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Abstract

Background: Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington’s disease (HD), is
critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-
terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of
these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising
therapeutic target for HD.

Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight
into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich
region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy
inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-
accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal
pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely
followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies
amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of
sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, VL12.3, turnover
of soluble mHDx-1 in living cells is blocked.

Conclusions/Significance: These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the
degradation of mHDx-1, a finding that may have therapeutic implications.
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Introduction

Huntington’s disease (HD) is caused by the expansion of a

polyglutamine (polyQ) tract in the first exon (HDx-1) of the large

protein, huntingtin (Htt) [1]. Mutant Htt protein (mHtt) perturbs

many cellular processes by both gain of toxic function and loss of

normal function. These include axonal transport, mitochondrial

metabolism, transcriptional regulation and the ubiquitin protea-

some system (UPS) [2]. There is an age-dependent accumulation

of mHtt protein in HD [3], which may be partially responsible for

the adult onset of symptoms despite the lifelong expression of

mHtt. Increasing the clearance of mHtt could prevent this

accumulation and thereby delay or prevent the onset of symptoms.

Degradation of mHtt occurs through several mechanisms,

suggesting a number of potential therapeutic opportunities for

enhancing removal. Proteases cleave Htt, generating N-terminal

fragments, some of which are more toxic than the full-length

protein [4,5,6]. Increasing polyQ tract length leads to increased

caspase and calpain activation and enhanced production of toxic

N-terminal fragments in the HD brain [7]. These fragments are

degraded by additional protease cleavage, the UPS and autoph-

agy, which can involve isolation in an autophagosome and

introduction to the lysosome by fusion, macroautophagy, or

delivery to the lysosome by chaperone proteins (chaperone-

mediated autophagy, CMA) [8]. Certain cleavage events generate

toxic fragments, and selective prevention of these events
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dramatically reduces the toxicity of mHtt by the generation of

other, less toxic N-terminal cleavage products [9,10]. Post-

translational modifications such as phosphorylation also play a

role in regulating Htt proteolysis [11,12], and phosphorylated

mHtt can be more toxic than unphosphorylated mHtt [12]. Thus,

the dichotomy of mHtt processing: while some modifications

increase the toxicity of the protein, these more toxic forms are

intermediates in the process leading to total degradation. Since

enhancing total degradation represents a powerful therapeutic

strategy, a better understanding of this process is warranted. As the

site of the disease-causing mutation, insight into the clearance of

HDx-1 is particularly salient.

We have used intrabodies (iAbs), intracellularly-expressed

antibody fragments directed against various sites in HDx-1 to

gain such insight. Intrabodies retain the high target specificity of

antibodies but lack the immunogenic constant domains. These

reagents have shown significant promise as therapeutics for

proteinopathies including HD [13]. Moreover, iAbs are also

powerful molecular tools for probing the functions and interactions

of their targets when expressed in living cells.

We have previously shown that binding of the iAb Happ1,

which recognizes the proline rich region of HDx-1, results in a

selective increase in the turnover of the mutant form (mHDx-1)

[14,15]. Here we report on the mechanism of Happ1-induced

turnover of mHDx-1, the study of which has revealed a new

insight into mHtt cleavage.

Materials and Methods

Cell culture
HEK 293 cells (ATCC) and ST14A cells (Elena Cattaneo,

Milano, Italy) were grown in DMEM (Invitrogen) supplemented

with 10% heat inactivated fetal bovine serum, 2 mM glutamine,

1 mM streptomycin and 100 international units of penicillin

(Invitrogen). Cells were maintained in 37uC (293) or 33uC
(ST14A) incubators with 5% CO2. Transfections utilized calcium

phosphate.

Ubiquitination of Htt
HEK 293 cells were transfected with mHDx-1-GFP plus iAb

(HDx-1:iAb = VL12.3, 1:1; Happ1, 1:2). Thirty-six hours post-

transfection, cells were collected for Western blotting and

immunoprecipitation (IP) as previously described [14]. Briefly,

cells were dislodged by pipetting, pelleted by centrifugation, rinsed

with PBS, and lysed by sonication in lysis buffer. Insoluble material

was removed by additional centrifugation, and the protein

concentration was determined by BCA assay (Pierce). Htt protein

was immunoprecipitated from the lysate by combining 400 mg

lysate protein with 50 mg anti-GFP antibody (Invitrogen) conju-

gated to protein G sepharose beads (Sigma) and rocking for 4 hrs

at RT. Beads were washed 4 times in PBS containing 0.1% Triton

X100 to remove unbound protein. Seventy-five mg total lysate

protein samples and bound IP samples were boiled in 6X protein

loading buffer containing 20% b-mercaptoethanol (BME), sepa-

rated by polyacrylamide gel electrophoresis (PAGE), transferred to

nitrocellulose membrane, and immunoblotted for ubiquitin.

Membranes were then stripped with Restore Western blot

stripping buffer (Pierce) and re-blotted for Htt. Membranes were

stripped a second time and immunoblotted for b-tubulin, used as a

loading control. The ratio of immunoprecipitated ubiquitin

(ubiquitinated Htt) to immunoprecipitated Htt (total Htt) was

assessed using chemiluminescence densitometry. Each band was

first normalized to the density of the b-tubulin band for that

sample. Immunoprecipitated Htt and ubiquitin levels were

compared by computing the ratio of the density of the band in

the presence of Happ1 to the density of the band in the presence of

VL12.3. The ratio of immunoprecipitated ubiquitin:Htt in the

presence of Happ1 vs. VL12.3 was then compared. The

experiment was repeated two additional times, giving an N of 3.

Htt levels
HEK 293 cells were transfected with mHDx-1-GFP plus iAb

(VL12.3, 1:1; Happ1, 2:1) or mHDx-1DPRR (lacking the proline-

rich region) plus iAb as a control for non-specific effects of Happ1.

Inhibitors of proteolytic processing were added to the culture

medium 24 hrs post-transfection in the following concentrations:

lactacystin (Sigma), 10 mM; epoxomicin (Sigma), 10 mM; 3-MA

(Sigma), 10 mM; bafilomycin A1 (Sigma), 100 nM; caspase

inhibitor I (NBD Biosciences), 50 mM; calpain inhibitor I (Sigma),

50 mM. Cell lysates were prepared for Western blotting 48 hrs

post-transfection as described above. Membranes were blotted for

Htt, and stripped and blotted for b-tubulin as a loading control.

Htt levels were compared by chemiluminescence densitometry.

The density of each band was normalized to the density of the b-

tubulin band for that sample. The ratio of Htt levels in the

presence of Happ1 to Htt levels in the presence of VL12.3 was

then compared. To reduce the likelihood that observed differences

in Htt level resulted from differences in transfection efficiency, the

experiment was repeated 3 times, giving an N of 4.

Htt turnover
Htt turnover was assayed using the SNAP-tag fusion system for in

vivo protein labeling (NEB) as previously described [14]. Briefly,

ST14A cells were grown on cover slips and transfected with mHDx-

1-SNAP alone or with iAb. To control for non-specific effects of

Happ1, mHDx-1DPRR–SNAP alone or with iAb was used. Green

fluorescent SNAP-substrate was added to cells 24 hrs post-

transfection to label all mHDx-1. Immediately after labeling, some

samples were fixed in 4% paraformaldehyde (PFA), stained for cell

nuclei (topro-3-iodide, Invitrogen) and mounted for confocal

microscopy. Inhibitors of proteolytic processing were then added

to the medium of the remaining cultures. At 48 hrs post-transfection,

these cells were fixed, stained and mounted as above. Mean intensity

of green fluorescence in cells in three microscope fields per well and

three wells for each condition was used to determine average Htt

levels. The ratio of mean cell intensity at 24 hrs to mean cell intensity

at 48 hrs was computed to determine rate of Htt turnover. The

experiment was repeated twice, giving an N of 3.

Calpain cleavage site prediction in HDx-1
Calpain 1 and calpain 2 cleavage sites in HDx-1 were predicted

using the SitePrediction tool with the pre-computed cleavage site

profiles ‘‘calpain-1_Homo_sapiens_4_2’’ and ‘‘calpain- 2_Homo_

sapiens_4_2’’ [16]. The HDx-1 sequence was obtained from the

February 2009 human reference sequence (GRCh37) through the

UCSC Genome Browser [17]. PolyQ tract lengths of 17 and 42 AAs

were used to determine if cleavage is modified by polyQ length.

In vitro calpain cleavage of HDx-1
HDx-1 Q46 fused to a thioredoxin tag (TRX) to promote

solubility (mHDx-1-TRX) was purified as reported previously [18]

and exchanged into diluent (20 mM Tris-HCl, pH 7.4 containing

150 mM NaCl and 2 mM Ca2+) using a disposable PD10

desalting column (GE Healthcare). 20 mg purified mHDx-1-

TRX was incubated with 1 mg calpain 1 (Sigma) at 37uC for

1 hour. As a control for possible calpain cleavage in the TRX tag

or linker sequence, mHDx-1-TRX was cleaved with enterokina-
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seMax (EKMax) (Invitrogen), a peptidase known to remove the

entire TRX-linker sequence from mHDx-1-TRX according to the

manufacturer’s specifications. Cleavage reactions were separated

by PAGE and stained with coomassie to visualize protein bands.

Molecular weight of protein bands was determined by comparison

to precision plus dual protein molecular weight standard (Biorad)

using a FluorChem 8900 (Alpha Innotech) gel documentation

system and AlphaImager software. A reaction containing only

mHDx-1-TRX and diluent was used to assess uncleaved protein

and reactions containing either calpain 1 or EKMax and diluent in

the absence of mHDx-1-TRX were used to visualize bands

corresponding to these proteins. To identify cleavage fragments, a

reaction containing mHDx-1-TRX alone and one containing

mHDx-1-TRX and calpain were transferred to nitrocellulose

membrane after PAGE separation and blotted with an antibody

recognizing the N-terminus of Htt [19].

Peptide array mapping of the VL12.3 binding site
A 14-mer 7 peptide array covering Htt N1-32 in steps of three

AAs was purchased from Mimotopes. Peptides were dissolved in

80% DMSO/20% water to an average concentration of 5 mg/ml.

Peptides were further diluted 100-fold in water and 2 ml of each

peptide was blotted onto nitrocellulose and allowed to dry.

Nitrocellulose membranes were blocked with 1% milk in PBS for

one hour at room temperature. GST-VL12.3 generated as

previously described [14] was added as primary antibody and

incubated overnight at 4uC. After washing in PBS with 0.1%

Tween, anti-HA tag antibody 3F10 coupled to HRP (Roche) was

added for 1 hour at room temperature. Dot blots were developed

by exposure to X-ray film.

Organotypic brain slice cultures
Brain tissue was removed from euthanized postnatal day 10 (P10)

CD Sprague-Dawley rats (Charles River Laboratory, Raleigh, NC)

in accordance with Duke University Medical Center Institutional

Animal Care and Use Committee guidelines and approvals

(approval #A248-08-09), and as described previously [14,20].

250 mm thick coronal slices containing both striatum and cortex

were cut using Vibratomes (Vibratome, St. Louis, MO) in ice-cold

culture medium containing 15% heat-inactivated horse serum,

10 mM KCl, 10 mM HEPES, 100 U/ml penicillin/streptomycin,

1 mM MEM sodium pyruvate, and 1 mM L-glutamine in

Neurobasal A (Invitrogen). Corticostriatal brain slices were then

incubated at 37uC under 5% CO2 for 1 hr before biolistic

transfection with 1.6 mm gold particles coated with DNA constructs

expressing yellow fluorescent protein (YFP) as a vital marker,

mHDx-1 Q-73, and either VL12.3 or the CVL non-targeting

intrabody. For control transfections, gold particles were coated with

YFP alone plus vector backbone DNAs. For time resolved Förster

resonance energy transfer (TR-FRET) analysis, brain slices were

triturated 10x through 26-gauge needles in ice-cold lysis buffer

(50 mM Tris-HCl, 150 nM NaCl, 2 mM EDTA, 1% NP-40, 0.1%

SDS + Roche protease inhibitor cocktail tablet) and centrifuged at

12,000 g for 10 min. at 4uC. The supernatants were collected and

stored at 280uC until TR-FRET analysis. Experimental conditions

were run in triplicate using a single brain slice per lysate.

Primary neuron co-culture
Cortico-striatal co-cultures were prepared as described in [21].

Briefly, cortices and striata from embryonic day 18 (E18) rat brains

were dissected then separately dissociated with papain/DNase

(Worthington biochemicals). Dissociated striatal and cortical

neurons were counted and 56106 cells each were separately co-

transfected by nucleofection (Amaxa, Lonza AG) with plasmids

encoding HDx-1 carrying 73 CAG repeats or empty vector and

either VL12.3 or the preimmune control CVL. After electropora-

tion, striatal and cortical cells were combined and 60,000 cells/

well were plated onto an established bed of astroglia in 96-well

plates. Astroglial feeder layers were generated by dissection of E18

cortices followed by three serial passages to establish an enriched

population of astroglia. Astroglia were plated into 96-well plates at

a density of 2000 cells/well three days before neuron plating.

Neurons were cultured in Neurobasal media (Invitrogen, Carls-

bad, CA) supplemented with 5% fetal calf serum (Sigma-Aldrich,

St. Louis, MO), 2 mM glutamine (Glutamax, Invitrogen), 10 mM

potassium chloride, and 5 mg/mL gentamicin at 37uC in 95% 02/

5%CO2 for 4–6 days before analysis.

For TR-FRET analysis, cells were harvested by scraping from

wells and triturating as described above for brain slice explants.

Soluble mHtt-TR-FRET assay
TR-FRET detection of soluble mHtt was previously described

[22]. In brief, samples were lysed in PBS, 0.4% TritonX100 and

Complete Protease Inhibitor (Roche). 5 ml sample plus 1 ml

antibody mix diluted in assay buffer (50 mM NaH2PO4, 400 mM

NaF, 0.1% BSA and 0.05% Tween) were pipetted per well of a low-

volume 384 microtiter plate (Sigma). Final antibody amount per

well was 1 ng 2B7-terbium cryptate-labeled antibody and 10 ng

MW1-D2-labeled antibody. Plates were incubated for 1 h at 4uC
and measured with a Xenon-lamp Envision Reader (PerkinElmer)

after excitation at 320 nm. Signal measured at 620 nm resulted

from the emission of the terbium cryptate-labeled antibody and was

used as a normalization signal for possible assay artifacts due to

scattering, quenching, absorption or sample turbidity. Mutant Htt

specific signal which resulted from the time-delayed excitation of the

D2-labeled MW1 antibody after excitation by the terbium cryptate

was detected at 665 nm. 665/620 nm signal ratio was calculated as

‘‘TR-FRET signal’’ specific for soluble mutant Htt.

Results

Happ1 does not increase mHDx-1 ubiquitination
To assess the effects of Happ1 on ubiquitination of mHDx-1,

HEK 293 cells were co-transfected with mHDx-1-GFP plus Happ1

or VL12.3. VL12.3 was used as a control for non-specific iAb effects

as we have previously shown that this iAb binds mHDx-1 but has no

effect on its levels in this system [14]. Huntingtin was immunopre-

cipitated from transfected cell lysates and immunoblotted for both

Htt and ubiquitin (Fig. 1A). Densitometry was used to determine the

ratio of ubiquitinated mHDx-1 to total mHDx-1 in the presence of

Happ1 versus VL12.3 (Fig. 1B). There is no differential effect of iAb

treatment on this ratio, indicating that Happ1 does not increase

mHDx-1 ubiquitination and therefore likely does not work through

a UPS-dependent mechanism.

Happ1-induced reduction of mHtt levels requires calpain
activity and maintenance of lysosomal pH

We previously showed that Happ1 stimulates mHDx-1 turnover

[14]. To determine which proteolytic pathway is involved, soluble

lysates of HEK 293 cells co-transfected with mHDx-1 plus iAb, or

mHDx-1DPRR plus iAb, and treated with various inhibitors of

proteolytic processing were immunoblotted for Htt (Fig. 2A). The

ratio of the Htt level in the presence of Happ1 to the Htt level in

the presence of VL12.3 was compared among the various

inhibitors. In unperturbed cells, or in the presence of DMSO

vehicle, the level of Htt in the presence of Happ1 is reduced

compared to the level of Htt in the presence of VL12.3. This ratio

is unchanged by the addition of various inhibitors: lactacystin, a
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proteasome inhibitor that also affects cathepsin A of lysosomes;

epoxomicin, a proteasome inhibitor; 3-MA, an inhibitor of

autophagosome formation; or caspase inhibitor I, an irreversible

pan-caspase inhibitor. In contrast, the addition of bafilomycin A1,

an inhibitor of the vacuolar-type H(+)-ATPase that is known to

inhibit autophagosome/lysosome fusion as well as lysosomal pH;

or calpain inhibitor I, a pan-calpain inhibitor, significantly

increases the ratio of Htt in the presence of Happ1 to Htt in the

presence of VL12.3 (Fig. 2C). Thus, these latter two inhibitors

interfere with the mechanism by which Happ1 reduces the level of

mHtt. The levels of HDx-1 in the presence of calpain inhibitor I or

bafilomycin A1 are quantitatively very similar to those found using

the HDx-1 construct lacking the proline-rich region to which

Happ1 binds (Fig. 2B). Thus, it appears that these inhibitors

completely abolish the effect of Happ1 on mHDx-1 clearance.

The effect of bafilomycin A1 is likely due to disrupted lysosomal

pH rather than inhibition of autophagosome/lysosome fusion as

evidenced by the lack of effect by 3-MA, which should act

upstream of bafilomycin A1 in the macro-autophagy pathway.

Therefore, we infer that Happ1 reduces mHDx-1 level by a

calpain-CMA-dependent mechanism.

Happ1-induced stimulation of mHtt turnover requires
calpain activity and maintenance of lysosomal pH

In another approach to defining how Happ1 stimulates mHDx-

1 clearance, mHDx-1 was labeled with the SNAP reagent and the

loss of the label followed over time [23]. A traditional pulse chase

experiment was not used because mHDx-1 is known to affect

transcriptional regulation. This property of mHDx-1 could

conceivably be altered by iAb binding, leading to variable

transcription rates of HDx-1 in the presence of the various iAbs.

The SNAP-tag fusion system allows labeling of all preexisting

HDx-1. By measuring the amount of Htt at the time of labeling

and again at a later time point, we are able to measure a rate of

turnover independent of transcription or translation rate. This

system also offers greater specificity, because only the SNAP-tag

fusion protein is labeled as opposed to all cellular proteins

translated during the labeling period as with traditional pulse-

chase experiments. ST14A cells were transfected with mHDx-1-

SNAP alone or with iAb, as well as mHDx-1DPRR-SNAP alone

or with iAb. Green fluorescent SNAP substrate was used to label

mHDx-1 protein 24 hrs post-transfection (Fig. 3A). Cells were

allowed to incubate an additional 24 hrs in the presence of various

inhibitors of proteolytic processing or vehicle. The mean

fluorescence intensity of cells at 24 hrs and at 48 hrs was

compared to determine the amount of mHDx-1 labeled at

24 hrs that still remained at 48 hrs (Fig. 3B).

Compared to that in the presence of VL12.3, there is

significantly less mHDx-1 remaining at 48hrs in the presence of

Happ1. Addition of epoxomicin or 3-MA has no effect on the

turnover rate of mHDx-1 in the presence of Happ1, reinforcing

the conclusion that Happ1 does not increase mHDx-1 turnover by

enhancing proteasome or macroautophagy function. On the other

hand, addition of bafilomycin A1 or calpain inhibitor I completely

blocks the Happ1 stimulation of mHDx-1 turnover, leading to

turnover levels equivalent to those with mHDx-1 alone or in the

presence of VL12.3 (Fig. 3). These results support the finding with

Figure 1. Happ1 does not increase ubiquitination of mHDx-1. mHDx-1 was immunoprecipitated from the lysates of HEK 293 cells co-
transfected with mHDx-1 and iAb. (A) Lysates and IPs were Western blotted for Htt and ubiquitin. (B) The ratio of immunoprecipitated Htt (total
mHDx-1) to immunoprecipitated ubiquitin (ubiquitinated mHDx-1) was compared. There are no iAb specific effects on this ratio. N = 3.
doi:10.1371/journal.pone.0016676.g001
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total HDx-1 levels (above) that Happ1 increases turnover of mHtt

by enhancing calpain cleavage and CMA.

A turnover rate could not be assessed for mHDx-1DPRR due to

the increased toxicity and aggregation of this construct, leading to

a paucity of morphologically normal cells or soluble HDx-1 at 48

hrs (Fig. 4). There is still significant soluble HDx-1 in the presence

of VL12.3 at this time point, indicating that, as expected from our

previous work, this iAb inhibits aggregation of this modified HDx-

1, while Happ1 does not.

There are putative calpain cleavage sites at AA 15 and AA
8 of HDx-1

To identify the site of calpain action, human HDx-1 amino acid

sequence was analyzed for potential calpain 1 and 2 cleavage sites

using the web application SitePrediction [16]. Using this program,

AAs 12–17 with cleavage between 15 and 16, (ESLK.SF), is

predicted to be the most likely site for both proteases, with greater

than 99.9% specificity for calpain 1 and greater than 99%

specificity for calpain 2. A secondary site at AAs 5–10, with

cleavage between 8 and 9, (EKLM.KA), is predicted to have

greater than 99% specificity for calpain 1 and greater than 95%

specificity for calpain 2 (Fig. S1).

Calpain 1 cleaves mHDx-1 in vitro
To determine if calpain directly or indirectly promotes clearance

of mHDx-1 we incubated purified, recombinant calpain 1 and

mHDx-1 protein in vitro. A thioredoxin tag (TRX) was fused to

mHDx-1 to promote solubility. Cleavage at the predicted calpain

recognition sites would result in N-terminal fragments consisting of

the TRX tag and linker and N1-8 or N1-15 (Fig. 5a) As a control for

cleavage within the TRX tag, mHDx-1-TRX was also incubated

with EKMax, which removes the entire tag and linker sequence.

Reactions containing either no protease or no HDx-1-TRX were

used as controls. Reactions were separated by PAGE and visualized

Figure 2. Happ1-mediated reduction of mHDx-1 protein levels is calpain-dependent. HEK 293 cells were co-transfected with mHDx-1 and
iAb in the presence of inhibitors of proteolysis or DMSO vehicle. mHDx-1 protein levels in transfected cell lysates was compared by (A, B) Western
blotting and (C) densitometry. There is less mHDx-1 protein in the Happ1 transfected cells as compared to the VL12.3 transfected cells in the presence
of vehicle, Lactacystin, epoxomicin, 3-MA or caspase inhibitor 1. Happ1-mediated reduction of mHDx-1 levels is blocked by bafilomycin A1 or calpain
inhibitor 1 to the same level as mHDx-1 lacking the Happ1 binding site. * = p,.05, N = 4.
doi:10.1371/journal.pone.0016676.g002

Calpain Cleaves Huntingtin Exon 1

PLoS ONE | www.plosone.org 5 January 2011 | Volume 6 | Issue 1 | e16676



with coomassie to evaluate cleavage. In the absence of protease,

mHDx-1-TRX protein appears as a single band of approximately

46 kDa. In the presence of calpain 1, mHDx-1-TRX is cleaved

resulting in three smaller products (Fig. 5b). The smallest of these

are 15.2 and 16.0 kDa which are very close to the predicted sizes for

N1-8-TRX and N1-15-TRX of 15.1 and 15.9 kDa supporting

cleavage at the predicted sites. These products are larger than those

generated by EKMax cleavage indicating that calpain cleavage is

occurring within mHDx-1. Immunoblotting with an antibody

recognizing the N-terminus of Htt confirms that the 16.0 kDa

cleavage fragment contains this domain supporting the predicted

cleavage site (Fig. S2).

VL12.3 binds to the putative calpain cleavage site at AA
15

The iAb VL12.3 was selected for binding to an N1-20 AA

fragment of HDx-1 [24], a domain that encompasses but is not

limited to the predicted calpain cleavage sites. To determine the

Figure 3. Happ1-enhanced mHDx-1 turnover is calpain-dependent. ST14A cells were co-transfected with mHDx-1-SNAP alone or with iAb in
the presence of inhibitors of proteolytic processing or DMSO vehicle. To measure Htt turnover, mHDx-1 protein was labeled 24 Hrs post transfection
and cultures were incubated for an additional 24 Hrs. (A) Immunofluorescent images showing labeled mHDx-1 (B) The mean cell intensity of label at
24 Hrs vs. 48 Hrs was used to determine the percentage of mHDx-1 labeled at 24 Hrs that still remained at 48 Hrs. In the presence of epoxomicin or
3M-A there is no change in Happ1-enhanced mHDx-1 turnover as compared to in the presence of DMSO. In the presence of bafilomycin A1 or calpain
inhibitor 1, mHDx-1 turnover is not increased by Happ1. * = p,.05, ** = p,.01, N = 3.
doi:10.1371/journal.pone.0016676.g003

Calpain Cleaves Huntingtin Exon 1

PLoS ONE | www.plosone.org 6 January 2011 | Volume 6 | Issue 1 | e16676



exact location of VL12.3 binding we used a 3 AA stepped peptide

array binding assay (Fig. 6A). The results show that VL12.3 binds

to peptides 3, 4 and 5 which are N7-20, N10-23 and N13-26,

respectively (Fig. 6B). This demonstrates that VL12.3 requires AAs

15-18 at the minimum and 13–20 at the maximum for binding.

Thus, VL12.3 binding would be expected to interfere with

cleavage at AA 15 and possibly sterically hinder cleavage at AA 8.

Blocking cleavage at AA 15 by VL12.3 binding prevents
clearance of soluble mHDx-1

To determine the effect of compromising cleavage at AA 15 on

mHDx-1 clearance, we performed a TR-FRET assay to measure

soluble mHDx-1 levels in lysates of organotypic brain slice cultures

biolistically transfected with mHDx-1 alone or with either VL12.3

or CVL, a control iAb. Soluble mHtt levels were compared 1, 2

and 3 days post-transfection by measuring the TR-FRET signal

between a donor fluorophore-labeled antibody, 2B7, recognizing

N1-17 of HDx-1, and an acceptor fluorophore-labeled antibody,

MW1, recognizing polyQ [22]. This system is more suited to the

measurement of reduced mHDx-1 turnover than the SNAP-tag

fusion system described above, in which we observed no effect of

VL12.3 on turnover rate. The brain slice culture system allows for

longer experimental time frames during which, unlike the SNAP-

tag system, significant normal mHDx-1 clearance is observed. This

system also utilizes non-tagged mHDx-1 decreasing the likelihood

that observed changes in mHDx-1 level are due to conformation

or stability perturbations resulting from tag fusion. As expected,

the level of soluble mHDx-1 in the presence of CVL declines over

time, reflecting normal clearance. In the presence of VL12.3, there

is no change in mHDx-1 levels over time indicating a complete

block of clearance (Fig. 7a). To extend our observation period even

further, we have utilized a primary neuronal co-culture system

consisting of striatal and cortical neurons as well as glia [21].

Primary neurons were transfected with iAb or mHDx-1 plus iAb

and plated on a previously generated glial bed. Lysates were

collected 4, 5 or 6 days later, and mHDx-1 protein level was

assessed by TR-FRET. At these later time points, there is

dramatically more mHDx-1 protein in the presence of VL12.3

than in the presence of CVL (Fig. 7b). This suggests that clearance

of mHDx-1 requires calpain cleavage at AA15, and that this

cleavage event likely occurs upstream of CMA degradation.

Discussion

Huntington’s disease is a devastating neurodegenerative disease

for which there is currently no disease modifying therapy. One of

the difficulties with HD therapy development is the complex web

of dysfunction resulting from the great many processes and

pathways affected by mHtt protein in susceptible neurons. As a

result, lowering the level of mHtt protein either by silencing

expression or increased clearance remains a prime therapeutic

approach for HD. For this reason, understanding the mechanism

of mHtt degradation is important.

Huntingtin degradation involves numerous pathways, with

differential toxicity regulated by post-translational modifications.

Transgenic mice expressing mHtt that is resistant to caspase-6

cleavage at AA 586 do not develop the HD-like symptoms seen in

their caspase-6-sensitive counterparts, despite the presence of

other caspase cleavage products in the brain [9]. Phosphorylation

of serine 421 shifts processing toward these less toxic products by

inhibiting cleavage at AA 586 [11]. Moreover, calpain-resistant

mHtt lacking the AA 469 and AA 536 cleavage sites is less toxic

and aggregation-prone than calpain cleavage-sensitive mHtt [10].

Phosphorylation of serine 536 inhibits cleavage at AA 536, which

also results in reduced toxicity [25]. Modifications of mHtt can

also regulate non-protease degradation events. Phosphorylation of

serines 13 and 16 increases proteasomal and lysosomal degrada-

tion of Htt in turn reducing toxicity. In Drosophila, presumably due

to the absence of mammalian degradative machinery and

mechanisms, this modification leads to increased toxicity due to

accumulation of the more toxic phosphorylated form of mHtt

[12]. A better understanding of the complex process of mHtt

proteolysis could eventually lead to the development of therapeu-

tics that shift processing toward less toxic pathways and/or

enhance removal. Although the generation of N-terminal mHtt

fragments by caspase and calpain cleavage has been previously

characterized, the subsequent degradation of the highly toxic

HDx-1 fragment has remained unclear.

With their high target specificity, iAbs are an ideal molecular

tool for elucidating protein interactions and functions. For

example, the 17 N-terminal AAs of HDx-1 are required for

aggregate seeding and cytoplasmic retention [26,27]. Blockade of

this region by the binding of the iAb VL12.3 results in nuclear

translocation and a potent inhibition of aggregation of HDx-1,

illustrating the informative relationship between iAb effects and

epitope function [14,24]. Happ1 recognizes the proline rich region

of HDx-1 and increases clearance of mutant but not wild type

HDx-1 [14]. We have exploited this effect of Happ1 binding to

gain insight into the mechanism of HDx-1 proteolysis.

Htt undergoes a variety of proteolytic processing steps

including protease cleavage, proteasomal degradation, and

lysosomal/autophagic degradation. In order to determine the

initiating or rate-limiting step in mHDx-1 degradation, we tested

inhibitors of each of these pathways in the presence and absence

of Happ1 and evaluated mHDx-1 levels and turnover using the

SNAP-tag method. One caveat of this method is that it requires

the use of tagged HDx-1, which could alter HDx-1 conformation

or stability. However, we obtained supportive evidence for the

effect of VL12.3 on unlabeled HDx-1 using the entirely

independent TR-FRET technique. Moreover, the stimulatory

effect of Happ1 on mHDx-1 turnover labeled with the SNAP-tag

is quite consistent with the significant lowering of mHDx-1-GFP

levels by Happ1. An important control in our experiments is the

use of mHDx-1DPRR, which lacks the Happ1 binding site.

Levels of this protein are not affected by Happ1, indicating that

the reduced mHDx-1 levels in the presence of Happ1 do not

Figure 4. Happ1 does not inhibit aggregation of mHDx-1DPRR.
ST14A cells were co-transfected with mHDx-1DPRR-SNAP alone or with
iAb. HDx-1-SNAP fusion protein was labeled 24 Hrs post transfection,
and labeled protein was observed 24 Hrs later. As expected, Happ1 has
no effect on aggregation of mHDx-1 lacking the Happ1 binding site.
Conversely, VL12.3 is still efficient at preventing aggregation of this
modified mHDx-1.
doi:10.1371/journal.pone.0016676.g004
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result from non-specific iAb actions such as activation of the un-

folded protein response [28].

The proteasome inhibitors epoxomicin and lactacystin do not

disrupt Happ1 stimulation of HDx-1 turnover, and Happ1 does not

increase ubiquitination of HDx-1. These results indicate that Happ1

does not accelerate proteasomal degradation of Htt. We also find

that 3-MA, an inhibitor of autophagosome formation and the

macroautophagy pathway, does not interfere with Happ1-acceler-

ated mHDx-1 degradation. In contrast, bafilomycin A1, a vacuolar-

type H(+)-ATPase inhibitor that hinders lysosome-autophagosome

fusion as well as disrupting lysosomal pH, prevents Happ1-induced

changes in mHDx-1 clearance rate. Due to the lack of effect of 3-

MA, it is unlikely that the action of bafilomycin A1 on

autophagosome/lysosome fusion is responsible for disrupting

Happ1 function. It is more likely that bafilomycin A1 disrupts

Happ1 function by disrupting lysosomal pH. This indicates a role

for CMA, which is an autophagosome-independent lysosomal

degradation process, in Happ1-enhanced mHDx-1 clearance.

We next evaluated the sensitivity of the Happ1 effects to the

caspase and calpain proteases. While caspase inhibition has no

effect on Happ1 function, calpain inhibition is effective in blocking

the ability of Happ1 to both decrease the level of soluble mHDx-1

and increase its turnover. These results indicate that Happ1 likely

increases mHDx-1 clearance through enhanced calpain cleavage,

which is particularly interesting because of the lack of a known

calpain cleavage site in HDx-1. Calpain inhibitor I has, however,

been reported to cause accumulation and increased aggregation of

N-terminal Htt fragments including HDx-1, and calpain 1 is

known to increase degradation of these fragments in the lysates of

transfected PC12 cells [29]. Taken together, these results indicate

that calpains participate either directly or indirectly in the

degradation of mHDx-1.

Analysis of the AA sequence of human HDx-1 using the web

application SitePrediction identifies AAs 12-17 as having the

highest degree of specificity for both calpain 1 and calpain 2, with

a secondary recognition site at AA 5-10. Cleavage at these sites,

which is not predicted to be modulated by increasing polyQ

length, would result in the removal of 15 of the 17 N-terminal AAs

of Htt, effectively removing the N-terminus. The N-terminus of

Htt is the site of many post-translational modifications including

phosphorylation, acetylation and sumoylation [30,31]. In the wt

protein, this domain adopts an amphipathic alpha-helical

Figure 5. Purified calpain 1 cleaves HDx-1 in vitro generating cleavage fragments consistent with the predicted sites at AA8 and
AA15. HDx-1 Q46 fused to thioredoxin (mHDx-1-TRX) was incubated with purified calpain 1 in vitro, separated by PAGE and stained with coomassie
to assess cleavage. (A) mHDx-1-TRX construct showing known EKMax cleavage sites and predicted calpain 1 cleavage sites. (B) Coomassie stained
PAGE gel showing mHDx-1-TRX in lane 1, which appears as a single band. Cleavage by calpain 1 in lane 2 yields 3 smaller bands which correspond to
the predicted products after cleavage at AA 8 and AA 15. Cleavage by EKMax in lane 3 yields 3 bands which correspond to the known cleavage sites.
The N-terminal fragments generated by EKMax cleavage, which include the entire TRX tag and linker, are smaller than those generated by calpain
cleavage indicating that calpain cleavage must occur within HDx-1. Lanes 4 and 5 are calpain 1 alone and EKMax alone respectively.
doi:10.1371/journal.pone.0016676.g005
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structure, which associates with cellular membranes [26,32]. The

predicted cleavage site, AA15, is part of the charged face of this

helix and would therefore be exposed, but the tightly packed

nature of this secondary structure could inhibit cleavage. In the

context of expanded polyQ, the secondary structure of the N-

terminus is significantly disrupted [33] leading to an un-coiling,

which could increase exposure of the predicted cleavage site. This

could explain the differential action of Happ1 on mutant and

wtHtt. It is interesting to note that phosphorylation of this putative

calpain cleavage site is known to increase mHDx-1 nuclear

localization followed by degradation [12] and that removal of the

N-terminus is known to increase nuclear localization [26,27].

Calpain I cleaves purified mHDx-1 in vitro, generating cleavage

products of the expected sizes, showing that this protease can act

directly on HDx-1 and supporting the site prediction. We

employed iAb blockade of the N-terminal 12-17 AA site to

determine the importance of cleavage here in the degradative

process. VL12.3 was raised against a peptide of AAs 1–20 of Htt

and therefore binds somewhere in this region [24], which includes

but is not limited to the putative calpain cleavage sites identified

here. Peptide array epitope mapping shows that VL12.3 binding

requires at a minimum, AAs 15–18 of HDx-1 for binding, a region

that includes the putative calpain cleavage site at AA 15. As

VL12.3 binding is known to prevent interactions of HDx-1 that

require this domain, such as aggregate seeding and cytoplasmic

retention [14], it is reasonable to postulate that VL12.3 would also

compromise cleavage here. If calpain cleavage at this site is

involved in the degradation of mHDx-1, VL12.3 binding would be

expected to reduce turnover. We have previously shown that

VL12.3 binding has no effect on mHDx-1 protein level or turnover

rate in cultured 293 and ST14A cells, respectively [14]. These

systems are, however, temporally constrained by the toxicity of

transfection reagents and mHDx-1 as well as cell proliferation.

These factors limit our experimental time frame to 24 Hrs, an

interval in which we observe very little normal mHDx-1 clearance,

and any decreases in clearance may be below the sensitivity

threshold of the assays. As a result, these systems, although

sufficient for evaluating increased turnover, are inadequate for

evaluating decreased turnover. Moreover, these systems lack

differentiated neurons and connectivity, which are integral to

HD pathology and require the use of GFP or SNAP-tag fusions,

which could alter mHDx-1 stability. In an effort to overcome these

caveats, we used a TR-FRET assay to evaluate the effect of

VL12.3 on non-tagged mHDx-1 clearance in biolistically co-

transfected brain slice explants and in primary corticostriatal

neuronal co-cultures, which allow longer experimental time frames

of up to 3 and 6 days, respectively, in more relevant, partially

intact neuronal systems. In these systems in the presence of CVL,

an iAb that does not bind HDx-1, the level of mHDx-1 protein

appears to decline over the first three days, reaching a plateau that

is maintained for the subsequent 3 days, reflecting normal

turnover. Conversely, during the observed time period there is

Figure 6. VL12.3 recognizes AAs 13-20 of HDx-1. Three AA
stepped 14-mer peptides were spotted onto nitrocellulose and binding
of VL12.3 was assessed. (A) Peptide table. (B) Dot blot showing binding
of peptides 3, 4 and 5 illustrating that VL12.3 requires AAs 15-18 at the
minimum and 13-20 at the maximum for recognition of Htt.
doi:10.1371/journal.pone.0016676.g006

Figure 7. VL12.3 binding prevents turnover of HDx-1. (A) Organotypic brain slice cultures were co-transfected with mHDx-1 and VL12.3 or CVL,
a control iAb. Soluble mHDx-1 protein level was assessed in lysates collected 1, 2 or 3 days post-transfection by TR-FRET. The level of mHDx-1 protein
declines over time in the presence of CVL, but not in the presence of VL12.3 indicating impaired clearance. (B) Primary striatal and cortical neurons co-
cultured with astroglia were transfected with iAb or mHDx-1 plus iAb. Soluble mHDx-1 protein level was assessed in lysates collected 4, 5 or 6 days
post-transfection by TR-FRET. At these later time points, there is dramatically more mHDx-1 protein in the presence of VL12.3 as compared to CVL.
doi:10.1371/journal.pone.0016676.g007
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no change in mHDx-1 level in the presence of VL12.3,

demonstrating a lack of normal turnover when the putative

calpain cleavage site is bound by the iAb. These results suggest

that calpain-mediated removal of the N-terminus of mHDx-1,

which is likely followed by CMA degradation, is required for

clearance of this toxic protein and that selective regulation of this

cleavage event could prove beneficial in the treatment or

prevention of HD.

Supporting Information

Figure S1 There are predicted calpain cleavage sites at
AAs 12-17 and 5-10 of HDx-1 with high specificity for
calpains 1 and 2. Human HDx-1 sequence was analyzed using

the web tool SitePrediction for predicted calpain 1 and 2 cleavage

sites. This analysis determined that AAs 12-17 is predicted to have

the greatest specificity for both proteases. There is a secondary

predicted cleavage site at AA 5-10 that is also predicted to be

highly specific for both calpain 1 and 2.

(TIF)

Figure S2 The 16.0 kDa calpain cleavage fragment
contains the Htt N-terminus. HDx-1 Q46 fused to thior-

edoxin (mHDx-1-TRX) was incubated alone or with purified

calpain 1 in vitro, separated by PAGE and transferred to

nitrocellulose membrane. Immunoblotting with an antibody

recognizing the N-terminus of Htt reveals that the 16.0 kDa

cleavage product contains this domain.

(TIF)
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