplification control
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B-actin

c102T>del -~ -1~ - ol de dle - -

9 10 1

=T e e

2 34567 8
360 bp (SV1)

T N200 bp (SV2)

B A A A

c.lVS2G>T GI/IGGITGIGGIGG/IGGIGGIGG/IGGIGGIGTIT TIT TIT TIT TIT TIT TIT

Figure 1. CYP2C93 amino acid sequences and hepatic expression of CYP2C93 transcripts. (A) Multiple alignment of cynomolgus monkey
(mf) and rhesus monkey (mm) CYP2C amino acid sequences. For cynomolgus monkey CYP2C93, the amino acid sequences were predicted from
transcript variant SV1 ¢cDNA (c.102T was filled in with thymine). The broken and solid lines above the sequences indicate the putative heme-binding
region and the six putative substrate recognition sites (SRSs), respectively. Asterisks under the sequences indicate identical amino acids. (B) Hepatic
expression of two CYP2C93 transcript variants in cynomolgus monkeys and rhesus monkeys. Expression of normal transcript SV1 and aberrant
transcript SV2 was analyzed in livers of 7 cynomolgus monkeys and 10 rhesus monkeys by RT-PCR and gel electrophoresis of the PCR products. SV1
was expressed in 5 rhesus monkeys, including animal number 1 which expressed SV1 faintly, whereas only SV2 was expressed in the cynomolgus
monkeys. For these animals, genotyping of c.102T>del and IVS2-1G>T was determined. None of these animals possessed c.102T>del. All the
cynomolgus monkeys were homozygous for IVS2-1G>T, but only one rhesus monkey possessed this allele (as a heterozygote).
doi:10.1371/journal.pone.0016923.g001
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CYP2C93 gene fragment of the cynomolgus monkey with IVS2-1G
(pcDNA3.1-mfCYP2C93_IVS2-1G) or IVS2-1T (pcDNA3.1-
mfCYP2C93_IVS2-1T), or the CYP2C93 gene fragment of the
rhesus monkey with IVS2-1G (pcDNA3.1-mmCYP2C93_IVS2-
1G) or IVS2-1T (pcDNA3.1-mmCYP2C93_IVS2-1T). For in vitro
splicing analysis, these mini gene constructs were transfected into
COSI cells (2 x 10° cell/well) (Riken, Tsukuba, Japan) using
FuGene (Roche Applied Science, Indianapolis, IN) according to
the manufacturer’s protocol. At 24 h after transfection, cells were
harvested and total RNA was extracted from the cells using the
RNeasy Mini Kit (QIAGEN) according to the manufacturer’s
protocol. To identify CYP2C93 SV1 and SV2, RT-PCR was
carried out with the extracted total RNA as described earlier for
the analysis of CYP2C93 transcripts. B-actin, as a control, was also
amplified by RT-PCR using the primers, 5'-AACGGTGAA-
GGTGACAGCA-3" and 5-AGTGGGGTGGCTTTTAGGA-
3'. The PCR reaction was run on an agarose gel to visualize the
amplified products.

Genotyping

To genotype ¢.102T>del, the method was established with
GeneMapper (Applied Biosystems). PCR was performed as
described for analysis of CYP2C93 transcripts. The gene-specific
primers synthesized (Applied Biosystems), 5-CTGGTGCT-
CTGTCTCTCCTGTT-3" and 5'-TGCTGAAAGATTTGCT-
GATATTC-3', were used. The PCR products were electro-
phoretically analyzed with an ABI PRISM 3730 DNA Analyzer
and were scored and genotyped using GeneMapper software
(Applied Biosystems). The presence of ¢.102T>del was indicated
by a peak size different from that of the wild-type genome. To
genotype IVS2-1G>T, direct sequencing was carried out, by
performing PCR as described above for amplification of CYP2C93

€xons.

Results

Identification of CYP2C93 cDNAs

A BLAST search of GenBank database using the human
CYP2C9 cDNA sequence identified the CYP2C-like cDNA
sequence, which was predicted by computer analysis based on
rhesus monkey genome data. For cloning of this potential cDNA,
RT-PCR was performed with liver total RNA of rhesus monkey
(mm33) using the primers that were designed to amplify the
putative open reading frame (ORF), which led to the successful
identification of the ¢DNA for this novel CYP2C named
CYP2C93 (Fig. 1A). Although the forward primer used for
cloning the cDNA overlapped the putative translation initiation
codon, the 5'RACE using liver total RNAs of cynomolgus monkey
and rhesus monkey confirmed this translation initiation codon.
The rhesus monkey CYP2C93 ¢cDNA contained the ORF of 490
amino acids with primary sequence structures common to
CYP2Cs imncluding six potential substrate recognition sites (SRSs)
[15] and heme-binding region (Fig. 1A). Amino acids deduced
from this CYP2C93 cDNA had relatively low sequence identity
(77-81%) to human, cynomolgus monkey, and rhesus monkey
CYP2C proteins (Table 1).

In cynomolgus monkey, RT-PCR using liver total RNA of
cynomolgus monkey (mfF1) gave rise to two CYP2C93 cDNAs of
different sizes. Sequencing and analysis of these cDNAs showed
that these two cDNAs corresponded to the CYP2C93 transcripts
retaining (SV1) and lacking (SV2) exon 2, both nearly identical
(>99%) to the rhesus monkey CYP2C93 cDNA sequence.
Furthermore, CYP2C93 SV1 and SV2 contained a 1-base
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Table 1. Sequence identity of CYP2C93 cDNA and amino
acids as compared to human and other macaque CYP2Cs.
cDNA Amino acids
%
Human:
CYP2C8 86 79
CYP2C9 85 77
CYP2C18 85 77
CYP2C19 84 79
Cynomolgus:
CYP2C8 87 81
CYP2C43 83 77
CYP2C75 84 76
CYP2C76 77 71
Rhesus:
CYP2C43 83 77
CYP2C74 87 81
CYP2C75 84 76
CYP2C76 77 71
doi:10.1371/journal.pone.0016923.t001

deletion (c.102T>del) in exon 1, which would generate frameshift
and a premature termination codon. To identify the animals
expressing SV1, RT-PCR was performed to amplify the cDNA
fragments of exons 1-3 using additional liver samples from 7
cynomolgus monkeys (nos. 1-7), along with 10 rhesus monkeys
(nos. 1-10). This analysis showed that all 7 cynomolgus monkeys
expressed only SV2, whereas 5 of the 10 rhesus monkeys expressed
SV1 (Fig. 1B). It should be noted that a faint band of SV1 was seen
in rhesus monkey no. 1. In all the rhesus monkeys expressing SV1,
SV2 was barely detectable on the gel. The sequences of the
CYP2C93 cDNAs identified have been deposited in GenBank
under the accession numbers, GU289739 (cynomolgus monkey
SV1), GU289740 (cynomolgus monkey SV2), and GU289738
(rhesus monkey SV1).

A phylogenetic tree of CYP2C amino acid sequences from
human, cynomolgus monkey, rhesus monkey, dog, and rat
indicated that CYP2C93 is orthologous between cynomolgus
monkey and rhesus monkey, but does not have a I-to-1
relationship to human CYP2C (Fig. 2).

Genomic location of CYP2C93 in the CYP2C cluster

To determine the genomic location of CYP2C93, PCR was
performed using gene-specific primers with the rhesus monkey
CYP2C BAC clones as templates. The amplification patterns
indicated that CYP2C93 was located adjacent to CYP2C76 at the
end of the CYP2C cluster. This location corresponds to the
intergenic region in the human genome (Fig. 3). The BLAT
analysis of the rhesus monkey genome mapped CYP2C93 to the
same location in the cluster, supporting the results obtained by our
analysis of BAC clones. The BLAT analysis of the human,
chimpanzee, orangutan, and marmoset genomes indicated that
the genome sequences highly identical (=90%) to CYP2C93
cDNA were not present in these genomes. These results suggest
that a CYP2(93 ortholog is not present in the human, chimpanzee,
orangutan, and marmoset genomes.
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Figure 2. Phylogenetic tree of CYP2C amino acid sequences.
The phylogenetic tree was created by the neighbour-joining method
using CYP2C amino acid sequences of human (h), cynomolgus monkey
(mf), rhesus monkey (mm), dog (d), and rat (r), found in GenBank. For
cynomolgus monkey CYP2C93, the amino acid sequence was predicted
from the SV1 ¢DNA (c.102 was filled in with thymine). Human CYP2A6
amino acid sequence was used as outgroup.
doi:10.1371/journal.pone.0016923.9g002

Gene structure of CYP2C93

The exon-intron structure was analyzed for CYP2C93 by aligning
rhesus monkey CYP2C93 cDNA on the rhesus monkey genome
using BLAT. The sequence around exon 6 missing in the genome
data was determined by PCR and sequencing. The analysis of the

Macaque chromosome 14
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rhesus monkey genome data and the gene sequence containing exon
6 revealed that CYP2C93 spanned approximately 25.6 kb and
contained nine exons similar to human and other cynomolgus and
rhesus monkey CYP2Cs. The sizes of exons and introns ranged from
141 to =244 bp and from 161 to 11401 bp, respectively (Table 2).
All exons were flanked by GU and AG dinucleotides, consistent with
the consensus sequences for splice junctions in eukaryotic genes.

CYP2C93 mRNA expression in tissues

To analyze a tissue expression pattern of CYP2C93 mRNA,
real-time RT-PCR was performed with gene-specific primers and
probe using total RNAs prepared from cynomolgus monkey
tissues, brain, lung, heart, liver, kidney, adrenal gland, jejunum,
testis, ovary, and uterus. The experiment was not carried out in
rhesus monkey due to the unavailability of the tissues. CYP2C93
mRNA was predominantly expressed in the liver, similar to
cynomolgus monkey CYP2C8, CYP2C43, CYP2C75, and
CYP2C76 mRNAs [6], with some extra-hepatic expression in
brain and testis (Fig. 4A). To determine the expression level of
CYP2C93 mRNA relative to other CYP2C mRNAs, CYP2C93
mRNA, along with CYP2C8, CYP2C43, CYP2C75, and
CYP2C76 mRINAs, was measured in the livers of two rhesus
monkeys expressing CYP2C93 SVI. CYP2C18 mRNA was
excluded from the analysis due to its hepatic expression level
substantially lower than other CYP2C mRNAs [16]. The analysis
indicated that the expression level of CYP2C93 mRNA was lower
than that of any other CYP2C mRNA (Fig. 4B). The expression
level of each CYP2C mRNA varied between the rhesus monkeys;
the expression level of CYP2C93 mRNA, in one animal, was only
2.1, 4.6, and 2.6-fold lower than that of CYP2C8, CYP2C43, and
CYP2C75 mRNAs, respectively. In the rhesus monkeys (animal
nos. 4, 5, 6, 8, and 10) that did not show a visible CYP2C93 band
in the gel (Fig. 1B), CYP2C93 mRNA was actually expressed, but
at substantially lower level, as determined by real-time RT-PCR
(data not shown). CYP2C93 mRNA expression of rhesus monkeys
was only 1.4-fold higher (approximately) in males than in females.
These results suggest that CYP2C93 mRNA expression level is in
general lower than other CYP2C mRNAs in rhesus monkey liver
and is highly variable between the animals.

Drug-metabolizing capability of CYP2C93 proteins
Enzymatic properties of cynomolgus and rhesus monkey

CYP2C93, along with cynomolgus monkey CYP2C8, CYP2C43,

CYP2C75, and CYP2C76, were measured using human CYP2C

HELLS CYP2C18 CYP2C75 CYP2C43 CYP2C8CYP2C93CYP2C76 PDLIM1
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Figure 3. Genomic structure of the macaque CYP2Cs. The location and direction of CYP2C8, CYP2C76, and CYP2C93 in the macaque CYP2C cluster
were determined by PCR-amplification patterns using the macaque CYP2C BAC clones, and by the BLAT analysis of the rhesus monkey genome data.
CYP2(93, along with CYP2C76, was located at the end of the gene cluster, the location of which corresponds to the intergenic region in the human genome.

doi:10.1371/journal.pone.0016923.g003
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Table 2. Exon-intron boundary sequences of CYP2C93.
Exon Intron

Exon size 3’ splice site 5’ splice site size
bp bp

1 184 CAGCAATgtaagtatg 1233

2 153 ctttcccagTTCTCAA GGGCATGgtaggtgtg 161

3 150 ttttgttagGAATCAT ACCAATGgtgagtgac 2228

4 161 atcctttagCCTCACC GATCCAGgtgaggcca 1568

5 177 tttttttagGTTTGCA GGAGCAGgtaagatgt 11401

6 141 tatttctagGAAAAGG GTCACAGgtaggacca 3226

7 189 tcttatcagCTAAAGT CCCTAAGgtaagcttg 3070

8 142 tacttccagGGCACAA TCAGCAGgtaatggaa 2026

9 =244 tattttcagGAAAACGG

Exon and intron sequences are indicated in capital and lower case letters,

respectively.

The dinucleotide sequence at the highly conserved GU-AG motif is shown as

underlined bold lettering.

doi:10.1371/journal.pone.0016923.t002

substrates, diclofenac, flurbiprofen, paclitaxel, S-mephenytoin,
and tolbutamide. Cynomolgus monkey CYP2C93 proteins,
mfCYP2C93vl and mfCYP2C93v2, were prepared using the
cynomolgus monkey CYP2C93 SV1 and SV2 expression
plasmids, respectively. Since these cDNAs contained c.102T>del,
c.102 was filled in with thymine by site-directed mutagenesis.
Rhesus monkey CYP2C93 protein, mmCYP2C93v1, was pre-
pared using the expression plasmid of the rhesus monkey
CYP2C93 SV1 cDNA. The analysis by CO difference spectra
indicated that a peak characteristic of P450 protein was seen
around 450 nm for mfCYP2C93v] and mmCYP2C93v1, but not
for mfCYP2C93v2 (data not shown). mfCYP2C93vl and
mmCYP2C93v1 substantially catalyzed diclofenac 4-hydroxyl-
ation, flurbiprofen 4-hydroxylation, S-mephenytoin 4-hydroxyl-
ation, and tolbutamide methylhydroxylation, but not paclitaxel
60-hydroxylation (Table 3), indicating a broad substrate selectivity
of CYP2C93, unlike human and other macaque CYP2Cs.
Although these reactions were also catalyzed by other CYP2Cs
(diclofenac 4-hydroxylation and flurbiprofen 4-hydroxylation by
CYP2C75, S-mephenytoin 4-hydroxylation by CYP2C43, and
tolbutamide methylhydroxylation by CYP2C75 and CYP2C76),
CYP2C93 showed a level of catalytic activity comparable to other
CYP2Cs, indicating the involvement of CYP2C93 in CYP2C-
mediated drug metabolism. mfCYP2C93v2 did not show an
appreciable level of activity (Table 3), suggesting that CYP2C93v2
is nonfunctional. For the reactions catalyzed by CYP2C93, kinetic
analysis was carried out using recombinant CYP2C93 protein
(mmCYP2C93v1). For tolbutamide methylhydroxylation, diclofe-
nac 4-hydroxylation, and flurbiprofen 4-hydroxylation, A, was
1600740, 15%5, and 26034 pM, respectively, while I, was
10.5*1.8, 0.27£0.02, and 0.13%*0.01 nmol/min/nmol P450,
respectively (Table 4). Kinetic analysis was also carried out for
S-mephenytoin 4-hydroxylation, but parameters could not be
determined due to low activity of CYP2C93 for this reaction.

Analysis of CYP2C93 IVS2-1G>T

To investigate exon-2 skipping of CYP2C93 SV2, the genomic
region around exon 2 was sequenced for cynomolgus monkey
(mfF1), expressing CYP2C93 SV1 and SV2, and for rhesus
monkey (mm35), expressing only CYP2C93 SV1 (Fig. 5A). The
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Figure 4. Measurement of CYP2C93 mRNA tissue expression.
Real-time RT-PCR was performed using the probe and primer set
specific for CYP2C8, CYP2C43, CYP2C75, CYP2C76, and CYP2C93 mRNA.
The expression level of each CYP2C mRNA was normalized to the 18S
rRNA level and represents the average = SD from three independent
amplifications. (A) CYP2C93 mRNA expression was measured in
cynomolgus monkey tissues, brain, lung, heart, liver, kidney, adrenal
gland, jejunum, testis, ovary, and uterus. Among these tissues, CYP2C93
mRNA was predominantly expressed in liver. (B) Hepatic expression of
CYP2C8, CYP2C43, CYP2C75, CYP2C76, and CYP2C93 mRNAs was
measured in two rhesus monkeys expressing normal transcript
CYP2C93 SV1. CYP2C93 mRNA was expressed at a lower level than
other CYP2C mRNAs, but the difference in expression levels of CYP2C93
mRNA and other CYP2Cs varied in the two animals. CYP2C18 mRNA was
excluded from the analysis due to its hepatic expression level
substantially lower than other CYP2C mRNAs [16].
doi:10.1371/journal.pone.0016923.9g004

comparison of the sequences found IVS2-1G>T only in
cynomolgus monkey (mfF1, heterozygote), leading to the alteration
of AG to AT at the splice site of intron 1. To investigate if IVS2-
1G>T is responsible for exon-2 skipping; a mini gene assay was
performed using the four expression plasmids containing the
CYP2C93 gene fragment from exon 1 to exon 3. Two plasmids
(pcDNA3.1-mfCYP2C93_IVS2-1G  and pcDNA3.1-mfCYP2-
C93_IVS2-1T) contained the CYP2C93 gene fragment of
cynomolgus monkey (mfF'l), with IVS2-1G and IVS2-1T,
respectively. The other two plasmids (pcDNA3.1-mmCYP2-
C93_IVS2-1G and pcDNA3.1-mmCYP2C93_IVS2-1T) con-
tained the C1TP2C93 gene fragment of rhesus monkey (mm35),
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with IVS2-1G and IVS2-1T, respectively. Each plasmid was
transfected into COS1 cells. RT-PCR using the total RNA
extracted from the COSI1 cells showed that CYP2C93 SV1 and
SV2 (shown as a 360-bp upper band and a 200-bp lower band,
respectively) were transcribed from the plasmids containing IVS2-
1G, whereas only CYP2C93 SV2 was transcribed from the
plasmids containing IVS2-1T (Fig. 5B). These results suggest that
IVS2-1G>T was, at least partly, responsible for exon-2 skipping
and generation of CYP2C93 SV2.

Genotyping

The results described thus far showed that mfFl (but not mm35)
was heterozygous for IVS2-1G>T and ¢.102T>del. To see if
other animals possess IVS2-1G>T and ¢.102T>del in CYP2C93,
genotyping was performed for the animals (7 cynomolgus and 10
rhesus monkeys) analyzed by RT-PCR for expression of SV1 and
SV2 (Fig. 1B). Among these animals, all the 7 cynomolgus
monkeys were homozygous for IVS2-1G>T, whereas only one
rhesus monkey possessed IVS2-1G>T (as a heterozygote) (Fig. 1B),

Table 4. Kinetic analysis for oxidations of typical human
CYP2C9 substrates catalyzed by monkey CYP2C93.

Vmax
Kin (nmol/min/nmol
Reaction (uM) CYP2C93)
Tolbutamide methyl hydroxylation 1600740 10.3*+1.8
Diclofenac 4’-hydroxylation 15*5 0.27*0.02
Flurbiprofen 4-hydroxylation 260+34 0.1320.01

Each substrate (0-5000 uM tolbutamide, 0-200 uM diclofenac, and 0-200 uM
flurbiprofen) was incubated with recombinant CYP2C93v1 (of rhesus monkey)
at 37°C for 15 min in the presence of an NADPH-generating system as
described in Materials and Methods. Kinetic parameters were calculated from a
fitted curve by non-linear regression (mean *+ SE).
doi:10.1371/journal.pone.0016923.t004
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Table 3. Drug-metabolizing activity of CYP2C93 protein determined using human CYP2C substrates.
Tolbutamide

P450 CPR Paclitaxel methyl Diclofenac Flurbiprofen Smephenytoin

P450 content content 60-hydroxylation  hydroxylation 4'-hydroxylation 4-hydroxylation 4'-hydroxylation
nmol/min/nmol nmol/min/nmol nmol/min/nmol nmol/min/nmol nmol/min/nmol

pm pm P450 P450 P450 P450 P450
Cynomolgus:
CYP2C8 30 5.5 0.26 0.41 <0.01 0.01 0.03
CYP2C43 85 3.1 <0.001 0.73 0.01 0.03 0.35
CYP2C75 19 7.8 <0.001 4.16 0.10 1.32 0.01
CYP2C76 13 34 <0.001 2.01 <0.01 0.01 <0.01
CYP2C93v1 23 1.6 <0.001 1.99 0.1 0.10 0.69
CYP2C93v2 <0.5 26 N.D. <0.01 <0.01 <0.01 <0.01
Rhesus:
CYP2C93v1 2.1 3.2 <0.001 3.25 0.38 0.76 0.16
CPR, cytochrome P450 reductase. N.D., not determined.
In each reaction, 5 pmol of the recombinant protein was used with substrate (50 uM diclofenac, 100 uM flurbiprofen, 100 uM paclitaxel, 200 uM S-mephenytoin, or
1 mM tolbutamide) as described in Materials and Methods.
The recombinant cynomolgus and rhesus monkey CYP2C93 proteins were analyzed along with cynomolgus monkey CYP2C8, CYP2C43, CYP2C75, and CYP2C76.
CYP2C93v1 and CYP2C93v2 correspond to SV1 and SV2 transcripts of CYP2C93, respectively.
doi:10.1371/journal.pone.0016923.t003

indicating that IVS2-1G>T is prevalent in cynomolgus monkeys,
but not in rhesus monkeys. Expression of SV2 in rhesus monkey
(no. 3) and cynomolgus monkeys (nos. 1-7) appeared to be
associated with IVS2-1T. None of the animals analyzed possessed
c.102del, indicating that c.102T>del is a relatively rare allele
possessed by only one cynomolgus monkey (mfl'l) (as a
heterozygote) in this study.

Discussion

We previously identified CYP2C76, which is not orthologous to
any human P450 and is at least partly responsible for the
difference in drug metabolism between cynomolgus monkey and
human [8]. Such a P450, if any, might also account for the species
difference in macaques. In this study, we successfully identified a
novel P450, CYP2C93 that had only 77-79% amino acid
sequence identity to human CYP2Cs and an expression pattern,
preferential to liver, which i1s similar to other CYP2Cs.
Phylogenetic analysis indicated that CYP2C93, similar to
CYP2C76, did not have a I-to-1 relationship to any human
CYP2C.

The lack of an orthologous relationship of CYP2C93 to human
CYP2Cs was further supported by analysis of the genomic
organization of CYP2Cs. CYP2C93 was located, adjacent to
CYP2C76, at the end of the CYP2C cluster; and, this position
corresponds to the intergenic region in the human genome,
indicating that a gene orthologous to (1YP2(93 does not exist in
human. Genes in the P450 subfamilies including C1P2Cs have
been generated by gene duplication during evolution (Nelson
et al., 2004). A higher sequence identity of CYP2C93 to CYP2C8
as compared with other CYP2Cs, the position of CYP2C8 nearest
to CYP2C93 in the phylogenetic tree, and the location of
CYP2C93 adjacent to CYP2C8 in the CTP2C cluster, indicate that
CYP2C93 might have been generated as the result of gene
duplication of a CYP2(8-like gene of a primate ancestor during
evolution. Further refinement and assembly of genomic sequences
in the macaque C1P2C cluster could lead to identification of
additional gene(s) in this region.
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Figure 5. Mini gene assay for exon-2 skipping of CYP2C93. Preparation of expression plasmids and in vitro splicing analysis were performed
as described in Materials and Methods. (A) Schematic illustration of the CYP2C93 gene fragments (exon 1 to exon 3) used to generate mini gene
plasmids. (B) In vitro splicing analysis. Each expression plasmid was transfected into COS1 cells, from which total RNA was extracted and used for
amplification of CYP2C93 cDNA (from exon 1 to exon 3) by RT-PCR. The amplified products were visualized on an agarose gel. Lanes 1 and 2, liver
total RNAs of the cynomolgus monkey (mfF1) expressing both SV1 and SV2 and the rhesus monkey (mm35) expressing SV1, respectively; lanes 3 and
4, IVS2-1G and IVS2-1T of cynomolgus monkey CYP2C93, respectively; lanes 5 and 6, IVS2-1G and IVS2-1T of rhesus monkey CYP2C93, respectively;
and lane 7, mock. The upper band (360 bp) and lower band (200 bp) correspond to CYP2C93 SV1 and SV2 transcripts, respectively. For cynomolgus
monkey and rhesus monkey CYP2C93, only exon-2 lacking SV2 was transcribed in the presence of IVS2-1T, whereas both SV1 and SV2 were
transcribed in the presence of IVS2-1G. B-actin was also analyzed as a control.

doi:10.1371/journal.pone.0016923.9005

CYP2C93 substantially catalyzed diclofenac 4'-hydroxylation,
S-mephenytoin 4-hydroxylation, and tolbutamide methylhydrox-
ylation. Diclofenac 4'-hydroxylation, S-mephenytoin 4-hydroxyl-
ation, and tolbutamide methylhydroxylation are catalyzed by
rhesus monkey CYP2C75 [4,17], cynomolgus monkey and rhesus
monkey CYP2C43 [4,5,6], and cynomolgus monkey CYP2C75
and CYP2C76 [6,9], respectively. Moreover, CYP2C93 metabo-
lized the typical human CYP2C9 (diclofenac, flurbiprofen, and
tolbutamide) and CYP2C19 (S-mephenytoin) substrates. There-
fore, substrate selectivity of CYP2C93 appears to be broader than
human and other monkey CYP2Cs. The specific substrates
remained to be found for CYP2C93, which can partly ascertain
the relevance of this enzyme to drug metabolism.

Diclofenac 4'-hydroxylation was largely catalyzed by CYP2C75
and CYP2C93 in this study. Previous study showed that A}, of
rhesus monkey CYP2C75 was 15.8 pM (Tang et al.), similar to
that of CYP2C93 (15 uM), indicating that the affinity to diclofenac
is comparable between CYP2C75 and CYP2C93. Tolbutamide
methylhydroxylation was catalyzed by CYP2C75, CYP2C76, and
CYP2C93 in this study. £, of cynomolgus monkey CYP2C75 and
CYP2C76 was 775 and 886 uM, respectively (Uno et al., 2007),
lower than that of CYP2C93 (1600 uM), indicating the lower
affinity of tolbutamide to CYP2C93. Further investigation on
kinetic analysis of various CYP2C substrates will lead to the better
understanding of CYP2C93 enzyme property.

Paclitaxel 6a-hydroxylation is catalyzed by human CYP2C8.
Among cynomolgus monkey CYP2Cs, only CYP2C8 substantially
catalyzed this reaction, indicating that paclitaxel 6a-hydroxylation
could be used as a probe reaction for CYP2C8 in cynomolgus
monkey, similar to human. Although CYP2C93 had the highest
sequence identity to CYP2C8 among the five cynomolgus monkey
CYP2Cs, CYP2C93 did not catalyze paclitaxel 6a-hydroxylation.
Similarly, marmoset CYP2C8, highly identical to human
CYP2C8, does not metabolize paclitaxel, partly because the shape
of the active site cavity for paclitaxel in marmoset CYP2C8 might
be different from that of human CYP2C8 [18]. Similarly,
CYP2C93 might possess an active site cavity different from

@ PLoS ONE | www.plosone.org

human and cynomolgus monkey CYP2CS8. It is of great interest to
investigate the conformation of CYP2C93.

In two rhesus monkeys expressing normal CYP2C93 transcript
(SV1), CYP2C93 mRNA was expressed at a lower level than other
CYP2C mRNAs; however, in one animal the difference of
CYP2C93 in mRNA expression level was only 2.1- and 2.6-fold as
compared with CYP2C8 and CYP2C75 mRNAs, respectively.
In contrast, 5 of the 11 rhesus monkeys analyzed expressed
CYP2C93 mRNA at greatly lower level in liver, indicating that
CYP2C93 mRNA expression is highly variable in rhesus monkeys.
Moreover, all the 8 cynomolgus monkeys analyzed, expressed only
aberrantly spliced SV2 (nonfunctional) or expressed nonfunctional
SVI1 due to another mutation c¢.102T>del. These results suggest
that a functional CYP2C93 is expressed in rhesus monkeys, but
not in cynomolgus monkeys. Therefore, the species and the
animals should be carefully selected for drug metabolism studies
using monkeys. The importance of aberrant splicing in drug
metabolism has been recognized in human. For example,
expression of CYP3A5 is highly polymorphic between whites
and African Americans; CYP3AJ5 protein is present in 10 to 30%
of whites and 60% of African Americans, due to aberrant splicing
[19,20,21]. In this study, the exon-2 skipping of the nonfunctional
transcript SV2 was, at least partly, accounted for by a mutation at
the splice site of intron 1, IVS2-1G>T, as indicated by mini gene
assay. This genotype can be utilized to identify animals expressing
a nonfunctional transcript SV2.

Although the differences in drug metabolism between two
macaque species (cynomolgus monkey and rhesus monkey) has not
been fully investigated, a previous study showed that S-mephen-
ytoin 4-hydroxylation was higher in cynomolgus monkeys than in
rhesus monkeys [22]. This is contrary to our expectation,
considering that CYP2C93 protein, which also catalyzes this
reaction, might be present in rhesus monkey, but not in
cynomolgus monkey, as shown in this study. Alternatively, the
difference in S-mephenytoin 4-hydroxylation between the two
macaque species can be accounted for by the variability in
CYP2C43 metabolic properties as well, since CYP2C43 also
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catalyzes this reaction. Such variability in drug-metabolizing
activities could be partly owing to genetic divergence in CYP2C43,
as genetic polymorphisms are evident in macaque P450s [23,24],
similar to human P450s. The genetic polymorphisms also account
for the inter-animal variability of drug-metabolizing enzyme
activities. Inter-animal differences are important for studies using
monkeys, since interpretation of the data could sometimes be
complicated. Therefore, an investigation of genetic variants in
drug-metabolizing enzyme genes is essential for successful drug
metabolism studies using monkeys. To this end, again, IVS2-
1G>T i1s useful to investigate, if any, species and inter-animal
differences in CYP2C93-dependent drug metabolism.

CYP2C93 was successfully identified, based on rhesus monkey
genome data. As genome data such as genome sequences and EST
have become increasingly available to the public, such genomic
information has been applied to the identification of species-
specific genes in monkeys [25,26]. We also successfully utilized
EST data to identify species-specific CYP2C76, which does not
correspond to any human P450s and is partly responsible for
species differences in drug metabolism between monkey and
human [8,27]. This paper further supports the usefulness of
genome information. As the throughput of sequence generation
increases greatly with next-generation sequencers, the more
genome information becomes available, and can be utilized to
better understand various biological events of physiology and
disease, including drug metabolism.
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Cloning and Characterization of CYP2C93

In conclusion, we identified macaque CYP2C93, which is not
orthologous to any human P450s, based on sequence and genome
analysis. This initial study showed that CYP2C93 mRNA was
predominantly expressed in the liver and that CYP2C93 protein
was a functional enzyme, metabolizing human CYP2C substrates
(diclofenac, flurbiprofen, paclitaxel, S-mephenytoin, and tolbuta-
mide). A nonfunctional transcript variant (SV2) lacking exon 2 was
generated partly due to the mutation at the splice site in CYP2C93
intron 1. The functional transcript variant (SV1) was found in 6 of
the 11 rhesus monkeys, but not in all the 9 cynomolgus monkeys
analyzed. Lower expression of CYP2C93 mRNA than other
CYP2C mRNAs in rhesus monkey liver, and broad substrate
specificity of CYP2C93, suggest that CYP2C93 might play minor
roles in drug metabolism. However, this does not preclude the
potential relevance of rhesus monkey CYP2C93, depending on the
animal, to metabolism of the drugs, if any, that are mediated
specifically by CYP2C93.
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