
Sprouty2 and Spred1-2 Proteins Inhibit the Activation of
the ERK Pathway Elicited by Cyclopentenone Prostanoids
Carlota A. Garcı́a-Domı́nguez1., Natalia Martı́nez1., Teresa Gragera1, Andrea Pérez-Rodrı́guez1, Diana
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Abstract

Sprouty and Spred proteins have been widely implicated in the negative regulation of the fibroblast growth factor receptor-
extracellular regulated kinase (ERK) pathway. In considering the functional role of these proteins, we explored their effects
on ERK activation induced by cyclopentenone prostanoids, which bind to and activate Ras proteins. We therefore found that
ectopic overexpression in HeLa cells of human Sprouty2, or human Spred1 or 2, inhibits ERK1/2 and Elk-1 activation
triggered by the cyclopentenone prostanoids PGA1 and 15d-PGJ2. Furthermore, we found that in HT cells that do not
express Sprouty2 due to hypermethylation of its gene-promoter, PGA1-provoked ERK activation was more intense and
sustained compared to other hematopoietic cell lines with unaltered Sprouty2 expression. Cyclopentenone prostanoids did
not induce Sprouty2 tyrosine phosphorylation, in agreement with its incapability to activate tyrosine-kinase receptors.
However, Sprouty2 Y55F, which acts as a defective mutant upon tyrosine-kinase receptor stimulation, did not inhibit
cyclopentenone prostanoids-elicited ERK pathway activation. In addition, Sprouty2 did not affect the Ras-GTP levels
promoted by cyclopentenone prostanoids. These results unveil both common and differential features in the activation of
Ras-dependent pathways by cyclopentenone prostanoids and growth factors. Moreover, they provide the first evidence that
Sprouty and Spred proteins are negative regulators of the ERK/Elk-1 pathway activation induced not only by growth-factors,
but also by reactive lipidic mediators.
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Introduction

Sprouty was identified in Drosophila melanogaster as an antagonist

of receptor tyrosine kinases (RTK) signaling during different

morphogenetic processes, such as the development of the trachea,

the eye, the wing and other tissues [1–5]. Currently, four

mammalian genes have been identified that encode protein

homologues for dSprouty [6]. The mammalian Sprouty isoforms

have variable N-terminal sequences but share considerable

cysteine-rich sequence homology in their C-termini. Ectopic

overexpression of Sprouty2 inhibits fibroblast growth factor

(FGF) and vascular endothelial growth factor (VEGF), but not

epidermal growth factor- (EGF) induced ERK activation [7]. In

addition, Sprouty2 Y55F mutant is unable to inhibit the ERK

signaling after FGF stimulation [7]. Sprouty proteins have also

been implicated in the negative feedback regulation of FGF

signaling in embryogenesis [8,9], angiogenesis [10] and myogen-

esis [11]. Although Sprouty2 binds Grb2 constitutively, through an

interaction that involves the N-terminal SH3 domain of Grb2 and

two Sprouty2 proline-rich stretches (residues 59–64 and 303–307)

[12,13], the inhibitory effect of Sprouty2 on FGF-induced ERK

activation is independent of its Grb2-binding capacity [12] and it

has no effect on Ras GTP loading [7,12]. By contrast, it has also

been suggested that Sprouty2 reduces Raf activation [7]. Sprouty2

localizes mainly in vesicular/endosomal and caveosome structures

[2,12,14–17], although it has also been detected at the plasma

membrane [12]. Indeed, Sprouty2 interferes with the progression

from early to late endosomes affecting activated EGFR trafficking

[17]. We have recently detected hSprouty2 promoter hypermethyla-

tion in 37% of B-cell diffuse lymphoma cases, and found that this

epigenetic alteration was associated with a significant decrease in

the five-year survival rate [18].

Spred family members contain a C-terminal cysteine-rich

Sprouty-related domain (SPR) [20,21] with high homology to

the C-terminal region of Sprouty proteins. Spred proteins also

block RTK and cytokine receptors-triggered ERK activation
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[6,19]. In addition, Sprouty inhibits PKC d and Ca+2 signaling in

Xenopus, whereas Spred proteins abolish the Ras-ERK signaling

[22]. In mammals, Spred function is also focused on the Ras-ERK

pathway [6,19], where it blocks Raf activation [20].

Cyclopentenone prostanoids (cyP) are naturally occurring

eicosanoids that show various biological activities, including

antiviral [23] and antitumoral effects [24], modulation of the heat

shock response [25], induction of oxidative stress [26], and

apoptosis [27]. These prostanoids possess an a,b-unsaturated

carbonyl group in the cyclopentene ring that favors the formation

of Michael adducts with thiol groups in proteins, which is

responsible for many of the biological effects of these compounds

[28–31]. We have described that H-Ras, but not N- or K-Ras, is a

target for the addition of the cyP 15-deoxy-D12,14-prostaglandin J2

(15d-PGJ2) since it forms a covalent bond with the cysteine 184 of

H-Ras [32]. This effect is associated with the activation of the H-

Ras-ERK pathway, increased proliferation of NIH-3T3 fibroblasts

[32] and protection from apoptosis in MCA3D keratinocytes [33].

In accordance with these effects, we found that 15d-PGJ2

significantly enhanced the carcinogenic effect of DMBA/TPA in

mice skin [33]. In addition, we also found that PGA1 binds to and

activates H-, N- and K-Ras [34] mainly by binding to the cysteine

118 located in the GTP-binding motif, thus differing in the site of

interaction of 15d-PGJ2 with H-Ras. Although the ERK pathway

promotes some cellular responses induced by cyP [32,33,35,36],

we are not aware of any data suggesting that Sprouty proteins are

involved in cyP signaling regulation.

This study was carried out to ascertain whether Sprouty and

Spred proteins are able to inhibit ERK activation induced by stimuli

different from agonists of tyrosine-kinase receptors, such as cyP.

Materials and Methods

Cell lines
HeLa cells [34] were maintained in DMEM (Invitrogen,

Carlsbad, CA) supplemented with 10% fetal calf serum (FCS,

Invitrogen), and the human hematological cell lines (HT and

Karpas 422) [18] were grown RPMI 1640 (Invitrogen) containing

10% FCS.

Transfections and antibodies
Transient transfections were performed using Jet-PeiTM (Poly-

plus-Transfection, Illkirch, France). All assays were done 48 h post-

transfection. Monoclonal antibodies (mAb) to phospho-tyrosine

(4G10) and Sprouty2 were from Upstate Biotechnology (Lake

Placid, NY), and anti-phospho-ERK protein was from Cell

Signaling (Beverly, MA). Rabbit polyclonal antibodies to ERK

(ERK1/ERK2) and GST were purchased from Santa Cruz

Biotechnology (Santa Cruz, CA), and anti-Spred1 and Spred2

antibodies were from Abcam (Cambridge, MA). Anti-HA and AU5

mAb were from Berkeley Antibody Company (Berkeley, CA), and

anti-c-Cbl was from BD Transduction Laboratories (Franklin

Lakes, NJ). Anti b-actin and b-laminin mAb, and recombinant

human basic fibroblast growth factor (bFGF), and epidermal growth

factor (EGF) were from Sigma-Aldrich (St. Louis, MO). PGA1 and

15d-PGJ2 were from Cayman Chemical (Ann Arbor, MI).

DNA constructs
The plasmids pCEFL-KZ-HA, pCEFL-KZ-AU5, pCEFL-KZ-

AU5-hSpry2 wt, pCEFL-KZ-AU5-hSpry2 Y55F, pCEFL-KZ-

AU5-hSpry2 P59AP304A, pCEFL-KZ-HA-hSpry2 wt, pCEFL-

HA-K-Ras 4B wt, and pCEFL-KZ-HA-ERK (1 and 2), have been

previously described [11,12,37]. The cDNA of hSpred1 and

hSpred2 were obtained by RT-PCR from mRNA of HeLa cells

using the specific primers and providing sites Bam HI and Not I

(hSpred1) or Bam HI and EcoRI (hSpred2) at the 59 and 39 ends,

respectively. The amplified products were then subcloned into Bgl

II and Not I/EcoRI sites within pCEFL-KZ-AU5. The sequences

of the oligonucleotides utilized are available upon request.

Ras-GTP detection
The plasmid pGEX-RBD, containing the Raf Ras-binding

domain fused to glutathione S-transferase (GST) was kindly

provided by D. Shalloway. The GST-fusion protein was purified

following the previous described method [38] from E. coli Bl21

(DE3) harboring pGEX-RBD to express the fusion protein. In all

Ras-GTP detection assays, transfected mammalian cells were lysed

in cold lysis buffer [38], and 10 mg GST-RBD coupled to

glutathione-sepharose beads, were added to the extracts and

processed following the previous described method [38].

Reporter gene analysis
HeLa cells were co-transfected with 0.6 mg of constructs

encoding hSpry2 wt or mutants, 16 ng pCDNAIII-Gal4-Elk1,

0.1 mg pRL-TK (containing the Renilla luciferase gene under

control of the HSV-TK promoter), and 0.3 mg pGal4-Luc

(containing the Photinus luciferase gene controlled by six copies

of a Gal4 responsive element). Assays were performed as

previously described [37].

Statistical analysis
Data were analyzed with SPSS software (Chicago). Results are

expressed as the mean 6 SD of the indicated number of

experiments. Statistical significance was estimated with Student’s

t test for unpaired observations; p,0.05 was considered significant.

For western blot analysis, we used linear correlations between

increasing amounts of protein and its signal intensity.

Results and Discussion

Ectopic overexpression of Sprouty2, or Spred1-2, inhibits
cyP-induced ERK/Elk1 pathway activation

Sprouty and Spred proteins have been implicated in the

negative regulation of ERK signaling after stimulation by FGF

[6,19]. Here we examined whether human Sprouty2 (hSpry2) or

human Spred (hSpred1 and hSpred2) can be negative regulators of

ERK activation induced by cyP (PGA1 and 15d-PGJ2). For this

purpose, we measured ERK phosphorylation promoted by these

cyP in HeLa cells overexpressing HA-ERK2 and AU5-hSpry2 wt,

or AU5-hSpry2 Y55F mutant (Fig. 1A). We found that, in a

similar way to the described effects on FGF signaling, hSpry2 wt

drastically reduced ERK activation after PGA1 or 15d-PGJ2

treatment. By contrast, hSpry2 Y55F mutant was unable to inhibit

not only FGF-elicited ERK activation, as previously reported [6],

but also that of cyP (Fig. 1A). Similar results were obtained when

HA-ERK1 was used (not shown). We also tested Elk1 activation, a

transcription factor downstream of ERK. hSpry2 wt, but not

hSpry2 Y55F, blocked FGF- and PGA1-induced Elk1 activation

(Fig. 1B), data which supports the results obtained by the analysis

of phospho-ERK levels. In addition hSpry2 P59A P304A, a

double mutant which does not bind Grb2 [12], also reduced Elk1

activation provoked by those stimuli, suggesting that the inhibitory

mechanism of Sprouty2 on cyP-induced ERK/Elk1 activation is

independent of Grb2-Sprouty2 interaction, as we previously

demonstrated for FGF signaling [12].

We observed that, as it was expected [7], hSprouty2 wt or

hSpry2 P59AP304A double mutant were unable to shut down the

ERK/Elk1 signaling pathway after EGFR activation (Fig. 2),

Inhibition of cyP Signaling by hSpry2-hSpred1/2
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whereas hSpred1 or hSpred2 reduced phospho-ERK levels

stimulated by EGF (Fig. 2A). We found that hSpred1 and

hSpred2 also inhibited PGA1-triggered ERK activation (Fig. 2A),

and both hSpred proteins abolished EGF, FGF, or PGA1-induced

Elk1 activation (Fig. 2B).

All these data suggest that both Sprouty2 and Spred1/2

proteins negatively-regulate the cyP-dependent ERK/Elk1 path-

way activation.

Absence of Sprouty2 expression correlates with
enhanced cyP-triggered ERK/Elk1 pathway activation

We have previously demonstrated that human Sprouty2

promoter gene is hypermethylated in the HT cell line (derived

from a B-cell diffuse lymphoma) [18]. Expression analysis of

hSprouty2 by RT-PCR and WB indicated the absence of hSprouty2

(mRNA and protein) in this cell line [18]; in contrast, the Karpas

422 cell line (also derived from a B-cell diffuse lymphoma), but

without epigenetic alterations in the hSprouty2 promoter [18],

showed hSprouty2 expression (Fig. 3A). In addition, we found that

both cell lines express hSpred1 but not hSpred2 protein (Fig. 3A);

curiously hSpred1 protein was detected as a double band,

probably due to post-translational modifications [6,19]. We

therefore analyzed whether the absence of hSprouty2 in the HT

cells affected ERK activation promoted by PGA1. We found that

PGA1-elicited phospho-ERK levels in HT cells were higher than

in Karpas 422 cells (Fig. 3B). These results concur with Elk1

Figure 1. Overexpression of hSprouty2 (hSpry2) inhibits cyP-elicited ERK/Elk-1 pathway activation. (A) HeLa cells transiently co-
transfected with pCEFL-KZ-HA-ERK1 and either pCEFL-KZ-AU5-hSpry2 wt, pCEFL-KZ-AU5-hSpry2 Y55F, or pCEFL-KZ-AU5 (AU5-vector), were serum-
starved for 18 h and then incubated with vehicle (-), 50 ng/ml FGF, or 10 mM PGA1 (or 15d-PGJ2), for 15 min. Cell lysates were immunoprecipitated with
anti-HA mAb, and analyzed by immunoblot using anti-p-ERK and -HA antibodies. Results were similar in three additional experiments. The factor by
which values of p-ERK increased is estimated as mean of four separate assays (in each case with a SD lower than 10% of mean). The expression levels of
AU5-hSpry2 constructs were detected by immunoblotting whole cell lysates (WCL) with anti-AU5 mAb (lower panel). (B) HeLa cells were co-transfected
with pcDNAIII-Gal4-Elk-1, pGal4-Luc, and pRL-TK together with pCEFL-KZ-AU5 containing the indicated hSpry2 constructs in (A), and also pCEFL-KZ-AU5-
hSpry2 P59A P304A. The transfected cells were serum-starved for 18 h, incubated with vehicle (-), either 50 ng/ml FGF, or 10 mM PGA1, for 8 h, and then
assayed for luciferase activity. The data are the mean and SD of three separate assays performed in triplicate (* vs AU5-vector + FGF, or + PGA1: p,0.001).
doi:10.1371/journal.pone.0016787.g001

Inhibition of cyP Signaling by hSpry2-hSpred1/2
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functional activity because we observed higher activation of this

transcription factor in HT cells versus Karpas 422 cells after PGA1

stimulation (Fig. 3C).

All these results are consistent with the expression of hSprouty2

in Karpas 422 cells, and its absence from HT cell line, and

support the hSprouty2 role as negative regulator of cyP-triggered

ERK pathway activation independently of hSpred1/2 expression

levels.

Overexpression of hSprouty2 does not reduce
PGA1–induced K-Ras 4B activation

Several studies have proposed that Sprouty proteins inhibit

RTK-dependent Ras activation [2,39], although we have not

detected any effect of human Sprouty2 on K-Ras 4B activation

levels promoted after RTK stimulation [12]. We previously

showed that PGA1 binds to cysteine 118 of Ras, a residue located

in the GTP-binding pocket, which correlates with Ras activation

Figure 2. hSpred1 and hSpred2 block PGA1-induced ERK/Elk-1 pathway activation. (A) HeLa cells transiently co-transfected with
pCEFL-KZ-HA-ERK1 and either pCEFL-KZ-AU5-hSpry2 wt, pCEFL-KZ-AU5-hSpry2 P59A P304A, pCEFL-KZ-AU5-hSpred1, pCEFL-KZ-AU5-hSpred2, or
pCEFL-KZ-AU5 (AU5-vector), were serum-starved for 18 h and then incubated with vehicle (-), either 100 ng/ml EGF, or 10 mM PGA1, for 15 min.
Cell lysates were immunoprecipitated with anti-HA mAb and analyzed by immunoblot using anti-p-ERK and -HA antibodies. Results were similar
in three additional experiments. The factor by which values of p-ERK increased is estimated as mean of four separate assays (in each case with a
SD lower than 10% of mean). The expression levels of AU5-hSpry2, AU5-hSpred1, or AU5-hSpred2, constructs were detected by immunoblotting
WCL with the corresponding mAb (lower panels). (B) HeLa cells were co-transfected with the plasmids pcDNAIII-Gal4-Elk-1, pGal4-Luc, and pRL-TK
together with pCEFL-KZ-AU5 containing the indicated hSpry2, or hSpred1, or hSpred2, constructs denoted in (A). The transfected cells were
serum-starved for 18 h, incubated with vehicle (-), either 100 ng/ml EGF, or 50 ng/ml FGF, or 10 mM PGA1, for 8 h, and then assayed for luciferase
activity. The data are the mean and SD of three separate assays performed in triplicate (* vs AU5-vector + FGF, or AU5-vector + EGF, or + PGA1:
p,0.001).
doi:10.1371/journal.pone.0016787.g002

Inhibition of cyP Signaling by hSpry2-hSpred1/2
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[34]. We thus investigated whether hSprouty2 was able to reduce

the K-Ras 4B GTP-loading levels elicited by PGA1. Although

treatment with PGA1 induced lower K-Ras 4B?GTP levels than

EGF stimulation, in both cases hSprouty2 was unable to diminish

K-Ras 4B activation (Fig. 4A–B). Our data therefore indicate that

hSprouty2 does not have any effect on K-Ras 4B activation

induced by EGF, FGF (not shown, and [12]) or PGA1 (Fig. 4A–B).

These results support that in mammalian cells, unlike it happens in

Drosophila [2], Sprouty2 inhibits ERK pathway downstream of

Ras, probably by diminishing Raf activation [7,10] independently

of the type of stimulus (RTK or cyP).

PGA1 treatment does not induce tyrosine
phosphorylation of hSprouty2

As it is shown above, hSpry2 Y55F mutant was unable to inhibit

cyP-induced ERK/Elk1 pathway activation, whereas hSpry2

P59A P304A double mutant (and hSpry2 P59A single mutant,

not shown) showed a potent inhibitory effect (Fig. 1 and 2B).

Mutation of tyrosine 55 of Sprouty2 abrogates its inhibitory

properties in FGF signaling [7,11,12]. In addition, both, Y55F and

P59A mutations impair Sprouty2 phosphorylation at tyrosine 55

[40,41] after RTK stimulation, thus preventing Sprouty2

interaction with the SH2 domain of c-Cbl [14,15]. In order to

confirm whether tyrosine phosphorylation/c-Cbl binding are

dispensable events for the inhibitory effect of Sprouty2 on PGA1

signaling, we explored if cyP triggered this post-translational

modification of Sprouty2. PGA1 was unable to induce hSprouty2

tyrosine-phosphorylation, or hSprouty2 binding to c-Cbl, in sharp

contrast to the results obtained after EGF treatment (Fig. 5), and in

agreement with a PGA1 signaling pathway independent of RTK

activation. All these results suggest that other aspects relative to

tyrosine 55 but unrelated to its phosphorylation and binding

affinity to c-Cbl are modulating Sprouty2 functionality, and that

Sprouty2 inhibition of PGA1-dependent ERK activation does not

need of Sprouty2 interaction with c-Cbl. The detailed aspects of

this mechanism will be the subject of future investigations.

Activation of the ERK-Elk pathway by cyP could occur at

various levels. Evidence demonstrates a correlation between the

covalent modification of Ras proteins by cyP and Ras-ERK

pathway activation. However, other mechanism for Ras or ERK

activation could be envisaged, including oxidative stress induction

by cyP or their interaction with other cellular targets [42]. Besides

their binding to PPARs, cyP have been reported to interact with

membrane receptors, including G-protein coupled receptors, and

ion channels. Several cyP of the J series have been reported to

connect with the DP2 receptor, one of the receptors for PGD2,

also known as CRTH2 (for chemotactic receptor of TH2 cells)

Figure 3. PGA1-induced ERK/Elk-1 pathway activation depends of hSpry2 expression. (A) Expression levels of hSprouty2 (hSpry2),
hSpred1, and hSpred2 proteins in HT and Karpas 422 cell lines. Cells were lysed under appropriate conditions and equal amounts of proteins were
analyzed by immunoblot. Expression levels were assessed using specific anti-hSpry2, -hSpred1, -hSpred2 and -b Laminin (as loading control)
antibodies. C+ (positive control) corresponds to HeLa cells transiently co-transfected with pCEFL-KZ-AU5-hSpry2 wt, pCEFL-KZ-AU5-hSpred1, and
pCEFL-KZ-AU5-hSpred2. The figure is from a representative experiment that was repeated two times more with similar results. (B) HT and Karpas 422
cell lines (5?106 cells/point) were stimulated with 10 mM PGA1, for the indicated times. Cells were then lysed under appropriate conditions and equal
amounts of proteins were analyzed by immunoblot. ERK phosphorylation levels (p42 and p44 proteins) were assessed using specific anti-phospho
and total antibodies (as loading control). Results were similar in three additional experiments. The factor by which values of p-ERK increased is
estimated as mean of four separate assays (in each case with a SD lower than 10% of mean). (C) HT and Karpas 422 cells were co-transfected with
pcDNAIII-Gal4-Elk-1, pGal4-Luc, and pRL-TK. The transfected cells were serum-starved for 18 h, incubated with vehicle (-), or 10 mM PGA1, for 8 h, and
then assayed for luciferase activity. The data are the mean and SD of four separate assays performed in triplicate (* HT + PGA1 vs Karpas 422 + PGA1:
p,0.001).
doi:10.1371/journal.pone.0016787.g003
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[43]. The dissociation constants for various cyP are in the

nanomolar range, with PGD2 being more potent than D12-PGJ2

and this PG more potent than 15d-PGJ2. It has also been reported

the interaction of D12-PGJ2 and 15d-PGJ2 with DP1 [43].

Whereas DP1 is coupled to Gas-type of G proteins and its

activation triggers an increase in cAMP levels, DP2 is thought to

be coupled to Gai/o and its activation induces high intracellular

Ca2+ levels; this could contribute to the modulation of Ras protein

activity through RasGRP. CRTH2 activation of Gai proteins has

also been reported to stimulate PI3-K, MAPK and PLCc [44],

and both ERK, a member of MAPK family, and PLCc can be

inhibited by Sprouty2 and Spred1/2 proteins [6]. PGD2, as well as

its metabolites dk-PGD2, PGJ2, D12-PGD2, D12-PGJ2, 15d-PGD2

and 15d-PGJ2, have been shown to be potent eosinophilia

activators with respect to chemotaxis, actin polymerization, L-

selectin shedding and CD11b upregulation, in a CRTH2-

dependent manner [45,46]. The role of DP2 in mediating the

effects of 15d-PGJ2 appears nevertheless to be largely cell-

dependent. DP2 receptor antagonists appear to block 15d-PGJ2-

elicited enhancement of NGF-induced neurite outgrowth [47].

However, DP2 appears not to be involved in PGD2 or 15d-PGJ2

effects on inflammatory resolution [48], on the expression of

TLR2 in brain glia [49] or in the derangement of vimentin

cytoskeleton and the inhibition of iNOS induction by 15d-PGJ2 in

mesangial cells [50]. Moreover, to the best of our knowledge there

are no evidences of PGA1 interaction with these receptors. In

addition, cyP have been recently found to interact with other G-

protein coupled receptors. 15d-PGJ2 has been reported to activate

kappa/delta opioid receptors, as suggested by pharmacological

evidences [51]. Interestingly, several cyP have been reported to

covalently bind and activate the ion channel TRPA1, leading to

nociceptive responses [52]. Finally, results from our group have

identified the G-protein b2-like1 subunit as a potential target for

covalent modification by PGA1 [53]. However, the elucidation of

the functional significance of these results requires further study.

In conclusion, all the results presented in this study support that

the ERK/Elk-1 pathway activation induced by cyP (PGA1 and

15d-PGJ2) treatment can be negatively-modulated by Sprouty2

and Spred1-2 proteins. These data suggest that the functional role

of these proteins may be relevant not only as regulators of RTK

(or G-protein-coupled receptors) signaling [6], but also as

modulators of the ERK pathway activation dependent on

Ras?GTP loading triggered by other stimuli, such as cyP [32–34].

Our data indicate, that the molecular activity of Sprouty2 on

cyP signaling would be downstream of Ras (probably at the level of

c-Raf activation), without having any effect on Ras?GTP levels

elicited by these prostanoids (Fig. 6). In addition, Sprouty2 P59A

P304A double mutant, which lacks the capacity to bind to Grb2

[12], inhibits the ERK/Elk-1 pathway after PGA1 treatment to a

similar extent as Sprouty2 wt, demonstrating that the Sprouty2

activity to repress the PGA1/ERK/Elk-1 pathway does not

require Grb2 binding (Fig. 6). Finally, we found that although

Sprouty2 Y55F mutant did not block cyP-induced ERK and Elk-1

activation, the treatment with PGA1 was unable to provoke in vivo

tyrosine-phosphorylation of Sprouty2, and c-Cbl/Sprouty2 bind-

ing (Fig. 6); however, RTK stimulation (mainly EGFR) induces

tyrosine-phosphorylation of Spry2 (at Y55 residue) enhancing its

binding affinity to the SH2 domain of c-Cbl, which leads to Spry2

ubiquitination [6]. Our data, suggest that, independently of

phosphorylation of tyrosine 55 and c-Cbl binding, this tyrosine

Figure 4. hSprouty2 does not affect PGA1-induced K-Ras 4B
activation. (A) HeLa cells transiently co-transfected with pCEFL-KZ-HA-
K-Ras 4B wt and pCEFL-KZ-HA-hSpry2 wt, or pCEFL-KZ-HA (vector), were
serum-starved for 18 h and then incubated with vehicle (-), either
100 ng/ml EGF, or 10 mM PGA1, for 15 min. Ras-GTP was recovered from
cell lysates by binding to immobilized GST containing the Ras?GTP
binding domain of Raf (GST-RBD) and detected by immunoblotting
with anti-HA mAb (upper panel). The expression levels of HA-K-Ras 4B
wt and HA-hSpry2 wt were detected by immunoblotting WCL with the
corresponding anti-HA mAb (lower panel). Results were similar in five
independent assays. (B) Quantitative analysis of K-Ras-GTP standardized
to K-Ras levels for the same type of experiments indicated in (A). The
histogram shows the mean and SD of five separate assays.
doi:10.1371/journal.pone.0016787.g004

Figure 5. hSprouty2 is not tyrosine-phosphorylated by PGA1

treatment. HeLa cells transiently transfected with pCEFL-KZ-AU5-
hSpry2 wt, were serum-starved for 18 h and then incubated with
vehicle (-), 100 ng/ml EGF, or 10 mM PGA1, for 15 min. Cell lysates were
immunoprecipitated with anti-AU5 mAb and analyzed by immunoblot
using anti-p-Y, -c-Cbl, and -AU5 antibodies. Expression levels of
endogenous c-Cbl were detected by immunoblotting with the
appropriate anti-c-Cbl antibody (lower blot), and using anti-ERK as
loading control. Results were similar in three additional experiments.
doi:10.1371/journal.pone.0016787.g005
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residue might be involved in additional functions, unexplored to

date, which can exert a pivotal role in the molecular inhibitory

mechanism of Sprouty2 on the cyP signaling.
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