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Abstract

To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive,
embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline
development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the
permissive temperature of 15uC to the restrictive temperature of 26uC. Here we describe 24 conditional mutations that affect 13
different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but
four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating
a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful
for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when
shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we
also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of
multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive
mutations in essential genes, and provide new insights into the requirements for some of the affected loci.
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Introduction

To investigate essential gene requirements in model organisms,

multiple approaches have been used to reduce gene function and

infer gene requirements based on the resulting mutant phenotypes.

Non-conditional mutations that inactivate genes can be used to

study essential requirements, but such mutations must be

maintained in heterozygotes and homozygous mutant progeny

identified among progeny that vary in genotype. Furthermore, one

gene can have multiple essential requirements during an organism

life cycle, precluding investigation of all but the first essential

requirement in progeny homozygous for a non-conditional

mutation. To bypass early essential requirements in multicellular

organisms, mitotic recombination [1,2], cell transplantation [3,4],

or loss of extrachromosomal arrays [5] can be used to generate

clones of homozygous mutant cells within otherwise heterozygous

or wild-type individuals. But even within mutant clones of cells,

only a single, early essential requirement can be examined, and the

degree of control over the place and timing of mutant clone

generation can vary substantially. Weak alleles of essential genes

can sometimes bypass early essential requirements to permit the

study of later requirements, and both RNA interference (RNAi)

and small molecule inhibitors can in some cases be used to reduce

gene function at multiple times during the life an organism [6,7].

However, the small molecule inhibitors suffer in some cases from a
lack of gene specificity, a lack of penetrance in reducing gene

function, or reduced bioavailability to the targeted protein. Thus,

both small molecule inhibitors and RNAi remain limited in scope

with respect to their use in many multicellular organisms. Finally,

for genes that are expressed both maternally and zygotically,

maternal expression of a wild-type allele can in some cases

compensate for lack of zygotic expression in homozygous mutant

progeny, precluding the identification of some gene requirements
early in development when non-conditional alleles result in

lethality due to later essential zygotic requirements.

When available, fast-acting temperature-sensitive (TS) gene
mutations are perhaps the most powerful tool for dissecting

multiple requirements for essential genes. While some conditional

mutations are cold-sensitive (inactivating a gene product only at

low temperatures), most conditional mutations are heat-sensitive

(inactivating gene products only at high temperatures). TS

mutations can also be either fast or slow acting, with fast-acting

mutations causing amino acid changes that presumably destabilize

a protein such that it unfolds or adopts a non-functional structure
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shortly after up-shifting the organism to a restrictive temperature.

Slow acting mutations presumably remain active at all tempera-

tures when made at the permissive temperature, and must be

replaced by newly synthesized, inactive protein after up-shifting to

the restrictive temperature. Particularly with fast-acting TS

mutations, one can identify multiple essential requirements, and

define temperature-sensitive periods of gene requirements, some-

times even within a single cell cycle, or during the entire life span

of an organism, by performing temperature up-shifts and down-

shifts at different times [8,9]. Conditional mutations are also useful

in that they allow for the easy propagation of homozygous mutant

strains at the permissive temperature, and can be used to sensitize

genetic backgrounds at intermediate temperatures for use in

screens designed to identify second-site modifier loci as enhancers

or suppressors of viability [10,11,12]. Moreover, site-directed

mutagenesis can be used to engineer TS amino acid alterations in

orthologous genes in other organisms. For example, a TS

mutation in C. elegans dynein heavy chain, dhc-1, was engineered

in the S. cerevisiae ortholog and was found to confer TS function

[8]. In another case a ts allele of src was engineered in the D.

melanogaster gene sevenless [10]. While TS mutations may not be

useful for in vivo studies with mammalian model systems, some TS

alleles have been identified in mammalian cell culture [13].

Not surprisingly, TS mutations isolated by mutagenizing

populations of an organism are rare relative to non-conditional

loss-of-function mutations. Many mutations can partially or fully

inactivate a gene: for example, single nucleotide mutations can

introduce early stop codons at one of many possible sites in most

open reading frames. In contrast, relatively few mutations

perturb protein function such that the outcome is conditional.

For example, TS mutations often involve amino acid substitu-

tions (mis-sense mutations) within the hydrophobic core of a

folded protein that destabilize protein folding at higher

temperatures [14].

Because TS mutations are relatively rare, they have been used

most extensively in model organisms that are amenable to screens

that enable one to search through large populations of

mutagenized individuals for relatively rare conditional mutants.

For example, TS mutants have been used extensively in budding

yeast and fission yeast to identify essential gene functions [15,16],

including many cell division cycle (CDC) genes that were

discovered and characterized in both of these yeasts by screening

for TS CDC mutant strains [17,18]. Shifting CDC mutant yeast

to restrictive temperatures resulted in specific cell cycle arrest that

elegantly revealed when the gene product was required [19]. TS

mutants have also been utilized in Drosophila melanogaster [20],

although far fewer examples exist and most have been identified

fortuitously. Mammalian cell lines also have been used to isolate

TS alleles of essential genes [13], but again relatively few

examples exist.

TS mutations are now being used more and more extensively to

probe gene function in the nematode Caenorhabditis elegans. Indeed,

this organism is largely unique in being an animal model in which

one can with relative ease identify rare conditional mutations in

essential genes. Since the initial establishment of this nematode as

a model organism, screening for conditional C. elegans mutants has

been more feasible than in other animals, in part because it is self-

fertile [21,22,23]. More recently, the innovation of using of egg-

laying defective strains made C. elegans a powerful system for

isolating non-conditional mutation in essential genes required for

embryogenesis [24]. Modifications to the screening procedures

that use egg-laying defective strains subsequently made it possible

to isolate with relative ease thousands of conditional mutations in

essential genes [25,26,27].

While one can efficiently isolate conditional, embryonic-lethal

C. elegans mutants, positional cloning of the mutant loci has

remained laborious and time consuming, substantially limiting the

utility of mutant screens, particularly given how readily one can

use RNA interference to probe essential C. elegans gene functions

[6,28,29,30,31,32]. However, the advent of next generation DNA

sequencing technology is now making it possible to identify much

more rapidly the genes affected in mutant strains [33].

Here we report our identification of 24 conditional mutants in

thirteen different essential C. elegans loci. To further promote the

use and isolation of conditional mutations in essential C. elegans

genes, we have surveyed this collection of new conditional mutants

for essential gene requirements during both larval and early

embryonic development, and we have determined whether all are

fast or slow acting. We also report the mutations responsible for

conditional lethality for most of these alleles, and whether the

affected residues are conserved in other organisms.

Results

Over the past several years, using chemical mutagenesis of egg-

laying defective lin-2(-) mutants with either ethyl methanesulfonate

or ethyl nitrosourea, we have isolated conditional mutations in

multiple essential C. elegans genes that already had been

characterized using either mutant alleles or RNAi to reduce gene

function. Here we report our identification of 24 conditional

mutations in thirteen different essential genes, and an analysis of

the conditional nature of the mutations. Most of these mutations

were mapped with traditional methods, using both visible markers

and individually amplified Single Nucleotide Polymorphisms

(SNPs) to score meiotic recombination events. The affected loci

were then identified using both complementation tests with

previously identified alleles, and DNA sequencing of candidate

genes in regions to which the mutations were mapped. More

recently, we have begun to take advantage of next generation

Illumina DNA sequencing based methods to greatly accelerate the

pace at which we can identify the affected genes in mutants

isolated after mutagenesis of nematode populations. In the

following sections, we describe the conditional mutations we have

characterized for each affected locus.

a- and b-Tubulin Mutations
Microtubules are polymers of a- and b-tubulin and are essential

for multiple cellular activities, including meiotic and mitotic

spindle function. In C. elegans embryos there are two functionally

redundant a-tubulin genes, tba-1 and tba-2, and also two

functionally redundant b-tubulin genes, tbb-1 and tbb-2. While

reducing the function of any one gene with RNAi does not result

in penetrant phenotypes, reducing the function of either gene pair

simultaneously with RNAi results in severe meiotic and mitotic

spindle defects and embryonic lethality [34,35]. In addition, we

have previously identified conditional, semi-dominant mutations

in tba-1 and tbb-2 that appear to destabilize microtubules and

cause highly penetrant embryonic lethality when adult worms are

raised at the restrictive temperature of 26 uC. We have now

identified one new tba-1 mutant, or594 sd,ts, and one new tbb-2

allele, or600 sd,ts. Each of the alleles is semi-dominant (Table 1), as

expected given the redundancy of the two gene pairs. We used

genetic crosses to place the or594 ts and or600 ts alleles in trans to

the previously identified alleles tba-1(or346 ts) and tbb-2(or362 ts),

respectively. The progeny of both or594 ts/tba-1(or346 ts) and

or600 ts/tbb-2(or362 ts) worms exhibited fully penetrant embryon-

ic lethality (data not shown). This is in contrast to the partially

penetrant embryonic lethality observed when any of these alleles
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were in trans to a wild-type copy of the corresponding gene

(Table 1; [34,35]), consistent with our conclusion that or594 ts

and or600 ts are tba-1 and tbb-2 alleles, respectively. As shown in

Figure 1, we see penetrant defects in embryos produced by

homozygous tba-1(or594 ts) and by homozygous tbb-2(or600 ts)

mutant worms raised at 26uC from the L4 stage to adulthood

(hereafter called mutant embryos). As reported for other

conditional and semi-dominant mutations in tba-1 and tbb-2, we

observed defects in meiotic spindle function, pronuclear migration,

nuclear centrosomal complex (NCC) centration and rotation,

mitotic spindle positioning and size, chromosome segregation and

cytokinesis during the first mitotic cell cycle (Fig. 1A). Although the

new tba-1(or594 sd,ts) mutant and a previous allele, tba-

1(or346 sd,ts), were isolated in different screens, the mutations

are identical and change the highly conserved serine at position

377 to phenylalanine (Fig. 1B, Table 2). The mutation in tbb-

2(or600 sd,ts) changes a highly conserved glycine at amino acid

140 to a glutamic acid (Fig. 1B, Table 2).The phenotypes were

similar to other dominant tubulin alleles but are not as severe as

RNAi-mediated co-depletion of either gene pair, and thus

represent an approach to disrupt microtubule function less

severely than co-depleting either of the gene pairs [34,35]. The

tba-1(or594 sd,ts) mutant showed highly penetrant defects when

shifted to the restrictive temperature for long (5–8 hours) or short

(,1 minute) upshifts, while the tbb-2(or600 sd,ts) mutant showed

penetrant defects only after long upshifts (Fig. 1C and Table 3).

Shifting tba-1(or594 sd,ts) mutants to the restrictive temperature at

the L1 larval stage resulted in mostly fertile worms but about 20%

were sterile, while similar shifts with tbb-2(or600 sd,ts) mutants

resulted in adult worms that were fertile but produced small

broods (Table 4).

Protein phosphatase 2A mutants
Protein phosphatase 2A is composed of a catalytic subunit and

regulatory subunits known as B, B9, and B99. The regulatory

subunits provide targeting specificity thereby linking the catalytic

subunit to various protein substrates throughout the cell cycle.

SUR-6 is the B9 subunit in C. elegans and has known functions

during embryonic and vulval development [36,37]. We have

identified a recessive conditional mutation in sur-6, or550 ts. The

sur-6(or550 ts) mutant embryos produced after shifting homozy-

gous L4 larvae to the restrictive temperature exhibited small male

pronuclei, defects in NCC centration, and chromosome segrega-

tion defects during mitosis in the one-cell embryo (called P0), and

the posterior P1 cell in 2-cell stage embryos often divided before its

anteriorly positioned sister, called AB (Fig. 2A, and as reported

previously for a different allele of sur-6, (sv30) [36]). In genetic

crosses, sur-6(or550 ts) failed to complement sur-6(sv30) (data not

shown). The amino acid alteration in sur-6(or550 ts) changes a

highly conserved tryptophan to arginine at position 140 (Fig. 2B).

We could not determine if the allele was fast-acting, even though

some phenotypes were observed after short upshifts (Fig. 2C),

because of significant embryonic lethality at the permissive

temperature (Table 1).

Table 1. Embryonic lethality of the TS mutants.

Gene Allele

Homozygote Embryonic

Viability (156C)

Homozygote Embryonic

Viability (266C)

Heterozygote Embryonic

Viability (266C)

dnc-1 or404 98.6%, n = 435 0.0%, n = 226 99.3%, n = 365

dnc-1 or676 18.7%, n = 626 1.62%, n = 747 88.6%, n = 474

dnc-4 or618 92.7%, n = 236 12.7%, n = 259 97.7%, n = 342

dnc-4 or633 99.4%, n = 486 3.15%, n = 444 77.0%, n = 364

lit-1 or393 95.6%, n = 471 1.55%, n = 554 99.1%, n = 374

mei-1 or642 97.3%, n = 1013 0.25%, n = 1329 98.5%, n = 506

mei-1 or646 78.8%, n = 438 0.40%, n = 1135 98.5%, n = 613

mex-1 or286 53.1%, n = 675 3.4%, n = 1327 93.1%, n = 249

par-2 or373 99.6%, n = 282 2.0%, n = 251 not tested

par-2 or539 94.8%, n = 194 42.1%, n = 554 97.0%, n = 371

par-2 or640 98.7%, n = 230 0.0%, n = 318 89.7%, n = 226

plk-1 or683 62.3%, n = 630 0.80%, n = 424 97.8%, n = 383

rsa-1 or598 99.8%, n = 444 1.66%, n = 543 100%, n = 766

spd-2 or293 87.8%, n = 245 0.0%, n = 341 99.7%, n = 378

spd-2 or493 95.6%, n = 298 1.51%, n = 265 100%, n = 603

spd-2 or454 99.0%, n = 412 30.0%, n = 410 99.3%, n = 412

spd-2 or655 58.3%, n = 518 0.26%, n = 388 98.8%, n = 345

sur-6 or550 72.8%, n = 556 16.0%, n = 362 96.1%, n = 385

tba-1 or594 88.5%, n = 278 0.00%, n = 402 83.9%, n = 261

tbb-2 or600 99.1%, n = 551 0.81%, n = 745 58.4%, n = 294

zyg-1 or278 78.6%, n = 1091 0.0%, n = 685 98.7%, n = 236

zyg-1 or297 93.8%, n = 697 0.38%, n = 529 99.6%, n = 275

zyg-1 or409 99.5%, n = 411 0.0%, n = 396 96.1%, n = 233

zyg-1 or1018 97.8%, n = 276 0.0%, n = 407 96.3%, n = 246

doi:10.1371/journal.pone.0016644.t001
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The PP2A B99 subunit is encoded by rsa-1 in C. elegans [38]. We

identified one new recessive allele of rsa-1, or598 ts. Like previously

characterized alleles or rsa-1(RNAi) knockdown, rsa-1(or598 ts)

mutant embryos showed multiple defects in the one-cell embryo

including defective NCC centration and rotation, small spindles,

and chromosome segregation defects (Fig. 3A). rsa-1(or598 ts) is

the only TS allele for rsa-1, with a conserved aspartic acid changed

to glycine at position 319 (Fig. 3B). The rsa-1 mutant was fast-

acting for many of the phenotypes (Fig. 3C and Table 3), and L1

larval upshift resulted in sterile adults (Table 4).

Dynactin mutants
Dynactin is a protein complex that simultaneously binds both

microtubules and cytoplasmic dynein [39]. Because dynactin

cross-links dynein and microtubules, it increases dynein motor

processivity. We isolated two dnc-1 alleles, or404 ts and or676 ts,

and two new dnc-4 alleles, or618 ts and or633 ts. All of the dynactin

mutants show similar microtubule-related defects in one-cell

embryos, as previously reported for dnc-1 and dnc-2 using RNAi

depletion [40]. Instead of the nuclear-centrosomal complex (NCC)

centering in the embryos after meeting, the NCC remains in the

posterior in the dynactin mutants. In addition, the NCC fails to

rotate causing the P0 spindle to assemble transverse to the

anterior-posterior embryonic axis (Fig. 4A). dnc-1(or404 ts) dis-

played a somewhat weaker cellular phenotype than the other three

dnc alleles (Fig. 4C) and, interestingly, dnc-1(or676 ts) and dnc-

4(or633 ts) were either semi-dominant or haploinsufficient (Table

1), while the other two dnc alleles appeared to be recessive. In

genetic crosses, dnc-1(or404 ts) failed to complement dnc-

1(or676 ts), and dnc-4(or618 ts) failed to complement dnc-

4(or633 ts) (data not shown). Although dnc-1(or404 ts) was

previously characterized [41,42], we have more extensively

documented the phenotypes here. No alleles of dnc-4 have been

previously reported nor has it been extensively characterized in C.

elegans. The dnc-1(or404 ts) allele changes amino acid 1237 from an

asparagine to a cysteine. dnc-1(or676 ts) has two changes: one at

position 452 (leucine to proline) and the other at position 1247

(valine to leucine). dnc-4(or618 ts) substitutes valine for a glycine at

position 359 and dnc-4(or633 ts) has an altered splice donor site

after the first exon (G to A) at nucleotide 604 in the unspliced

RNA molecule. The dnc-1(or404 ts) and dnc-4(or633 ts) mutants

appeared to be fast-acting (Fig. 4C and Table 3). Finally, in tests

where L1 larvae were raised to adulthood at the restrictive

temperature, we found that dnc-1(or404 ts) and dnc-4(or618 ts)

worms displayed egg-laying defects, dnc-1(or676 ts) worms were

sterile or produced small numbers of progeny, while dnc-4(or633 ts)

worms also produced reduced numbers of progeny (Table 4).

mei-1/Katanin mutants
The meiotic spindles in the oocytes of most animals are smaller

than mitotic spindles. In C. elegans, meiosis I and II spindles are

about 8-fold smaller than the first embryonic mitotic spindle and

are acentriolar. The length of microtubules during C. elegans

meiosis are controlled in part by a katanin, a heterodimeric protein

complex composed of MEI-1 and MEI-2 [43,44]. mei-1 encodes

the AAA ATPase-containing catalytic subunit and mei-2 encodes

the targeting subunit [45]. Katanin is widely conserved and

functions to shorten microtubules by severing them [46]. We

isolated two recessive mutants in mei-1, or642 ts and or646 ts. The

new mei-1 mutants disrupt female meiotic spindle function and

produce one-cell stage embryos with large misshapen polar bodies

and a variable number of maternal pronuclei (range = 0–9; see Fig.

5A, B). Similar phenotypes have been described previously for

other alleles [47], and both mei-1(or642 ts) and mei-1(or646 ts)

Figure 1. tba-1 and tbb-2 tubulin mutants. A. Differential
interference contrast (DIC) time-lapse images of wild-type, tba-
1(or594 ts), and tbb-2(or600 ts) embryos. In the two tubulin mutants
the P0 spindle often is positioned transverse to the anterior posterior axis,
and daughter cells contained multiple nuclei. The tba-1(or594 ts) embryo
was from a,1 min. upshift and the tbb-2(or600 ts) embryo was shifted to
the restrictive temperature for 8 hours. Black dots represent centro-
somes/spindle poles, asterisks denote multiple nuclei per cell, and the
arrowhead indicates a second maternal pronucleus. Times in min:sec are
given relative to nuclear envelope breakdown (NEBD). Scale bar, 10 mm.
B. Amino acid alterations in the two mutants. Asterisks indicates the
changed residues. Homologous proteins are aligned below the C. elegans
protein. C. Defect maps for individual embryos observed during time-
lapse recordings; embryos are listed on the left and phenotypes are listed
on the top: 1; pronuclei meet prior to NEBD, 2; Nuclear centrosomal
complex centration, 3; Nuclear centrosomal complex rotation, 4; spindle
alignment, 5; one nucleus per cell at two cell stage. In the long upshifts,
hermaphrodites were transferred to the restrictive temperature for 5–
8 hours. In the short upshifts, embryos were harvested from hermaph-
rodites grown at 15uC and immediately mounted on agar pads for
imaging, which took about 1 minute. Red color indicates a defective trait,
black color represents the lack of a defect.
doi:10.1371/journal.pone.0016644.g001
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failed to complement the previously identified allele mei-1(b284)

(data not shown). We also observed multiple nuclei per two-cell

blastomere, indicating chromosome segregation anomalies (which

were possibly indirectly due to meiotic spindle defects), as well as

occasional NCC rotation defects and transverse P0 spindles. The

mei-1(or642 ts) and mei-1(646 ts) alleles each contain the same

mutation even though they were isolated from different mutagen-

ized nematode populations. The mutation in each changes a

highly conserved lysine to glutamine at codon 202 and causes fast-

inactivation of MEI-1 function (Fig. 5B, C, and Table 3). We did

not find any role for mei-1 during development after embryogen-

esis (Table 4).

spd-2 mutants
Centrosomes are complex structures composed of centrioles

surrounded by pericentriolar material that nucleates microtubules

during mitotic spindle assembly and in other contexts [48]. SPD-2

is a centrosomal component required for both centriole duplica-

tion and maturation of the pericentriolar material [49,50,51]. We

isolated four new recessive alleles of spd-2 that cause a variety of

centrosomal and microtubule-related defects, and all four alleles

failed to complement the previously identified allele spd-

2(or188 ts)[49] (data not shown). In one-cell embryos, we often

observed that pronuclei met in the cell center instead of toward the

posterior, NCC rotation and spindle assembly were absent,

cytokinesis often failed, and chromosome segregation was defective

(Fig. 6A). One of the spd-2 alleles was fast-acting, or293 ts, while

or493 ts and or454 ts mutant embryos showed weak and only

partially penetrant defects when shifted to the restrictive

temperature for 1 minute (Fig. 6C and Table 3). Two of the spd-

2 mutations were single amino acid substitutions: spd-2(or293 ts)

changes a glycine at position 573 with a serine while spd-2(or493 ts)

replaces an arginine at position 551 with a histidine (Fig. 6B and

Table 2). spd-2(or454 ts) had a mutation in the last nucleotide of

the fifth intron: position 2175 of the unspliced transcript was

changed from a guanine to an adenine (Fig. 6B and Table 2), and

this mutant produced a large percentage of viable embryos at the

nonpermissive temperature (Table 1). The spd-2 protein encoded

by spd-2(or655 ts) contains an in-frame deletion that removes

amino acids 189–270, and this mutant produces only 58% viable

embryos at 15uC. spd-2(or293 ts) also resulted in sterile hermaph-

rodites with protruding vulvas when raised to adulthood at the

restrictive temperature, and L1-upshifted spd-2(or493 ts) worms

produced small broods (Table 4).

zyg-1 mutants
ZYG-1 is a polo-related kinase homologous to vertebrate SAK/

PLK4 [52] that localizes to centrioles and is required for centriole

duplication [53]. During fertilization, a single sperm cell provides

two centrioles as well as paternal DNA to embryos, and thus

embryos lacking maternal zyg-1 function successfully proceed to

the two-cell stage. However, during the AB and P1 cell divisions,

Table 2. Sequence alterations in the TS mutants.

Gene Allele Transcript1
Codon(s)
mutated1

Amino acid
change1

Nucleotide
change1

Transcript nucleotide
(spl/unspl)1,2

dnc-1 or404 ZK593.5 1237 R.C C.T 3709 (spl)

dnc-1 or6763 ZK593.5 452 L.P T.C 1355 (spl)

dnc-1 or6763 ZK593.5 1247 V.L G.C 3739 (spl)

dnc-4 or618 C26B2.1 359 V.G T.G 1076 (spl)

dnc-4 or633 C26B2.1 - - G.A 604 (unspl)

lit-1 or393 W06F12.1a 331 I.F A.T 991 (spl)

mei-1 or642 T01G9.5a.1 202 K.Q A.C 604 (spl)

mei-1 or646 T01G9.5a.1 202 K.Q A.C 604 (spl)

mex-1 or286 W03C9.7.1 13 Q.STOP C.T 37 (spl)

plk-1 or683 C14B9.4a.1 547 M.K T.A 1640 (spl)

rsa-1 or598 C25A1.9a 319 D.G A.G 956 (spl)

spd-2 or293 F32H2.3.1 573 G.S G.A 1717 (spl)

spd-2 or493 F32H2.3.1 551 R.H G.A 1652 (spl)

spd-2 or454 F32H2.3.1 - - G.A 2175 (unspl)

spd-2 or655 F32H2.3.1 189–270 Deletion Deletion 565–810D spl)

sur-6 or550 F26E4.1 140 W.R T.C 418 (spl)

tba-1 or594 F26E4.8.1 377 S.F C.T 1130 (spl)

tbb-2 or600 C36E8.5.1 140 G.E G.A 419 (spl)

zyg-1 or278 F59E12.2.1 354 P.S C.T 1060 (spl)

zyg-1 or297 F59E12.2.1 652 D.N G.A 1954 (spl)

zyg-1 or409 F59E12.2.1 670 D.N G.A 2008 (spl)

zyg-1 or1018 F59E12.2.1 498 V.A T.C 1493 (spl)

par-2 or373 F58B6.3a 71 C.Y G.A 212 (spl)

1Transcripts, positions, and sequences are from the WS210 referential release of Wormbase.
2Positions are provided for either spiced (spl) or unspliced (unspl) transcripts.
3dnc-1(or676) was a double mutant.
doi:10.1371/journal.pone.0016644.t002
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zyg-1 mutants form monopolar spindles because the mutant

maternal ZYG-1 protein is incapable of supporting centriole

duplication [53]. We isolated four new recessive alleles of zyg-1

that cause monopolar spindles and failed mitosis in the AB and P1

cells (Fig. 7A and Table 1). Each of the zyg-1 alleles alters amino

acids in the C-terminal domain that appears to be nematode-

specific: zyg-1(or278 ts) changes a proline to a serine at codon 354,

zyg-1(or297 ts) changes an aspartic acid to asparagine at codon

652, zyg-1(or409 ts) changes a aspartic acid to an asparagine at

codon 670, and zyg-1(or1018 ts) changes a valine to an alanine at

codon 498 (Fig. 7B and Table 2). zyg-1(or297 ts) and zyg-

1(or409 ts) appeared to be fast-acting as a 30 minute upshift

resulted in penetrant defects (Fig. 7C). With the exception of zyg-

1(or297 ts), each of the new zyg-1 TS mutants produced small

broods when shifted to the restrictive temperature at the L1 larval

stage (Table 4).

A plk-1 mutant
PLK-1 is a polo-like kinase that is required for meiotic spindle

function, nuclear envelope breakdown, embryonic polarity, and

asynchronous cell divisions in the two-cell embryo [54,55,56,57].

For some of these functions, plk-1 appears to be partially

redundant with plk-2 [56]. We isolated one new recessive allele

of plk-1, or683 ts, which appears to only partially reduce gene

function as the most penetrant phenotypes we observed at the

restrictive temperature were mis-oriented (transverse) P0 spindles

and binucleate cells at the two-cell stage (Figure 8). The plk-

1(or683 ts) allele failed to complement the non-conditional sterile

deletion allele plk-1(ok1787) (data not shown). Otherwise, meiotic

and mitotic spindle function appeared normal. We observed

penetrant defects in plk-1 embryos after short (,1 minute) upshifts,

but as the strain produces 38% inviable embryos at the permissive

temperature, we cannot conclude that it is fast-acting (Tables 1

and 3). The plk-1(or698 ts) mutation changes a methionine to a

lysine at codon 547 that is invariably hydrophobic in various

organisms (Fig. 8B). Shifting L1 larvae to the restrictive

temperature resulted in sterile worms with protruding vulvae

Table 3. Determination if the TS mutations are potentially
fast-acting.

Gene Allele Potentially Fast-acting1

dnc-1 or404 Yes

dnc-1 or676 Unclear3

dnc-4 or618 Yes

dnc-4 or633 Yes

lit-1 or393 Not tested

mei-12 or642 Yes

mei-12 or646 Yes

mex-1 or286 Not tested

par-22 or373 Yes

par-22 or539 Yes

par-22 or640 Yes

plk-1 or683 Unclear3

rsa-1 or598 Yes

spd-2 or293 Yes

spd-2 or493 Unclear4

spd-2 or454 Unclear4

spd-2 or655 Unclear3

sur-6 or550 Unclear3

tba-1 or594 Yes

tbb-2 or600 No

zyg-12 or278 No

zyg-12 or297 Yes

zyg-12 or409 Yes

zyg-12 or1018 No

1We determined if an allele was potentially fast-acting in the following manner:
We mounted embryos produced at 15uC on microscope slides and
immediately made time-lapse videomicrographs at a room maintained at 24uC.
If defects similar to those observed after long temperature shifts were found in
at least 20% of the embryos and if there was little embryonic lethality at 15uC,
we conclude that the allele may be fast-acting. We have labeled these cases as
‘‘Yes’’. However, if there was significant embryonic lethality at 15uC, we cannot
conclude that the presence of cellular defects after short upshifts is due to the
upshift or to defects that occur even at 15uC. We have labeled these cases as
‘‘Unclear’’.

2For mei-1, par-2, and zyg-1, we incubated mutant worms at 26uC for 30
minutes prior to imaging (instead of the usual,1 min. upshift) because the
gene products appeared to be required prior to when we started our imaging
(pronuclear migration).

3High lethality at the permissive temperature precludes making a
determination.

4The low penetrance of severe defects precludes making a determination.
doi:10.1371/journal.pone.0016644.t003

Table 4. The phenotypes of the TS mutants when grown at
the restrictive temperature from the L1 larval stage.

Gene Allele L1 upshift phenotype1

dnc-1 or404 Egl/Emb

dnc-1 or676 Ste/Sb/Emb

dnc-4 or618 Egl/Emb

dnc-4 or633 Sb/Emb

lit-1 or393 Emb

mei-1 or642 Emb

mei-1 or646 Emb

mex-1 or286 Ste/Sb/Emb

par-2 or373 Emb

par-2 or539 Emb

par-2 or640 Ste

plk-1 or683 Ste/Pvl

rsa-1 or598 Ste

spd-2 or293 Ste/Pvl

spd-2 or493 Sb/Emb

spd-2 or454 Emb

spd-2 or655 Emb

sur-6 or550 Emb

tba-1 or594 Emb/Ste

tbb-2 or600 Sb/Emb

zyg-1 or278 Sb/Emb

zyg-1 or297 Emb

zyg-1 or409 Sb/Emb

zyg-1 or1018 Sb/Emb

1We determined the L1 upshift phenotype by plating hypochlorite-
synchronized L1 larvae and incubating them at 26uC until they reached
adulthood. Abbreviations: Egl: egg laying-defective, Emb: embryonic lethal,
Pvl: protruding vulva, Sb: small broods, Ste: sterile.

doi:10.1371/journal.pone.0016644.t004
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(Table 4). Interestingly, no other plk-1 alleles have been reported

(Table 5).

par-2 mutants
par-2 is required for anterior-posterior polarity in the one-cell

zygote and encodes a RING finger protein [58,59,60]. We isolated

three new recessive par-2 mutants that disrupt zygote polarity; all

three alleles failed to complement the previously identified allele

par-2(lw32) (data not shown). In two-cell embryos the lack of

polarity was revealed by blastomeres having equal size that

entered mitosis at the same time, in contrast to wild-type embryos

that display asymmetric AB and P1 cell sizes and timing of mitotic

entry (Fig. 9A). par-2(or539 ts) had low penetrance cellular defects

after both short and long upshifts, consistent with the fact that it

produces a high percentage of viable embryos at the restrictive

temperature (Table 1). All of the alleles appeared to be fast-acting,

although for par-2(or373 ts) and par-2(or640 ts) the penetrance of

defects observed after short upshifts was lower than seen after long

upshifts (Fig. 9B, Table 3). We found that par-2(or373 ts) contained

a cysteine to tyrosine change at codon 71 (Fig. 9C and Table 2).

Figure 2. A sur-6 mutant. A. DIC time-lapse images of wild-type and
sur-6(or550 ts) embryos. In the sur-6 mutant the male pronucleus is
small, the AB cell contains two nuclei, and the P1 cell begins mitosis
before the AB cell. The sur-6(or550 ts) embryo was shifted to the
restrictive temperature for ,1 min. prior to imaging. White arrowheads
denote multiple nuclei per cell, and the arrows in the last panels
indicate the first mitotic spindle at the two cell stage. Times in min:sec
are given relative to pronuclear meeting. Scale bar, 10 mm. B. Amino
acid alteration in the mutant. Asterisk indicates the changed residue.
Homologous proteins are aligned below the C. elegans protein. C.
Defect maps for individual embryos observed during time-lapse
recordings. In this and all subsequent figures, embryos are listed on
the left and phenotypes are listed on the top: 1; Male pronuleus normal
size, 2; Nuclear centrosomal complex centration, 3; spindle alignment, 4;
successful cytokinesis, 5; one nucleus per cell at two cell stage, 6; AB
divides first at two cell stage. In the long upshifts, hermaphrodites were
transferred to the restrictive temperature for 5–8 hours. In the short
upshifts, embryos were harvested from hermaphrodites grown at 15uC
and immediately mounted on agar pads for imaging, which took ,1
min. In this and all subsequent figures, red color indicates a defective
trait, black color represents the lack of a defect, and white indicates that
the trait was not visible in the recording.
doi:10.1371/journal.pone.0016644.g002

Figure 3. An rsa-1 mutant. A. DIC time-lapse images of wild-type and
rsa-1(or598 ts) embryos. In the rsa-1 mutant the nuclear centrosomal
complex (NCC) failed to rotate and a small transverse P0 spindle
assembled, cytokinesis failed, and multiple nuclei were present at the
two cell equivilent stage. The rsa-1(or598 ts) embryo was shifted to the
restrictive temperature for,1 min. prior to imaging. Black dots
represent centrosomes/ spindle poles and asterisks denote multiple
nuclei per cell at the two cell stage. Times in min:sec are given relative
to NEBD. Scale bar, 10 mm. B. Amino acid alteration in the mutant.
Asterisk indicates the changed residue. Homologous proteins are
aligned below the C. elegans protein. C. Defect map for individual
embryos observed during time-lapse recordings: embryos are listed on
the left and phenotypes are listed on the top: 1; pronuclei meet prior to
NEBD, 2; Nuclear centrosomal complex centration, 3; Nuclear centro-
somal complex rotation, 4; spindle size, 5; successful cytokinesis, 6; one
nucleus per cell at two cell stage. In the long upshifts, hermaphrodites
were transferred to the restrictive temperature for 5–8 hours. In the
short upshifts, embryos were harvested from hermaphrodites grown at
15uC and immediately mounted on agar pads for imaging, which took
,1 min.
doi:10.1371/journal.pone.0016644.g003
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Figure 4. Dynactin mutants. A. DIC time-lapse images of wild-type, dnc-1(or404 ts), dnc-1(or676 ts), dnc-4(or618 ts), and dnc-4(or633 ts) embryos.
In the dynactin mutants the NCC often failed to centrate and rotate, the P0 spindle was oriented transverse to the anterior posterior axis, and multiple
nuclei were present per cell at the two cell stage. The dnc-1(or404 ts) embryo was obtained from a hermaphrodite shifted to the restrictive
temperature for 8 hours, the dnc-1(or676 ts) and dnc-4(or633 ts) embryos were shifted to the restrictive temperature for ,1 min. prior to imaging,
and the dnc-4(or618 ts) embryo was obtained from a hermaphrodite shifted to the restrictive temperature for 7 hours. Black dots represent
centrosomes/spindle poles, asterisks denote multiple nuclei per cell, and the ‘‘m’’ denotes the maternal pronucleus that did not meet the male
pronucleus prior to NEBD. Times in min:sec are given relative to nuclear envelope breakdown (NEBD). Scale bar, 10 mm. B. Sequence alterations in the
mutants. Asterisks indicate the changed residues (or nucleotide for dnc-4(or633 ts). Homologous proteins are aligned below the C. elegans proteins.
dnc-4(or633 ts) contains a mutation in an intron that may affect RNA splicing. C. Individual embryos observed during time-lapse recordings: embryos
are listed on the left and phenotypes are listed on the top: 1; pronuclei meet prior to NEBD, 2; Nuclear centrosomal complex centration, 3; Nuclear
centrosomal complex rotation, 4; spindle alignment, 5 one nucleus per cell at two cell stage. In the long upshifts, hermaphrodites were transferred to
the restrictive temperature for 5–8 hours. In the short upshifts, embryos were harvested from hermaphrodites grown at 15uC and immediately
mounted on agar pads for imaging, which took ,1 min.
doi:10.1371/journal.pone.0016644.g004
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Finally, par-2(or373 ts) and par-2(or539 ts) worms were fertile and

produced inviable embryos when grown to adulthood from the L1

larval stage, but the par-2(or640 ts) mutant worms were sterile after

L1 temperature upshifts (Table 4).

lit-1 and mex-1 mutants
lit-1 and mex-1 control embryonic cell fate patterning. LIT-1 is a

kinase that controls anterior/posterior daughter cell fates begin-

ning at the 6-cell stage when the ventral-most embryonic cell

called EMS divides along the anterior/posterior body axis

[61,62,63]. MEX-1 is a zinc finger protein that restricts blastomere

identity at the 8-cell stage but also has been shown to affect

anterior-posterior polarity at the one-cell stage [64,65,66]. We

found one new lit-1 mutant, or393 ts and one new mex-1 mutant,

or286 ts, which failed to complement the previously identified

alleles lit-1(or131 ts) and mex-1(zu120), respectively (data not

shown). lit-1(or393 ts) hermaphrodites produced embryos that

contained fewer intestinal cells, as compared to wild-type worms

(not shown). lit-1(or393 ts) was recessive (Table 1) and did not

exhibit any phenotypes other than embryonic lethality when

grown to adulthood at the restrictive temperature from the L1

larval stage (Table 4). We found that codon 331 was changed from

an isoleucine to a phenylalanine in lit-1(or393 ts) strain (Fig. 10 and

Table 2). mex-1(or286 ts) hermaphrodites generated embryos that,

as reported previously for other alleles, produced a large excess of

pharyngeal tissue (data not shown). L1 upshift experiments

revealed that mex-1 worms produced either small broods or were

sterile (Table 4). The sequence alteration in the mex-1(or286 ts)

mutant changed a glutamine at codon 13 to a stop codon (Fig. 10

and Table 2).

Discussion

Most of the effort to investigate essential C. elegans genes has thus

far focused on gene products that, when defective, exhibit early

embryonic cell division defects. However, extending efforts to

investigate previously ignored or poorly studied mutant classes is

now more appealing with the rapid cloning methods available.

These mutant classes include eggshell-defective mutants, sterile or

small brood-producing mutants, mutants with delayed progression

through S phase, and mutants with normal early embryonic cell

divisions but highly penetrant lethality presumably due to defects

later in embryogenesis. By first identifying what genes are affected

in such mutants, research effort might be more productively

focused on conserved genes with important roles in other model

systems and in human health.

Most of the mutants we describe here have been studied

previously, either by using mutant alleles or RNAi depletion, and

the cellular phenotypes we present mirror what has been presented

previously. However, these new strains should still prove valuable

for the phenotypic analysis of embryos and worms after bypassing

the earliest defects, by providing sensitized backgrounds for use in

modifier screens, for defining temperature-sensitive periods, and as

templates for engineering TS alleles in homologous genes (see

Figure 5. mei-1 mutants. A. DIC time-lapse images of wild-type, mei-1(or642 ts) and mei-1(or646 ts) embryos. In the mei-1 mutants the polar bodies
were large and misshapen and embryos contained multiple [top mei-1(or642 ts) embryo and mei-1(or646 ts)] or zero maternal pronuclei (second mei-
1(or642 ts) embryo). The two mei-1(or642 ts) embryos were obtained from a hermaphrodite shifted to the restrictive temperature for 30 minutes, the
mei-1(or646 ts) embryo was obtained from a hermaphrodite shifted to the restrictive temperature for 7 hours prior to imaging. White arrowheads
indicates polar bodies, black arrowheads indicate multiple maternal pronuclei, the black arrow denotes multiple nuclei per cell at the two cell stage,
and the ‘‘p’’ refers to the paternal pronucleus in an embryo lacking a maternal pronucleus. Times in min:sec are given relative to nuclear envelope
breakdown (NEBD). Scale bar, 10 mm. B. Defect maps of individual embryos observed during time-lapse recordings: embryos are listed on the left and
phenotypes are listed on the top: 1; normal polar body size, 2; normal pronuclear number, 3; one nucleus per cell at two cell stage. In the long
upshifts, hermaphrodites were transferred to the restrictive temperature for 5–8 hours. In the short upshifts, embryos were harvested from
hermaphrodites grown at the restrictive temperature for 30 minutes. C. Amino acid alteration in the mutants. Asterisk indicates the changed residue.
Homologous proteins are aligned below the C. elegans protein.
doi:10.1371/journal.pone.0016644.g005
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below). One interesting finding we have made is that fast-acting

TS alleles (as defined by our criteria) are not unusual (Table 3).

Thirteen of the alleles we have characterized here are potentially

fast-acting, and we could not make a determination on six others

because of either 1) weak or low penetrance defects or, 2) high

lethality at the permissive temperature. In fact, only three

mutations were definitively not fast-acting. In future assays, it

may be useful to grow worms and conduct rapid upshifts in a room

maintained at 15uC by use of a temperature-controlled microscope

stage, in order to bypass mounting embryos at room temperature

(which would likely allow one to further clarify the ‘‘Unclear’’

determinations in Table 4). The observation that,50% of the

conditional mutants we analyzed are potentially fast-acting

provides additional incentive to isolate more TS alleles.

Figure 6. spd-2 mutants. A. DIC time-lapse images of wild-type, spd-2(or293 ts), spd-2(or454 ts), spd-2(or493 ts), and spd-2(or655 ts) embryos. In the
spd-2 mutants the pronuclei often met in the center, NCC rotation failed, a bipolar spindle failed to assemble, cytokinesis failed, and there were
aberrent numbers of nuclei present at the two cell stage. The spd-2(or293 ts), spd-2(or454 ts), and spd-2(or493 ts) embryos were obtained from
hermaphrodites shifted to the restrictive temperature for 5–6 hours. The spd-2(or655 ts) embryo was obtained from a hermaphrodite shifted to the
restrictive temperature for ,1 min prior to imaging. Black arrows indicate instances when pronuclei meet in the center of the embryo, asterisks
represent one nucleus present in a two cell stage equivalent embryo, and white arrowheads indicate multiple nuclei. Times in min:sec are given
relative to nuclear envelope breakdown (NEBD). Scale bar, 10 mm. B. Sequence alterations in the mutants. Asterisks indicates the changed residues (or
nucleotide for spd-2(or454 ts). Homologous proteins are aligned below the C. elegans protein. C. Defect maps for the spd-2 mutants. Individual
embryos observed during time-lapse recordings: embryos are listed on the left and phenotypes are listed on the top: 1; nuclear centrosomal complex
centration, 2; nuclear centrosomal complex rotation, 3; bipolar spindle, 4; successful cytokinesis, 5; one nucleus per cell at two cell stage. In the long
upshifts, hermaphrodites were transferred to the restrictive temperature for 5–8 hours. In the short upshifts, embryos were harvested from
hermaphrodites grown at 15uC and immediately mounted on agar pads for imaging, which took ,1 min.
doi:10.1371/journal.pone.0016644.g006
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Of the 13 loci we have described, no genetic alleles have been

described for two (dnc-4 and plk-1), while no TS alleles have been

described for three others (mex-1, rsa-1, and sur-6; see Table 5).

Sixteen of the sequenced TS alleles are single mis-sense mutations

and another allele, dnc-1(or676 ts) has two mis-sense mutations.

Two of the TS alleles, dnc-4(or633 ts) and spd-2(or454 ts), change

nucleotides in introns that likely affect RNA splicing, and

interestingly, dnc-4(or633 ts) is highly temperature-sensitive while

spd-2(or454 ts) is less so (Table 1). It would be interesting to test if

engineering either of these splice site mutations into other genes

would also confer conditional gene function. One of the mutants

contains an in-frame deletion, spd-2(or655 ts), while mex-1(or286 ts)

has a premature stop codon, and both of these mutants produce a

substantial fraction of inviable embryos at the permissive

temperature (Table 1). As 81% of our TS alleles were mis-sense

mutations, searching for mis-sense mutations in mutant genome

Figure 7. zyg-1 mutants. A. DIC time-lapse images of wild-type, zyg-1(or278 ts), zyg-1(or297 ts), zyg-1(or409 ts), and zyg-1(or1018 ts) embryos. In the
zyg-1 mutants the two cell stage blastomeres assembled monopolar spindles, cytokinesis failed, and there were multiple nuclei present at the four
cell equivilent stage. The zyg-1(or278 ts), zyg-1(or409 ts), and zyg-1(or1018 ts) embryos were obtained from hermaphrodites shifted to the restrictive
temperature for 5–6 hours. The zyg-1(or297 ts) embryo was obtained from a hermaphrodite shifted to the restrictive temperature for 30 minutes
prior to imaging. Black arrows indicate normal bipolar spindles in the wild-type embryo and white arrowheads indicate multiple nuclei present at the
four cell equivalent stage. Times in min:sec are given relative to AB nuclear envelope breakdown (NEBD). Scale bar, 10 mm. B. Amino acid alterations
in the mutants. Asterisks indicate the changed residues. Homologous proteins are aligned below the C. elegans protein. C. Defect maps for the zyg-1
mutants.Individual embryos observed during time-lapse recordings: embryos are listed on the left and phenotypes are listed on the top: 1; normal
two cell embryo, 2; bipolar spindles at two cell stage, 3; one nucleus per cell at four cell stage. In the long upshifts, hermaphrodites were transferred
to the restrictive temperature for 5–8 hours. In the short upshifts, embryos were harvested from hermaphrodites grown at the restrictive temperature
for 30 minutes.
doi:10.1371/journal.pone.0016644.g007
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exon sequences should lead to finding the causative mutations in

most TS mutants. Finally, the amino acid substitutions in nine of

the alleles alter residues that are similar (seven of them are

identical) in homologous proteins in vertebrates, Drosophila

melanogaster, and budding yeast. Thus, it may be possible to

engineer these changes in other organisms to obtain TS alleles.

Eight of the TS alleles alter residues only conserved within

nematodes. As a substantial fraction of the TS mutations we have

described either do affect widely conserved residues, or are not

fast-acting, further efforts to identify additional conditional

mutations in even these essential C. elegans genes may prove

valuable, and TS mutations have yet to be identified for

most of the roughly 2500 essential genes present in the C.

elegans genome.

Materials and Methods

C. elegans strains and culture
Strains were grown under standard laboratory conditions [67].

The temperature sensitive mutants were maintained in a 15uC
incubator and shifted to a 26uC incubator to perform temperature

upshifts for determining embryonic lethality. Mutants were

isolated in a lin-2(e1309) background, as previously described

[25]. For performing embryonic viability counts, we transferred

Figure 8. A plk-1 mutant. A. DIC time-lapse images of wild-type and plk-1(or683 ts) embryos. In the plk-1 mutant the nuclear centrosomal complex
(NCC) failed to rotate, a transverse P0 spindle assembled, and the daughter blastomeres were binucleate. The plk-1(or683 ts) embryo was obtained
from a hermaphrodite shifted to the restrictive temperature for 6 hours prior to imaging. Black dots represent centrosomes/spindle poles and
asterisks denote multiple nuclei per cell at the two cell stage. Times in min:sec are given relative to NEBD. Scale bar, 10 mm. B. Amino acid alteration in
the mutant. Asterisk indicates changed residue. Homologous proteins are aligned below the C. elegans protein. C. Defect map for individual embryos
observed during time-lapse recordings, embryos are listed on the left and phenotypes are listed on the top: 1; nuclear centrosomal complex rotation,
2; spindle alignment, 3; one nucleus per cell at two cell stage. In the long upshifts, hermaphrodites were transferred to the restrictive temperature for
5–8 hours. In the short upshifts, embryos were harvested from hermaphrodites grown at 15uC and immediately mounted on agar pads for imaging,
which took ,1 min.
doi:10.1371/journal.pone.0016644.g008

Table 5. Summary of the TS mutant loci and comparison of previously available alleles.

Locus Allele(s) reported in this paper Previous allele(s) published1 Previous TS allele(s) available1

dnc-1 or404, or676 yes yes

dnc-4 or618, or633 no no

lit-1 or393 yes yes

mei-1 or642, or646 yes yes

mex-1 or286 yes no

par-2 or373, or539, or640 yes yes

plk-1 or683 no no

rsa-1 or598 yes no

spd-2 or293, or493, or454, or655 yes yes

sur-6 or550 yes no

tba-1 or594 yes yes

tbb-2 or600 yes yes

zyg-1 or278, or297, or409, or1018 yes yes

1Information obtained from: http://www.wormbase.org.
doi:10.1371/journal.pone.0016644.t005
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.10 L4 hermaphrodites to individual plates and grew them at the

permissive (15uC) or restrictive (26uC) temperatures until broods

were produced. We then removed the worms and allowed the

embryos to develop prior to counting viable and inviable progeny.

For testing embryonic lethality in heterozygous mothers, we

crossed the mutants to a him-5 strain and tested the F1 progeny as

described above. For determining the phenotypes of the TS

mutants when shifted to the restrictive temperature from the L1

larval stage, we performed hypochlorite treatments and allowed

the embryos to hatch in M9 buffer at 15uC. We then plated,100

synchronized L1 larvae onto a plate and grew them at 26uC until

they reached adulthood.

Microscopy
Imaging was performed by mounting embryos grown at either

15uC or 26uC on 3% agar pads on microscope slides and sealed

with a cover slip. Mounting the embryos was performed at room

temperature and usually took 1–2 minutes. Nomarski time lapse

images were acquired at a frame rate of 1 image/2 seconds on

Zeiss (http://www.zeiss.com) axioskop microscopes equipped with

CCD cameras using ImageJ software (http://rsbweb.nih.gov/ij/).

Microscopy was performed at room temperature in a room

maintained at 24uC. Images were adjusted for contrast in ImageJ.

Mutation identification
Sanger DNA sequencing was performed at the University of

Oregon Genomics facility for most genes. We used PCR reactions

to amplify 1–2 Kb gene fragments using Taq DNA polymerase

(Invitrogen). The PCR reactions were run on agarose gels prior to

isolating the DNA using a Qiagen QIAquick gel extraction kit. For

plk-1 and tbb-2, we used a procedure called interval pull down

sequencing which we have developed (manuscript in preparation).

Briefly, we isolated mutant genomic DNA, sheared it, annealed it

to fosmids containing wild-type genomic DNA and used beads to

isolate megabase regions of interest. This purified DNA was

subjected to Illumina sequencing at the University of Oregon

Genomics facility.

Sequence alignments
We used Wormbase (http://www.wormbase.org/) to obtain

homologous proteins encoded in the Homo sapiens, Drosophila

melanogaster, and Saccharomyces cerevisiae genomes. In cases where

homologous proteins (or homologous domains) were not present,

Figure 9. par-2 mutants. A. DIC time-lapse images of wild-type par-2(or373 ts), par-2(or539 ts), and par-2(or640 ts) embryos. The blastomeres in the
par-2 mutants were of similar size at the two cell stage and initiated mitosis simultaneously, in contrast to the wild type. The par-2(or373 ts) embryo
was obtained from a hermaphrodite shifted to the restrictive temperature for 5 hours prior to imaging. The par-2(or539 ts) and par-2(or540 ts)
embryos were obtained from hermaphrodites shifted to the restrictive temperature for 30 minutes prior to imaging. Arrows indicate mitotic spindles
at the two cell stage. Times in min:sec are given relative to AB NEBD. Scale bar, 10 mm. B. Defect map for individual embryos observed during time-
lapse recordings, embryos are listed on the left and phenotypes are listed on the top: 1; Normal one cell embryo; 2; assymetric two cell embyro, 3;
asynchronous two cell divisions. In the long upshifts, hermaphrodites were transferred to the restrictive temperature for 5–8 hours. In the short
upshifts, embryos were harvested from hermaphrodites transferred to the restrictive temperature for 30 minutes. C. Amino acid alteration in the par-
2(or373 ts) mutant. Asterisk indicates the changed residue. Homologous proteins are aligned below the C. elegans protein.
doi:10.1371/journal.pone.0016644.g009

Figure 10. Sequence alterations in the lit-1(or393 ts) and mex-
1(or286 ts) mutants. Amino acid alterations in the mutants. Asterisks
indicates changed residues. Homologous proteins are aligned below
the C. elegans protein for LIT-1. A glutamine codon was changed to a
stop codon in the mex-1(or286 ts) allele.
doi:10.1371/journal.pone.0016644.g010
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we performed alignments with other nematode sequences. Protein

sequences were aligned with default parameters in CLUSTALW

(http://align.genome.jp/) and outputted as alignments using the

BOXSHADE package (http://www.ch.embnet.org/software/

BOX_form.html).
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