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Abstract

Background: Since the end of last century, RNAs from the 39untranslated region (39UTR) of several eukaryotic mRNAs have
been found to exert tumor suppression activity when introduced into malignant cells independent of their whole mRNAs. In
this study, we sought to determine the molecular mechanism of the tumor suppression activity of a short RNA from 39UTR
of C/EBPb mRNA (C/EBPb 39UTR RNA) in human hepatocarcinoma cells SMMC-7721.

Methodology/Principal Findings: By using Western blotting, immunocytochemistry, molecular beacon, confocal
microscopy, protein kinase inhibitors and in vitro kinase assays, we found that, in the C/EBPb 39UTR-transfectant cells of
SMMC-7721, the overexpressed C/EBPb 39UTR RNA induced reorganization of keratin 18 by binding to this keratin; that the
C/EBPb 39UTR RNA also reduced phosphorylation and expression of keratin 18; and that the enzyme responsible for
phosphorylating keratin 18 is protein kinase Ce. We then found that the C/EBPb 39UTR RNA directly inhibited the
phosphorylating activity of protein kinase Ce; and that C/EBPb 39UTR RNA specifically bound with the protein kinase Ce-
keratin 18 conjugate.

Conclusion/Significance: Together, these facts suggest that the tumor suppression in SMMC-7721 by C/EBPb 39UTR RNA is
due to the inhibition of protein kinase Ce activity through direct physical interaction between C/EBPb 39UTR RNA and
protein kinase Ce. These facts indicate that the 39UTR of some eukaryotic mRNAs may function as regulators for genes other
than their own.
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Introduction

A malignant tumor is caused by a series of abnormal expressions

and/or deviant functions of genes governing cell proliferation and

differentiation (including proto-oncogenes and tumor suppressor

genes). The protein kinase Ce (PKCe) is an oncogene important in

tumorigenesis [1,2]. PKCe has been classified as a novel PKC

isotype and is characterized as calcium-independent and phorbol

ester/diacylglycerol-sensitive. A characteristic of PKCe is that it

binds a large number of interacting proteins, indicating the

generality of its actions. It is activated in the cytoplasm by

diacylglycerol or phorbol esters, and it phosphorylates downstream

target molecules, thereby transducing growth signals into the

nucleus to promote gene expression [3]. PKCe specifically binds

and phosphorylates keratin 18 (CK18), a component of the cellular

intermediate filaments [4].

Abnormal, tumoral growth of cells is suppressed by the genes

regulating oncogenes or oncogene-related genes, i.e., tumor

suppressor genes. Tumor suppressor genes can be classified by

their various functions, such as those which operate as transcrip-

tion factors, DNA damage sensors, cell cycle checkpoint

controllers, etc. [5]. In recent years many micro-RNAs have been

found to function as tumor suppressors. Generally, a tumor

suppression effect may be exerted by any cellular factor inhibiting

the genes responsible for abnormal cell growth. Therefore, tumor

suppressors may theoretically be any of a variety of cellular factor,

or even isolated functional parts of gene expression products.

The 39UTR of eukaryotic mRNA, referred to in this study as the

RNA segment between the final stop codon and the poly A tail, is

a well-known regulation region for its own mRNAs. 39UTR

regulates, possibly by interacting with miRNA, the mRNA

stability, nuclear export, translation efficiency, subcellular locali-

zation, and time of translation [6–8]. Since the last century, several

RNAs from 39UTRs (referred hereafter to as 39UTR or 39UTR

RNA) have been found to exert tumor suppression activity when

introduced into malignant cells as isolated segments. These include

a-tropomyosin 39UTR [9], ribonucleotide reductase subunits R1

and R2 39UTRs [10], putative polycomb gene mel-18 39UTR

[11], prohibitin 39UTR [12] and the C/EBPb 39UTR treated in

this study. It is notable that these 39UTRs suppress tumors

independently from their mRNAs. For a-tropomyosin 39UTR, the

growth inhibition was explained as a result of the activation of a

double strand RNA-dependent protein kinase (PKR), leading to

the inhibition of overall protein synthesis [13]. Significantly, the
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39UTR of PTENP1, a pseudogene homologous to the tumor

suppressor gene PTEN, was found to exert tumor suppressor

activity though removing some miRNA that down-regulates the

expression of PTEN, thus liberating the expression of the latter

[14]. However, the molecular mechanisms behind the functions of

the other tumor suppressive 39UTRs so far remain unclear. That

the 39UTRs may act as regulators for genes other than their own

(trans-regulators) is a possibility which cannot be ruled out [15].

From 1991–1992, in an attempt to search for any gene with the

potential for tumor suppression by transfection of malignant DT

cells [16] with a pcD2 plasmid library of normal human cDNAs

[17], we [18] found a pcD2 plasmid containing a 0.5kb cDNA

insert (called p14-6), which, upon stable transfection, induced

phenotypic reversion in a portion of the DT cells. The 0.5kb

cDNA insert was sequenced [19] and was found to be the middle

section of the 39UTR of the transcription factor C/EBPb (also

named NF-IL6) mRNA [20]. When linker sequences were

removed, the cDNA or RNA segment was 282 bases long

(Fig. 1). This RNA segment will be referred to thereafter as C/

EBPb 39UTR or C/EBPb 39UTR RNA.

In recent years, our group has continued to study the molecular

mechanism of the tumor suppression function of C/EBPb 39UTR.

We tested the C/EBPb 39UTR to see if it is tumor suppressive in

other cultured tumor cell lines. We found that the stable

transfection of p14-6 plasmid into SMMC-7721 hepatoma cells

led to a significant decrease in the malignancy of a large portion of

transfectants [21]. SMMC-7721(7721) is a highly malignant

hepatocarcinoma cell line established from a surgically excised

specimen of a Chinese hepatocellular carcinoma patient [22,23].

About 70% of C/EBPb 39UTR-stably transfected 7721 cell

colonies were revertants, i.e., transfectants with reduced malig-

nancy, as measured by soft agar and nude mice tumorigenicity

tests [21]. A selection of these revertant colonies was cloned and

characterized. Their cell morphology was found to be flatter than

that of 7721, especially at low density in culture (Fig. 1).

Hybridizations have shown that, in these revertants, the

transfected C/EBPb 39UTR is highly expressed, while the

expression of endogenous full-length C/EBPb mRNA has not

been markedly changed [21].

We then selected a typical revertant cell strain, Cl1 [21,24],

from the C/EBPb 39UTR-stably transfected 7721 cells, for

detailed molecular biological study. A cDNA microarray analysis

of the Cl1 gene expression profile [21] revealed that tens of genes

favorable for phenotypic reversion had been up-regulated, and

several genes related to malignancy, including CK18, been down-

regulated. Given that no protein is translated from C/EBPb
39UTR, its tumor suppression effect could have been achieved

only by its interactions with cellular factors. In fact, we have found

that C/EBPb 39UTR specifically bound CK18 [25].

We therefore investigated the effects of C/EBPb 39UTR in the

reorganization of CK18. At the same time, we investigated the

phosphorylation state of CK18 and the effect of C/EBPb 39UTR

on this phosphorylation. In this work, we show that CK18

filaments are reorganized in the Cl1 cells; a portion of the Cl1 cell

population is delayed at the S and G2/M phases of their cell cycle;

and the average phosphorylated CK18 (pCK18) and the total

amount of CK18 are lower in Cl1 than in 7721. Furthermore, we

show that the enzyme responsible for CK18 phosphorylation is

PKCe, and that the lower phosphorylation resulted from the

inhibition of PKCe activity. Subsequently, we have identified the

direct inhibition of PKCe activity by C/EBPb 39UTR RNA, and

have found that C/EBPb 39UTR RNA specifically formed a

complex with the CK18-PKCe conjugate. Therefore, the

suppression of 7721 hepatocarcinoma cell growth is caused by

the inhibition of PKCe by C/EBPb 39UTR RNA via its

interaction with PKCe and CK18.

Results

C/EBPb 39UTR transfection does not affect the expression
of C/EBPb protein

As all the experiments presented in this article were performed

in Cl1 cells, these shall be described again in detail. Cl1 [21] is a

revertant cell strain derived from the 7721 human hepatocarci-

noma cell line by the stable transfection of C/EBPb 39UTR

cDNA plasmid, p14-6 [18]. The nucleotide sequence of C/EBPb
39UTR cDNA, as well as the cell morphology of Cl1 and its

malignant original, 7721, are shown in Fig. 1. The transfected,

exogenous C/EBPb 39UTR cDNA is overexpressed in Cl1 [21],

and its colony-forming ability in soft agar and tumorigenicity in

nude mice, both important measures for malignancy, were

significantly reduced compared to 7721 [21].

A possible mechanism for the suppression of tumors by 39UTR

is its effect on tumoral gene expression via titrating out the

regulating miRNA [14]. Our previous cDNA array results for Cl1

[21], however, did not show any definite change in the C/EBPb
mRNA level in these transfectant cells, in which the exogenous C/

EBPb 39UTR was overexpressed. Results of preliminary Western

blotting of C/EBPb proteins were in agreement with the above

(unpublished). To verify whether or not exogenous C/EBPb

Figure 1. C/EBPb 39UTR, SMMC-7721 and Cl1 cells. (a) Position of
the C/EBPb gene on the human genome and the location of C/EBPb
39UTR (0.28 kb). (b) Morphology of SMMC-7721 (77) and Cl1 cells. Bars,
50 mm.
doi:10.1371/journal.pone.0016543.g001
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39UTR influenced endogenous C/EBPb protein synthesis in Cl1

cells, we performed Western blots of Cl1 and C/EBPb 39UTR

RNA-transiently transfected 7721 cells, using an antibody against

C/EBPb proteins. Results showed that the main C/EBPb protein

isoforms in 7721 and Cl1 cells were LAP*(the largest C/EBPb
protein isoform, at about 38 kDa) and LAP (at about 35 kDa), and

that total amounts of C/EBPb isoform proteins did not vary

noticeably on average (Fig. 2a). Therefore, C/EBPb 39UTR did

not affect the expression of the full-length C/EBPb mRNA,

indicating a difference in mechanism with the PTENP1 tumor

suppressor gene pseudogene.

C/EBPb 39UTR transfection causes delay of cell cycle at
the S and G2/M phases

Cl1 grows much more slowly than 7721, and forms only very

small tumors in nude mice [21,24]. Thus, the cell cycle of Cl1 has

also slowed down, as was confirmed though flow cytometric

analysis (Fig. 2b). We found increased cell populations for Cl1 at

the S phase, and a slight increase in cell population at the G2/M

phase. The transient transfection by C/EBPb 39UTR RNA also

resulted in a similar retardation of the cell cycle progression, and

the retardation was positively related to time posttransfection up to

42 h, thus indicating that the C/EBPb 39UTR was responsible for

this delay (Fig. 2c).

C/EBPb 39UTR causes CK18 filament reorganization by
binding to CK18

Given that keratins are important components of the cytoskel-

eton, the flat cell morphology may well be attributed to alterations

in keratin organization. We performed laser confocal microscope

observations on immunocytochemically fluorescent-stained cell

lines. The 7721 cells showed thin and dense CK18 networks

(green fluorescence) over almost all of their cytoplasm (Fig. 3a,

arrows). In the Cl1 cells, however, as well as the thin CK18

filaments, there were many CK18 filaments forming aggregates or

bundles. Although such aggregates do exist in 7721 cells, their

number in Cl1 is much greater than in the former (Fig. 3b,

arrows).

Given that Cl1 cells differ from 7721 cells only in the presence

of transfected C/EBPb 39UTR, and that C/EBPb 39UTR did

specifically bind CK18 in vitro [25], the 39UTR might be involved

in the formation of CK18 aggregates. To prove this, we used a red

fluorescent molecular beacon, which is specific to C/EBPb
39UTR, to detect whether it was co-localized with the CK18

aggregates. The micrographs confirmed this: in 7721 cells probed

with the molecular beacon, there is only a little dot-like red

fluorescence, showing that there is no exogenous C/EBPb 39UTR

RNA within the cells (Fig. 3c). In Cl1 cells with highly expressed

C/EBPb 39UTR RNA, however, a large amount of dot-like

molecular beacon fluorescence was found located mainly in the

vicinity of CK18 networks and aggregates, and even on the

aggregates (Fig. 3d), indicating that C/EBPb 39UTR RNA had

bound with the CK18. Control 7721 cells, which had been

transfected with C/EBPb 39UTR RNA, also showed a large

amount of molecular beacon fluorescence in the vicinity of CK18

(Fig. 3e,f). To make an estimation of the number of cells with

significant CK18 aggregates and to further confirm the relation-

ship between CK18 aggregates and C/EBPb 39UTR RNA, we

transfected 7721 cells with different amounts of C/EBPb 39UTR

RNA, and then calculated [26] the percentage values of the

numbers of cells with significant CK18 aggregates in the total cell

populations. The results showed that the percentage ratios of the

numbers of cells with significant CK18 aggregates increased with

the increase of transfecting C/EBPb 39UTR RNA doses (Fig. 3g).

Therefore, the altered CK18 organization in Cl1 was attributed to

the overexpressed C/EBPb 39UTR RNA binding itself to the

CK18. This is in accordance with our previous findings [25].

Reduction of amounts of pCK18 and total CK18 in Cl1
cells

Using antibodies against total CK18 or pCK18, we checked the

phosphorylated states of CK18 in the 7721 and Cl1 cells with

Western blotting. We found that there appeared to be less pCK18

in Cl1 cells than in 7721 cells. To verify this, a series of repeated

Western blots was performed, and the band densities were

quantitatively measured using Multi-Gauge version 3.0 software

(FujiFilm). Results from more than five experiments were

calculated and normalized to the density of glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) bands, which served as an

inner control. The results showed that the average amounts of

pCK18 and of total CK18 in the Cl1 cells were less than in 7721

(Fig. 4a,b). The reduction in amount (expression) of total CK18 in

Cl1 is in accordance with the cDNA array results stating that

keratin 18 is down-regulated [21]. It is well known that the

phosphorylation status, as well as the total amount of a protein

often change during different stages of cell cycle, cell growth and

proliferation. In this case, however, the decrease of phosphorylated

CK18 and total CK18 do not seem to be dependent on the cell

cycle or cell proliferation, as in all repeated experiments the cells

were cultured under routine conditions without adding any factor

affecting cell cycle or proliferation etc. Thus the reduction of

pCK18 in Cl1 suggests that some protein kinase responsible for

the phosphorylation of CK18 might be inhibited by the C/EBPb
39UTR RNA. Therefore, we then identified the protein kinase

responsible for CK18 phosphorylation, and the effects of C/EBPb
39UTR RNA on that kinase.

The protein kinase responsible for CK18 phosphorylation
is PKCe

A PKCe-like kinase has been reported to bind with and

phosphorylate CK18 [4]. However, in this case, confirmation was

still required to determine whether the kinase responsible for

CK18 phosphorylation was really PKCe. For this purpose, we

utilized a library of small-molecular kinase inhibitors. We

performed a series of cell cultures in multiwell plates, in which

respective kinase inhibitors were added to the culture media. After

scheduled times, the cells were collected, lysed, separated by

PAGE, and subjected to Western blots against total CK18 and

pCK18. The results (a combined figure of representative

experiments is shown in Fig. 4c) showed that only PKC-specific

kinase inhibitors were effective in reducing the density of bands of

pCK18. When a PKCe-specific inhibitor, eV1-2 [27], was used,

significant reduction in band density of pCK18, almost equal to

the reduction induced by general PKC inhibitors, was observed.

Therefore, the enzyme responsible for CK18 phosphorylation was

found to be PKCe, indicating that C/EBPb 39UTR RNA was

capable of interacting with PKCe to lower CK18 phosphorylation.

C/EBPb 39UTR directly inhibits PKCe in in vitro enzymatic
activity assay

As PKCe was the protein kinase that phosphorylated CK18,

and given that the amount of pCK18 in the Cl1 cells had been

reduced, it was necessary to determine whether the activity of

PKCe could be inhibited by C/EBPb 39UTR RNA. Preliminarily,

we checked the activity of the calcium-independent PKC isotypes

in 7721 cells with c-32P-labeled ATP and EGTA. Results showed

Tumor Suppression by C/EBPb39UTR
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that 32P-labeled cellular proteins were gradually reduced with an

increase in the amounts of C/EBPb 39UTR RNA added to the

reaction mixture (Fig. 5a).

We then reconfirmed our finding that the phosphorylation of

CK18 was reduced by exogenous C/EBPb 39UTR RNA. The

assay was done using total cell lysate. In order to exclude the

Figure 3. C/EBPb 39UTR RNA binds CK18 and alters its intracellular organization in SMMC-7721 and Cl1 cells. Confocal micrographs of
the cells immunostained with a fluorescein-labeled antibody against CK18 (green), and of the cells immunostained as above and probed with a
fluorescent-labeled molecular beacon specific to C/EBPb 39UTR RNA (red dots). (a) SMMC-7721 cells. Arrows indicate the thin CK18 network in the
cytoplasm. (b) Cl1 cells. Arrows indicate the aggregates and bundles of CK18. (c) SMMC-7721 cells probed with the molecular beacon for C/EBPb
39UTR RNA. Arrows indicate the molecular beacon binding with C/EBPb 39UTR RNA on the CK18 filaments. (d) Cl1 cells probed with the same
molecular beacon. Note the greater amount of red fluorescence from the molecular beacon than in SMMC-7721, and the positioning of the
fluorescence both around the CK18 filaments and even on the CK18 aggregates (the orange arrows in the larger amplification). (e) SMMC-7721 cells
transfected with 1 mg/well of C/EBPb 39UTR RNA and probed with the same molecular beacon. Arrows indicate the fluorescence of the molecular
beacon on the CK18. (f) SMMC-7721 cells transfected with 5 mg/well of C/EBPb 39UTR RNA and probed with the same molecular beacon. Arrows
indicate the fluorescence of the molecular beacon on the CK18. Bars, 10 mm. (g) Percentage amounts of cells with significant CK18 aggregates in total
cell populations of SMMC-7721, Cl1 and SMMC-7721 transfected with varying amounts of C/EBP 39UTR RNA. Cells were grown in 24-well plates. 1,
SMMC-7721. 2-4, SMMC-7721 transfected with 1, 3, 5 mg/well of C/EBP 39UTR RNA respectively. 5, Cl1.
doi:10.1371/journal.pone.0016543.g003

Figure 2. C/EBPb proteins expression, and flow cytometric analysis of SMMC-7721, Cl1 cells and C/EBPb 39UTR-transfectnants. (a)
Western blot against C/EBPb proteins (LAP* and LAP were detected) in SMMC-7721, Cl1 and C/EBPb 39UTR RNA-transfected SMMC-7721 cells. The gel
photograph is a representative experiment, and the histogram shows the average values of the total C/EBPb protein amounts, measured by band
density scanning. (b) Flow cytometry histogram of SMMC-7721 and Cl1 cells. (c) Flow cytometry histogram of SMMC-7721 cells transfected with C/
EBPb 39UTR RNA, at 24 h and 42 h post-transfection.
doi:10.1371/journal.pone.0016543.g002
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contributions of other protein kinases existing in the cell lysate and

to determine whether the kinase activity was due to protein kinase

Ce, the PKCe-specific peptide inhibitor eV1-2 was used as a

control, and EGTA was present in the kinase assay mixture to

inhibit the activity of calcium-dependent protein kinases. Under

these experimental conditions, the detected kinase activity that was

sensitive to eV1-2 inhibition could be ascribed largely to the

protein kinase Ce.

The source of PKCe, a 7721 cell extract, was prepared. To

increase PKCe activity, phorbol myristate acetate (PMA) was

added to the extract. The cellular CK18 was enriched from

another 7721 cell extract, prepared using Bronfman’s method

[28]. The PKCe source extract was mixed with the CK18-

enriched extract and EGTA, as described in Materials and

Methods, and increasing amounts of C/EBPb 39UTR RNA (for

the experimental group) or eV1-2 (for the control group) were

Figure 4. Amounts of pCK18 and total CK18 in Cl1 cells decreased; the responsible enzyme is PKCe. (a) Typical examples of Western
blots for pCK18 and CK18. (b) Histogram of data of band densities comparing the amounts of pCK18 and CK18 in the two cell lines, calculated from
more than five independent Western blot experiments. (c) Protein kinase inhibition experiments. Individual components of a kinase inhibitor library
were used to treat cultured cells for definite times. Then the cells were lysed and subjected to Western blotting for pCK18 and CK18. Typical Western
blots, including a protein tyrosine kinase inhibitor (tyrphostin), a general PKC inhibitor (GF109203X), and a PKCe-specific inhibitor (eV1-2), are
combined. Untreated Cl1 and SMMC-7721 cells were used as controls.
doi:10.1371/journal.pone.0016543.g004
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added in the reaction mixtures, respectively. After a 20–25 min

incubation at 30uC, the samples were separated on PAGE, and

subsequent Western blots were performed for CK18 and pCK18.

Repeated experiments showed that the amounts of pCK18 tended

to negatively correlate with the amounts of C/EBPb 39UTR RNA

added to the reaction mixture. The control eV1-2 showed a very

similar tendency. A representative result is shown in Fig. 5b. These

results showed unambiguously that C/EBPb 39UTR RNA directly

inhibited PKCe activity.

C/EBPb 39UTR forms a complex with PKCe-CK18
conjugate in RNA binding-coupled immunoprecipitation

Aside from binding and phosphorylating CK18, PKCe also

forms signaling modules through physical interactions with signal

transducing molecules [29]. As C/EBPb 39UTR RNA specifically

binds CK18 in vitro and in vivo, it is possible for these three

molecules (C/EBPb 39UTR RNA, CK18 and PKCe) to interact

with one another to form a complex. To check this possibility, we

performed an RNA binding-coupled immunoprecipitation exper-

iment. 7721 cell extracts were divided into equal aliquots, and

equal volumes of C/EBPb 39UTR RNA or tubulin RNA (a 1.4 kb

fragment of coding region) both in increasing concentrations, were

added to each aliquot respectively. The mixtures were incubated

at 4uC, then equal amounts of anti-CK18 antibody were added.

The precipitates were subjected to Western blots to check PKCe
and CK18. Results (Fig. 5c,d) showed that, in control lanes where

RNA concentrations were zero, the Western blots detected both

PKCe and CK18, indicating that these two molecules bound one

another and formed a conjugate. It was interesting that, in the

lanes where C/EBPb 39UTR RNA was added in increasing

Figure 5. C/EBPb 39UTR directly inhibits the activity of PKCe and specifically binds CK18-PKCe conjugate. (a) Preliminary test of the
activity of calcium-independent PKCs. The hollow arrow indicates a 45 kDa labeled band (probably CK18). (b) C/EBPb 39UTR RNA directly inhibits
PKCe activity. A representative Western blot is shown, with the band densities expressed as the ratios pCK18/CK18 quantitatively displayed in the
histogram. (c) RNA binding-coupled co-immunoprecipitation showing that C/EBPb 39UTR RNA forms a complex with CK18 and PKCe. The quantitative
histogram indicating the amounts of CK18 and PKCe bands is included. (d) Control RNA binding-coupled co-precipitation, in which b-tubulin RNA
(1.4 kb) was used instead of C/EBPb 39UTR RNA. The quantitative histogram showing the amounts of PKCe and CK18 bands is shown beside it. In this
experiment the antibody against PKCe detected a smaller molecule that seems to bind tubulin RNA; but its identity is unknown.
doi:10.1371/journal.pone.0016543.g005
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concentrations, the amounts of PKCe and CK18 both gradually

increased, in line with the increase of added C/EBPb 39UTR

RNA (Fig. 5c). This indicated that C/EBPb 39UTR RNA formed

a complex with the PKCe-CK18 conjugate, so that the antibody

bound more CK18 (and PKCe) in the presence of more C/EBPb
39UTR RNA. To confirm the specificity of the interaction of C/

EBPb 39UTR RNA with the PKCe-CK18 conjugate, we

performed a control RNA binding-coupled immunoprecipitation

using b-tubulin RNA instead of C/EBPb 39UTR RNA. Result

showed that neither positive nor negative correlations existed

between the amounts of b-tubulin RNA and the PKCe bound to

CK18 (Fig. 5d). Therefore, there is a specific interaction between

this 39UTR RNA, PKCe and CK18.

Based on these facts, we propose that the inhibition of the PKCe
activity, and hence the suppression of the SMMC-7721 hepatoma

cell growth, was achieved though the formation of a complex by

direct physical interaction between C/EBPb 39UTR RNA, PKCe
and CK18.

Discussion

PKCe activates many genes, such as RAS [30–33] and STAT3

transcription factor, in various signal transduction pathways [34].

PKCe also regulates many cellular proteins by phosphorylation,

e.g., it phosphorylates cytoskeleton proteins [35]. Besides this,

PKCe plays a role in the carcinogenesis of fibroblast and epithelial

cells as an oncogene [36–38]. Therefore, PKCe appears to be an

important regulating protein kinase, with large areas of function,

under both normal and tumoral conditions. Thus, altering the

activity of PKCe could lead to various impacts on the essential

biological activity of cells. Most relevantly, the inhibition of PKCe
activity in malignant cells may result in tumor suppression.

39UTR has long been recognized as a regulator for the

translation of its original mRNA [39]. In recent years, a direct

interaction has been found between 39UTRs and miRNAs acting

as regulators [40,41]. We found that C/EBPb 39UTR specifically

bound keratin 18, a component of cellular intermediate filaments.

In connection with the results presented in this paper, we suggest

that the binding of C/EBPb 39UTR to CK18 should be

considered not only as a means of intracellular localization (for

the C/EBPb mRNA), but also as a means of regulation; the

formation of a complex by CK18, PKCe and C/EBPb 39UTR,

and the decrease in activity of PKCe, may be proof of such a

regulatory role. It has been reported that PKCe, both in activated

and non-activated form, is capable of binding a large number of

cellular molecules [32,33]. Here we have found, for the first time,

that the C/EBPb 39UTR also forms a specific complex with

CK18-PKCe conjugate. Although it is not clear at the present

time, it is reasonable to propose that PKCe and its target factors

may also be regulated by the 39UTR of endogenous C/EBPb
mRNA in vivo.

Another factor is that, in our case, we have not found definite

evidence that the overexpression of exogenous C/EBPb 39UTR in

7721 cells can affect the endogenous expression of C/EBPb gene.

This may evince the complicated mechanism involved in the

miRNA regulation of gene expression. Our results indicate that

the C/EBPb 39UTR, when isolated from its original mRNA, was

not inactivated, but, on the contrary, became a factor that

executed different functions from its original. Therefore, this may

suggest that the function of an isolated 39UTR represents a novel

regulatory function of (at least a part of) eukaryotic mRNA; and

the functional independence of the 39UTR segment may imply

that it is possibly derived from some primordial, ancestral RNA.

This awaits further investigation.

To conclude, our results suggest that tumor suppression of

SMMC-7721 human liver cancer cells by C/EBPb 39UTR is

caused by inhibiting PKCe activity through the specific binding of

C/EBPb 39UTR RNA to PKCe and CK18. This may be a novel

regulatory function of at least a portion of eukaryotic mRNAs.

Beside these findings, our work has raised many additional

problems. For example: which mRNA 39UTRs have tumor

suppression functions? Does the same molecular mechanism

underlie the function of other known tumor suppressor 39UTRs?

Does the 39UTR of any intact mRNA form part of the structure of

a molecular machine? Further investigation of these problems is

required to gain a better understanding of the detailed biological

regulatory functions of these mRNA elements, as well as to explore

new therapeutic strategies to more effectively combat cancer.

Materials and Methods

Cell culture
The SMMC-7721 cells were from the Cell Bank of Chinese

Academy of Sciences, Shanghai, and were kept in a CO2

incubator in RPMI1640 medium containing 10% newborn calf

serum (top grade, Si Ji Qing Biotechnological Materials Co.,

Hangzhou) supplemented with 100 mg/ml of ampicillin and 100

units/ml of streptomycin sulfate. The culture conditions for the

Cl1 cells (21) were the same, except that 400 mg/ml of G418

(Invitrogen) was periodically added to the medium to maintain the

purity of the Cl1 cells.

Western blotting
Before mixing with the loading buffer, all operations were done

at 0–4uC. The cells treated according to experimental require-

ments were collected with trypsinization, washed with cold PBS,

then suspended in 1X PAGE loading buffer, and dissolved by

heating for five minutes at 90–100uC. When necessary, cells were

dissolved directly in dishes or plate wells with RIPA, then mixed

with the PAGE loading buffer. The cellular lysates were separated

on 10% SDS-PAGE with prestained molecular weight markers

(Fermentas). The protein bands in the gels were transferred to a

PVDF membrane (Millipore) using Trans-Blot Apparatus (Bio-

Rad) according to the manufacturer’s instructions. The mem-

branes were blocked in Tris-5% nonfat milk powder for 1 h, then

incubated in the milk solution with the primary antibody at room

temperature for 2.5 h or at 4uC overnight. This was followed by 2

washes of 10 minutes each in 5% nonfat milk, and then the

membrane was incubated with the horseradish peroxidase (HP)-

conjugated secondary antibody in 5% nonfat milk for 1 h at room

temperature. After 4 washes in Tris-buffered saline-Tween (TBS-

T), the blots were subjected to the Luminol chemiluminescence kit

(Santa Cruz) and detected with a LAS4000 System (FujiFilm).

Transient RNA transfection
RNA was transiently transfected into 7721 cells grown in

multiwell plates or 35 mm diameter dishes, using Lipofectamine

2000 (Invitrogen), according to the manufacturer’s instructions.

Transfections were done when the cells had grown to about 30–

50% confluence. The amounts of transfected RNA were

determined by the requirements of each individual experiment;

generally, about 0.5 mg RNA was used for each well of a 96-well

plate. For larger culture devices such as 24-well plates or 35-mm

diameter dishes, the amount of RNA could be as much as 5 mg for

each well or dish. The cells were subjected to Western blotting at

scheduled times (ranging from 1/2 h to about 42 h posttransfec-

tion); immunofluorescent and molecular beacon staining were

performed 24–48 h posttransfection.
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Immunocytochemical fluorescent and molecular beacon
staining

The cells (including RNA-transiently transfected cells) were grown

on microscopic coverslips placed in 12-well plates until they reached

about 80% confluence (24–48 h). Then the cells were washed twice

with PBS and fixed with 4% paraformaldehyde at room temperature

for 30 min, followed by a further wash with PBS. The cells were

treated with 0.5% Triton X-100 for 5 min,washed thoroughly with

PBS, and treated with 5% nonfat milk for 1 h. The blocked cells

were washed three times with PBS, with each wash lasting 5 min,

and the monoclonal antibody working against CK18 (Zymed and

Santa Cruz, 1:200) was added. The cells were incubated at 4uC
overnight. On the following day, the cells were washed with PBS

three times, with each wash lasting 10 min, then the FITC-labeled

secondary antibody(Zymed and Santa Cruz, 1:150–200)was added

and the cells were incubated at room temperature for 1 h. The

stained cells were washed three times with PBS, with each wash

lasting 5 min, stained with DAPI (Sigma) for 5 min, and washed

three times with PBS, with each wash lasting 5 min. Finally the

stained cells were sealed on their coverslips and observed.

The molecular beacon specific to C/EBPb 39UTR RNA

(sequence: 59-CAGCGAGCCGGGC- CCTGAGTAATCGCG-

CTG-39. Modification: 59:-HEX; 39: -DABCYL) was designed

and synthesized in Shanghai ShineGene Molecular Biotechnology

Co., China. The concentration of the molecular beacon used for

staining was 1–10 mg/ml; the concentrations for experimental and

control groups were strictly identical. The molecular beacon was

added to cells which had been fixed with a 4% paraformaldehyde

solution, and the cells were incubated at 75uC for 10 min followed

by incubation at room temperature for 1 h, then washed with PBS

three times, with each wash lasting 10 min, and treated with 5%

nonfat milk for 1 h. The immunofluorescent staining was done

subsequently as above. The molecular beacon-stained and

immunostained cells were observed in a Leica TCS SP2 Confocal

Microscope System (Leica Microsystems).

Protein kinase inhibition
Individual components from the SCREEN-WELL small protein

kinase inhibitors library (Enzo(Biomol)) were added, in various

concentrations according to relevant literature, to the culture

media of 7721 cells grown in 96-well plates. To improve cell

permeability, 50 mg/ml saponin (Merck; kindly provided by Rong-

Gui Hu) was added into the cell culture together with the

inhibitors. After scheduled times (1/2 h –42 h) the cells were lysed,

separated on PAGE and subjected to Western blotting to detect

CK18 and pCK18. Control Cl1 cells were cultured in the same

plate in the same medium without inhibitors.

In vitro protein kinase Ce activity assays
In the preliminary test of the activity of calcium- independent

PKCs, M-phase-enriched SMMC-7721 cells were homogenized at

0–4uC in a lysis buffer (50 mM Tris-HCl pH 7.5/10 mM MgCl2/

2 mM EGTA/0.01% Brij 35/0.2% dodecyl dimethyl betaine)

(Chu Xing Chemical Industries, Ltd., Shanghai)/1 X protease

inhibitor cocktail (AppliChem)/0.5–1 m/ml RNasin) and centri-

fuged at 12000 g for 30 min at 4uC. 10 ml of the supernatant was

mixed at 0uC with 1 ml of ATP mixture (2 ml H2O, 1 ml 1 mM

ATP/100 mM MgCl2, 3 ml 59[c-32P]ATP (10 mCi/ml, 3000 Ci/

mmol, Fu Rui Co., Beijing, China)) and 1 ml H2O or C/EBPb
39UTR RNA in increasing concentrations. The mixtures were

incubated at 30uC for 30 min, then PAGE loading buffer was

added and the samples were separated with SDS-PAGE, after

which the gels were dried and autoradiographed.

In the in vitro protein kinase Ce assay, one 100-mm dish of

SMMC-7721 cells at 70–80% confluence was cultured in 1640

medium without serum overnight, after which cell extract was

prepared by homogenization and centrifugation as above. Another

100-mm dish of SMMC-7721 cells, cultured in complete 1640

medium containing serum, was used to enrich CK18 using

Bronfman’s method (28): the E fraction obtained by this method

was centrifuged at 12000 g, and the precipitate was used for

enriched CK18. The two preparations were mixed at 0uC, okadaic

acid (Calbiochem) was added to 0.04 mM, and PMA (Calbiochem;

kindly provided by Xiao-Hui Zhang) was added to 0.5 mM. The

mixture was divided into Eppendorf tubes at 0uC, with 8 ml in

each tube, and 1 ml of 10 mM ATP/10 mM EGTA was added to

each tube. Then 1 ml of C/EBPb 39UTR RNA, or 1 ml of eV1-2

(kindly provided by Zhi-Qi Zhao), both in increasing concentra-

tions, were added to the respective tubes. The tubes were

incubated at 30uC for 20–25 min. The samples were mixed with

PAGE loading buffer, separated on 10% PAGE, and subjected to

Western blotting for pCK18 and CK18.

RNA binding-coupled co-immunoprecipitation
SMMC-7721 cells, grown in multiwell plates, were lysed at 0uC

in a keratin lysis buffer(1 X PBS pH 7.4,5 mM EDTA, 0.1 mM

PMSF, 1% protease inhibitor cocktail, 2% dodecyl dimethyl

betaine,0.04 mM okadaic acid) and centrifuged at 12000 g and

4uC for 15 min. 10 X Binding buffer (400 mM KCl, 30 mM

MgCl2, 100 mM HEPES pH 7.8, 10 mM DTT) was added to the

supernatant to form a final concentration of 1 X. The mixture was

equally divided into Eppendorf tubes, and C/EBPb 39UTR RNA

or control b-tubulin RNA (an 1.4 kb coding region segment in the

same volume with increasing concentrations) was added to each

tube respectively. After incubation at 4uC for 1 h, equal amounts of

anti-CK18 antibody were added to each tube, and the incubation at

4uC continued for 2.5 h. The antibody against IgG was then added

and incubation lasted overnight. The reaction mixtures were

centrifuged at 12000 g for 30 min at 4uC, the precipitates were

subjected to PAGE and Western blotting to detect CK18 and

PKCe. The bands of the IgG light chain at about 25 kDa from the

antibody against CK18 were used as an inner control.
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