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Abstract

Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial
role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from
environmental samples. Although numerous selective media have been developed in empirical studies, unintended
microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment.
Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and
antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints.
To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for
Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris.
The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective
media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three
notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target
bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also
our understanding of the ecology and epidemiology of the targeted bacteria.
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Introduction

Culture techniques have been indispensable to microbiological

research since the 1870s, when they were first established by Louis

Pasteur, Robert Koch, and other scientists. The method enables

researchers to proliferate and maintain microorganisms stably [1–3].

Among the media used for culturing, some possess a degree of

selectivity that enables simple, efficient multiplication of a specific

microorganism from samples with a large quantity of saprophytes;

these are called selective media [4,5]. Selective media can reliably

isolate pathogenic and commercially useful microorganisms. For

example, selective media have been used to isolate pathogenic

microorganisms in diagnostic medicine and to detect contamination

in food or water [4–6]. Moreover, selective media are efficient means

for growing fastidious microorganisms. Recent research has

demonstrated that previously unculturable environmental microor-

ganisms can be grown successfully in a pure culture without any

overgrowth of other fast-growing microorganisms [7,8]. Selective

media can recover target microorganisms from environmental

samples even if they are slow-growing on a medium. Due to their

usefulness, many selective media have been developed for various

microorganisms [4,5]. However, there are no design theories for

developing selective media, and each ingredient in selective media

has been determined using trial-and-error methods.

Selective media must have two functions: enabling the

proliferation of the target microorganism and suppressing

unintended microorganisms on the medium. The main challenge

is to suppress the growth of saprophytes in analyzed samples [5].

Enormous numbers of microorganisms exist in soil, plant tissues,

seawater, and other environments [9–14]. For example, the

number of species in 1 gram of soil has been variously estimated as

approximately 10,000 species [15], 10,000,000 species [16], and

2,000 species [17,18]. Even with metagenomic analyses, the

number of species in a soil community may be so large as to make

it impractical to analyze their sequences [19]. Therefore, it seems

difficult to culture a target microorganism selectively from among

numerous environmental microorganisms. In fact, most reported

selective media cannot inhibit the growth of untargeted environ-

mental microorganisms [5].

In this study, we explored how to determine restrictive culture

conditions for a target microorganism, Burkholderia glumae (Bgl). We

found that a selective medium could be made using two

constraints, and based on this, we established the highly Selective

Medium-design Algorithm Restricted by Two constraints

(SMART) method. Bgl is a causal agent of bacterial grain rot,

one of the most problematic diseases of rice [20]. We evaluated the

medium developed with the SMART method and compared it to

an existing selective medium. Next, we applied the SMART
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method to four other bacterial species; all of them could be

cultured selectively, suggesting the broad utility of the SMART

method. We also developed three new highly sensitive detection

methods derived from SMART media, and showed the usability of

the SMART concept.

Results

Comparison of the compositions of reported selective
media

The compositions of ten reported selective media are summa-

rized in Table S1, and categorized as 1) natural materials, 2)

carbon sources, 3) basal salts, 4) antimicrobials, and 5) colony

indicators (Table S1). Most reported selective media contain

natural materials (e.g., peptone and yeast extract). However,

synthetic media with no natural materials will suppress untargeted

microorganisms better than nutritive media containing natural

materials. We also found that media selectivity could be imposed

by a carbon source and antimicrobials because most media had

the same basal salt composition in common. Therefore, we

developed selective media based on non-natural material-derived

media containing two selective agents: a carbon source and an

antimicrobial. This strategy was named SMART for highly

Selective Media-design Algorithm Restricted by Two constraints.

Determination of the carbon source in SMART
To determine a sole carbon source that the target microorgan-

ism Burkholderia glumae (Bgl) can metabolize, each candidate carbon

source listed in Table 1 was added individually to basal synthetic

medium (detailed in the Materials and Methods section). The

growth of Bgl on each medium was tested, and its metabolizable

carbon sources were determined (Table 1). We also selected

metabolizable carbon sources for Bgl based on a metabolic

pathway map constructed using genomic information. Online

metabolism databases are currently available for a wide range of

microorganisms; we used the Kyoto Encyclopedia of Genes and

Genomes [21–23] or KEGG (http://www.genome.jp/kegg/).

PathComp in KEGG is a computational tool that proposes

possible reaction pathways between an initial and final compound

using information about the presence or absence of known

enzymatic reactions. With few exceptions [24], pathogenic

bacteria encode a complete gene set for the pentose phosphate

pathway, citrate cycle, and glycolysis pathway. Therefore, in this

study, a metabolizable carbon source was defined as a substrate

Table 1. Metabolizable carbon sources of Burkholderia glumae using experimental data and genome-based predictions.

Carbon sources KEGG entry ID Experimental data by colony formtaion Prediction by genomic information*

L-glutamate C00025 + +

glucose C00031 + +

glycine C00037 - +

L-lysine C00047 + +

L-aspartate C00049 + +

L-arginine C00062 + +

L-glutamine C00064 + +

L-serine C00065 + +

L-methionine C00073 + +

L-tryptophan C00078 + +

L-phenylalanine C00079 + +

L-tyrosine C00082 + +

sucrose C00089 + +

D-fructose C00095 + +

L-leucine C00123 + +

L-histidine C00135 - +

myo-inositol C00137 - -

L-proline C00148 + +

L-valine C00183 + +

cellobiose C00185 + +

L-threonine C00188 + +

L-sorbose C00247 + +

D-mannitol C00392 - -

L-isoleucine C00407 + +

pectate C00470 - -

ribitol C00474 - -

D-sorbitol C00794 + +

trehalose C01083 + +

*Metabolizable carbon sources were predicted using KEGG PathComp.
doi:10.1371/journal.pone.0016512.t001
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whose metabolic pathway links to alpha-D-glucose-6-phosphate,

the starting material of the pentose phosphate pathway (Figure

S1). The predicted results were in close agreement with the

experimental data (Table 1). For example, L-glutamate, glucose,

and 20 other substrates were identified as carbon sources

metabolizable by Bgl using both the computed and experimental

methods (Table 1).

To choose an optimal carbon source from these candidates,

their inhibitory effect on the growth of soil saprophytes was

calculated (Figure 1). Soil microorganisms were collected from

cultivated soil in a rice field where Bgl was isolated in practical

tests. The microorganisms were plated on basal synthetic medium

supplemented with each carbon source, and the number of

saprophyte colonies was counted on each medium. Of the 20

candidate carbon sources, D-sorbitol-supplemented basal medium

resulted in the fewest unintended colonies (i.e., it had the highest

rate of saprophyte growth inhibition; Figure 1). Therefore, D-

sorbitol was chosen as the optimal carbon source for selective Bgl

medium. The inhibitory ability of carbon sources against the soil

saprophytes in Figure 1 is ranked and summarized in Table S2.

The carbon sources used in SMART plays both roles of

energy source of the target bacterium and growth inhibitor of

saprophytes.

Determination of resistant antimicrobials in SMART
We selected another selective agent: antimicrobials to which Bgl

is resistant. D-Sorbitol-containing basal medium was prepared

containing each antimicrobial listed in Table 2 individually. The

growth of Bgl was tested on each medium, and its antimicrobial

resistance was determined (Table 2). The antimicrobial resistance

of Bgl was also predicted from its genomic information. The

increasing availability of bacterial genomic sequences enables the

prediction of the presence of antimicrobial resistance genes in each

genome, based on homology to characterized resistance determi-

nants [25–28] deposited in Entrez Gene in the NCBI databases

(http://www.ncbi.nlm.nih.gov/). As a result, we identified five

candidate antimicrobials for selective Bgl medium (Table 2).

Experimental data confirmed that Bgl strain used in this study was

resistant to four out of the five candidates: ampicillin, cephalexin

(Sigma), cetrimonium (Nacalai Tesque), and chloramphenicol

(Nacalai Tesque) (Table 2) though antibiotics resistance could

sometimes differ among bacterial strains. Because the mode of

action of cephalexin is similar to that of ampicillin [29], we added

only ampicillin, cetrimonium, and chloramphenicol to the

selective Bgl medium.

Evaluation of a new medium developed by SMART
A new selective medium named SMART-Bgl specifically

cultured its target bacterium Bgl, and the untargeted species tested

did not grow on it (Table 3). The composition of the medium is

shown in Table S3. Applying the medium to isolate bacteria from

diseased soil, only Bgl colonies (no other bacteria) were observed

on this new medium (Figure 2A). All of the bacteria recovered

were identified as Bgl using 16S rDNA sequencing analysis. In

contrast, unintended saprophytic colonies also grew on the

established selective medium [30] (Figure 2B). Therefore, a useful

medium can be designed by the SMART method.

In the SMART method (Figure 3), the optimal carbon source

for a selective medium is determined in two steps. First, when

genomic information on the target bacterium is available in

PathComp, metabolizable carbon sources are listed with Path-

Comp. Second, from the listed candidates, the carbon source with

the highest saprophyte inhibition rate is chosen by referring to

Figure 1 or the recommended carbon source list (Table S2).

Antimicrobials to which the target bacterium has possible

resistance in NCBI Entrez Gene are used in combination in the

medium (Figure 3). When no genomic information on a target

bacterium is available in PathComp or NCBI Entrez Gene,

information on related species is used to determine the carbon

source or antimicrobials.

Application of SMART to other plant-pathogenic bacteria
To test whether the SMART method is applicable to different

bacteria, we applied it to Acidovorax avenae subsp. avenae (Aav),

Pectobacterium carotovorum subsp. carotovorum (Pca), Ralstonia solana-

cearum (Rso), and Xanthomonas campestris pv. campestris (Xca).

Metabolizable carbon sources for these species were predicted

using PathComp (Table S4). Aav, Pca, Rso, and Xca are pathogens

of graminaceous, cruciferous, solanaceous, and cruciferous plants,

respectively. From among their candidate metabolizable carbon

sources, we selected L-methionine as the carbon source for Aav

because medium containing L-methionine had the greatest

inhibitory effect on the growth of soil saprophytes collected from

a rice field (Figure 1). Likewise, we selected trehalose, D-mannitol,

and glycine as carbon sources for Pca, Rso, and Xca, respectively.

Note that Pca could not metabolize glycine, which is the carbon

source with the greatest inhibitory effect on saprophytes in the soil

of turnip fields, so we chose the second-best candidate.

Figure 1. Growth inhibition of soil saprophytes among carbon
sources. Each bar indicates the growth inhibitory rate [(1 – the number
of colony forming units on each carbon source-added medium/the
number on a sucrose-added medium) 6100%]. Asterisks indicate that
the saprophyte inhibitory rate was less than that of sucrose.
doi:10.1371/journal.pone.0016512.g001
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Antimicrobials for selective media for Aav, Pca, Rso, and Xca

were selected using the NCBI Entrez Gene database (Table S5).

The final compositions are shown in Table S3. In addition to

SMART-Bgl for Bgl, we developed four other selective media in

this study: SMART-Aav for Aav, SMART-Pca for Pca, SMART-

Rso for Rso, and SMART-Xca for Xca. Each medium was

specifically designed to culture its target bacterium (Table 3). In

addition, the selective media is not strain-specific because 5 strains

of Xca (MAFF 106641, MAFF 106644, MAFF 211374, stock1-1

and NL7756) collected from different locations grew on it

(Table 3). Colonies of each target bacterium were observed more

clearly on the new medium after isolation from diseased soil

compared to those on reported selective media [31–36]

(Figure 2C–L). We confirmed that all of the bacteria recovered

with each new selective medium were the target bacteria using 16S

rDNA sequencing analysis.

Establishment of three new detection technologies
based on SMART

Each selective medium designed by SMART was highly specific

for culturing a target bacterium. This property enabled the

application of SMART media to three new detection strategies.

First, we substituted filter paper for agar and a Petri dish of plate

medium, and developed paper-based selective media, which saves

space and cost for bacterial incubation and detection. Inspectors

use the paper to detect bacterial contamination of food or soil,

saturating it with a suspension of a sample because the paper

selectivity inhibits the growth of untargeted microorganisms. After

comparing the agar and moisture concentrations during incuba-

tion, appropriate conditions for colony growth on paper medium

were determined (Table S6). When the specific paper medium was

saturated with a suspension of Bgl-inoculated soil (6.96103 cfu/g)

and incubated in a plastic bag, bluish-purple colonies of Bgl

formed on its surface (Figure 2M), whereas none grew when the

paper medium was saturated with a suspension of healthy soil

(Figure 2N). Similar results were obtained in at least eight

independent experiments. Colonies on the surface of the paper

medium proliferated when the paper fragment was cut and put in

Luria-Bertani broth containing ampicillin (10 mg/L).

The second application of SMART was liquid selective medium

(LSM). The compositions of each LSM are shown in Table S3. In

1 mL LSM, one Bgl cell multiplied to ca. 104 cells after 24 h

incubation (Figure S2A), while the number of saprophytes

collected from rice grains decreased to fewer than ten cells after

6 h selective incubation in LSM (Figure S2B). We also developed a

new system called SMART-FCM to quantify live specimens of the

target bacterium. SMART-FCM is a quantification system that

monitors increases in target bacteria using flow cytometry (FCM)

after incubation in LSM developed by SMART. To verify the

practical application of the proposed SMART-FCM technique,

we quantified bacterial cells after selectively incubating four types

of sample: one alcohol-sterilized rice grain; five healthy grains; ten

artificially Bgl-inoculated grains; and ten natural grains possibly

infected with Bgl. We also performed a plate counting assay with a

SMART-Bgl plate. To compare these two techniques, half of each

sample was analyzed using SMART-FCM and the other half was

analyzed using the plate counting technique. We defined a sample

Table 2. Antimicrobial resistance of Burkholderia glumae predicted by the NCBI database compared to experimental data.

Antimicorbial Name Reported Resistance Gene Name COG* Predicted Resistance** Experimental Data***

ampicillin beta-lactamase COG2367V R R

multidrug efflux pump acrB -

cephalosporine beta-lactamase COG2367V R R

cetrimonium quaternary ammonium
compound resistance protein

COG2076P R R

chloramphenicol chloramphenicol
acetyltransferase

- R R

multidrug efflux pump mdtC COG0841V

gentamicin aminoglycoside
phosphotransferase aac3

- S S

aminoglycoside
adenyltransferase aadB

-

neomycin aminoglycoside
phosphotransferase aac6

- S S

penicillin beta-lactamase COG2367V R S

polymyxin polymixin resistance
glycosyltransferase

- S R

streptomycin streptomycin
phosphotransferase strA

- S S

streptomycin
phosphotransferase strB

-

trimethoprim dihydrofolate reductase type I - S S

dihydrofolate reductase type X -

gramicidin hydantoin racemase - S S

*COG stands for clusters of orthologous groups of proteins (http://www.ncbi.nlm.nih.gov/COG/).
**R and S indicate resistant and susceptible, respectively.
***The concentration of antimicrobials added to the medium was 10 ppm.
doi:10.1371/journal.pone.0016512.t002
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with an FCM count of more than 102 as ‘‘positive’’ (grains infected

with the pathogenic bacteria). No false-positive result was obtained

with healthy grains and no false-negative was obtained with

artificially inoculated grains using either counting technique

(Table 4). Positive results were observed for three out of ten

natural grains with the FCM analysis, which concurred with the

results of the plate counting assay (Table 4). These results indicate

that SMART-FCM analysis is as accurate and sensitive as a

general plating assay.

We also developed a simplified detection method that monitors

increases in bacteria using the color change of medium (CCM)

supplemented with bromothymol blue. The color of LSM changed

from green to yellow when the concentration of a pure Bgl culture

exceeded 6.46102 cfu/mL before 24 h incubation (Figure S3A).

When analyzing Bgl-infected soils ranging from 0 to 68,800 cfu/g

soil, the color of the LSM changed when the density of Bgl

exceeded 1.66103 cfu/g (equal to 1.66102 cfu/mL) before 24 h

incubation (Figure S3B).

Discussion

Magnitude of the SMART approach
Currently, the use of a selective medium is the only way to

isolate a target microorganism from a complex environment such

as water (sea, river, or lake), soil, or seed surfaces. The major

difficulty in developing such media is to suppress the growth of

saprophytes in analyzed samples. Unintended microorganisms

grow on most reported selective media, which are sometimes

referred to as ‘semi-selective’ media [5]. In this study, we

established the SMART method, a novel strategy for designing

selective media that overcomes this problem. All five selective

media developed by SMART were highly specific for the target

bacteria, and effectively suppressed the growth of unintended soil

saprophytes (Figure 2 and Table 3). Although more than 1,000

species exist in 1 gram of soil [15–18], SMART media suppressed

these numerous saprophytes and grew the target species

selectively. The selectivity was surprisingly high, even compared

to previously reported selective media [30–36]. The breakthrough

in SMART is the concept of using two non-natural selective

agents: a carbon source and antimicrobials. A previous concept

developed a selective medium by adding antimicrobials to a

natural material-derived nutritive medium [4,5] because it is time-

consuming to determine an appropriate synthetic minimal

medium for the growth of a target bacterium. Due to the lack of

selectivity, unintended microorganisms usually grow on this type of

medium, even after it is supplemented with several antimicrobials.

In contrast, SMART provided the optimal path for determining

the composition of a selective medium.

In this study, we established the procedure for SMART,

comparing genome-based predictions with experimental data on

Burkholderia glumae (Bgl), and subsequently applied it to four other

phytopathogenic bacteria. We did not examine SMART on Gram-

positive bacteria in this study because most phytopathogenic

bacteria are Gram-negative. However, since SMART functioned

for all the five species tested, it should be applicable to other

bacteria, such as Gram-positive animal pathogens. From a

commercial perspective, SMART will enable the development of

isolation media for lactic acid bacteria, photosynthetic bacteria, and

other ‘‘effective microorganisms’’ (so-called EM) used for wastewa-

ter treatment [37]. SMART media can recover these useful bacteria

from environmental samples even if they are masked by an

overwhelming growth of saprophytes on regular media.

Applicability of genomic information to SMART
In the SMART method, there is no need to test all possible

combinations of carbon sources and antimicrobials manually to

develop a synthetic selective medium. Genomic information can be

Table 3. Bacterial strains used in this study and their growth on the selective media.

Species Strain
Growth on
SMART-Bgl

Growth on
SMART-Aav

Growth on
SMART-Pca

Growth on
SMART-Rso

Growth on
SMART-Xca

Burkholderia glumae MAFF 301441 + - - - -

Acidovorax avenae MAFF 301502 - + - - -

Agrobacterium rhizogenes MAFF 301724 - - - - -

MAFF 301725 - - - - -

Agrobacterium tumefaciens MAFF 301001 - - - - -

Burkholderia andropogonis Am - - - - -

Pectobacterium carotovorum MAFF 301394 - - + - -

Pseudomonas cichorii u1 - - - - -

u2 - - - - -

Pseudomonas syringae MAFF 301499 - - - - -

MAFF 301430 - - - - -

Ralstonia solanacearum chiba_tomato8945A1 - - - + -

kouchi_tomato3-2 - - - + -

Xanthomonas campestris MAFF 106641 - - - - +

MAFF 106644 - - - - +

MAFF 211374 - - - - +

stock1-1 - - - - +

NL 7756 - - - - +

MAFF; Ministry of Agriculture, Fisheries and Food of Japan.
doi:10.1371/journal.pone.0016512.t003
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used to select both the metabolizable carbon source and the

appropriate antimicrobials. Because genomic information is

accumulating rapidly with recent progress in DNA sequencing

technology [38,39], such information is increasingly available to

researchers. The predictions concerning these two factors were

highly consistent with the experimental data in this study (Tables 1,

2, S4, and S5). The disagreements between predicted and

experimental data could be classified into four patterns: (a) predicted

metabolizable carbon sources are non-metabolizable in practice

(e.g., glycine and L-histidine for Bgl in Table 1); (b) predicted non-

metabolizable carbon sources are metabolizable in practice (e.g.,

sucrose and L-sorbose for Acidovorax avenae in Table S4); (c) the

species is susceptible to antimicrobials it is predicted to be resistant

to (e.g., penicillin for Bgl in Table 2); and (d) the species is resistant to

antimicrobials it is predicted to be susceptible to (e.g., polymyxin). In

case (a), the disagreement probably resulted from a metabolic

pathway that is irreversible in vivo, even if it is predicted to be a

reversible pathway in silico [21–23]. In contrast, (b) involves a case in

which the bypassing pathway from carbon sources to the pentose

phosphate pathway and citrate cycle is still unknown [40]. In case

(c), the minimum inhibitory concentration of an antimicrobial was

below 10 ppm, which was the concentration of antimicrobials

added to the medium in this study, although the target bacterium

has slight resistance to the antimicrobial. Finally, in case (d), the

disagreement might have been caused by the presence of unknown

broad-range resistance mechanisms, such as multidrug efflux pumps

[41]. In screening carbon sources and antimicrobials, cases (a) and

(c) are not problematic because they do not result in overlooking

usable substrates. In contrast, usable candidate carbon sources and

antimicrobials are overlooked in cases (b) and (d), although only a

few such cases were observed in this study. Overall, the results

indicate that the optimal carbon source and antimicrobials for

highly selective media can be determined when researchers examine

two or three candidates based on genomic information.

Three notable detection techniques derived from SMART
We also demonstrated the applicability of SMART to

developing new detection systems based on its extreme specificity.

Figure 2. Comparison of colonies formed on selective media produced by SMART and previous methodologies. A suspension of
pathogen-inoculated soil was plated on both a SMART medium and an existing selective medium. Burkholderia glumae formed colonies on (A)
SMART-Glu medium and (B) CCNT medium, as reported by Kawaradani et al. [30]. Acidovorax avenae subsp. avenae formed colonies on (C) SMART-
Aav medium and (D) AAC medium, as described by Shirakawa et al. [31]. Pectobacterium carotovorum formed colonies on (E) SMART-Pca medium and
(F) CVP medium, as reported by Cuplles and Kelman [32]. Ralstonia solanacearum formed colonies on (G) SMART-Rso medium and (H) SM-1 medium,
as shown by Granada and Sequeria [33]. Xanthomonas campestris formed colonies on (I) SMART-Xca medium and (J) SM medium, as per Chun et al.
[34]; (K) on CCA medium, as reported by Mwangi et al. [35]; and (L) YTSA-CC medium, as shown by Tripanthi et al. [36]. Characteristic colonies of each
target bacterium formed, whereas no saprophytes grew on any of the media developed in this study (A, C, E, G, and I). Colonies of the target bacteria
are indicated by arrows in B, D, F, H, J, K, and L. On a paper-based selective medium, B. glumae formed colonies after isolation from diseased soil (M),
while none grew from healthy soil (N).
doi:10.1371/journal.pone.0016512.g002
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Using a paper-based selective medium and CCM, inspectors in the

field can detect the presence of a target bacterium without a clean

bench or other special equipment. In addition, these two methods

require much less space to incubate and maintain bacteria than

conventional plate media. In terms of the detection limit,

SMART-FCM and CCM can detect one cell of a pathogenic

bacterium per seed lot and 1.66103 cells per gram of soil within

24 hours, respectively (Table 4 and Figure S3). Specific PCR or

serological techniques are routinely used to inspect food and water

[4–6]. The sensitivity of SMART-FCM and CCM for detecting

microorganisms from environmental samples was much greater

than that of the PCR or ELISA methods, which are about 104 and

105 cells per sample, respectively [5,42,43]. Like all paper-based

media, SMART-FCM and CCM are also easy to use. Advanced

DNA-based methods have not yet entirely replaced traditional

culture tests in diagnostic laboratories because trained personnel

are needed for DNA extraction, electrophoresis, and other

procedures [5,44]. Because the SMART-derived detection

methods do not require complicated procedures, there is no need

for trained personnel.

To detect target microorganisms, techniques using FCM,

CCM, and paper-based media would be impossible without

SMART. Open-air handling of the detection methods is realized

because of the SMART-driven high suppression of environmen-

tal saprophytes. Selective media and derived techniques are

useful for agriculture, microbiology, clinical science, food

inspection, and other fields. The greatest advantage of the

SMART medium-design technique is its general applicability to

a wide range of bacteria unless they are naturally auxotrophic.

We believe that SMART theory will facilitate not only the

development of novel techniques for detecting specific bacteria,

but also our understanding of the ecology and epidemiology of

bacteria.

Materials and Methods

Carbon source screening using the KEGG database
Metabolizable carbon sources were predicted using PathComp

in the KEGG database (http://www.genome.jp/kegg/). After a

target bacterium was selected (‘‘search against’’), the ‘‘initial

compound’’ in Table 1 was inputted. Alpha-D-glucose 6-phosphate

(compound ID C00668) was selected as the final compound (cutoff

length 20).

Antimicrobial screening using the NCBI database
Resistant antimicrobials were predicted using Entrez Gene in

the NCBI genes database (http://www.ncbi.nlm.nih.gov/). Anti-

microbial resistance genes can be explored by entering ‘‘organism

name[ORGN] resistance gene name’’ (e.g., ‘‘Burkholderia glu-

mae[ORGN] beta-lactamase’’) in the search box.

Preparing medium
The compositions of the selective media for all of the bacteria

tested are shown in Table S3. All chemicals used for the media

were purchased from Wako Pure Chemical Industries, unless

otherwise indicated. To prepare selective plates, 15 g agar was

added to a basal salt solution containing Na2HPO4, KH2PO4,

NH4Cl, MgSO4, and FeSO4 and autoclaved at 120uC for 20 min.

After the solution was cooled to 55uC, 10 mL selective solution

containing the carbon source and antimicrobials was filter-

sterilized and then added to the basal medium. To prepare a

paper-based medium, filter paper (Advantec 5B) was saturated

with the basal medium mixed with selective solution, and air-

dried. To prepare LSM, a selective solution was added to the basal

medium and filter-sterilized. Bromothymol blue was added to the

LSM at a final concentration of 200 mg/L for diagnosis using

CCM.

Figure 3. Flowchart of the SMART method. An optimal carbon source and a combination of antimicrobials to which the target bacterium is
resistant should be chosen for designing a selective medium using SMART.
doi:10.1371/journal.pone.0016512.g003
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Soil supernatant
Soil samples were collected at a depth of 10 cm from

rhizospheric soil in turnip, tomato, and rice fields in Tokyo,

Japan. Bacteria were extracted from each soil sample using the

following procedure: 1 g soil was suspended in 10 mL distilled

water in a 50 mL centrifuge tube (BD Biosciences) and vortexed

for 10 min. After stationary incubation for 10 min at room

temperature, the supernatant was used to evaluate the medium as

a source of target bacterium and soil saprophytic bacteria.

Identification of bacteria by 16S rDNA sequencing
16S rDNA was amplified using universal primers 8f (59-

AGAGT TTGAT CCTGG CTCAG-39) and 1492r (59-GGTTA

CCTTG TTACGA CTT-39). Colony-PCR was performed using

the following protocol: initial denaturation at 96uC for 5 min,

followed by 25 cycles of 96uC for 1 min, 52uC for 40 s, and 72uC
for 3 min, with a final extension at 72uC for 7 min. Each 25-mL

PCR reaction consisted of 0.25 mL rTaq DNA polymerase

(TaKaRa), primers (5.0 mM each), and PCR buffer. PCR products

were sequenced using BigDye Terminator v3.1 Cycle Sequencing

Kit (ABI) with primers 8f or 1492r. Sequences were determined

with a 3130xl genetic analyzer (ABI). Forward and reverse

sequences were assembled using Seqman (DNAStar), and the

consensus sequences were obtained. The species were determined

by identifying those with the highest similarity to the consensus

sequence.

Calculation of the growth inhibition rate
Soil supernatant was spread on each carbon source-supple-

mented basal medium (Table 1). The number of colonies on each

medium was counted after 5 days of incubation at 30uC. The

growth inhibition rate was calculated as (1 – the number of

colonies on each carbon source-added medium/the number on

sucrose-supplemented medium) 6100%.

Incubation conditions of paper-based medium
A paper-based medium (263.5 cm) was saturated with soil

supernatant, and air-dried so that the bacteria adhered firmly to

the filaments of the filter paper. The paper was placed in a plastic

bag (7610 cm) and 100 mL distilled water was added to keep the

paper surface moist. After a 3-day incubation at 30uC, colonies

formed on the surface.

Bacterial cell counting with a flow cytometer
To enumerate the target bacterium in LSM, 100 mL LSM was

mixed with 1 mL ChemChrome V23 (AES Chemunex, France),

Table 4. Detection of Burkholderia glumae from healthy and infected rice grains using SMART-FCM and a selective medium.

Condition Sample number FCM counts** Counts on a selective plate***

sterilized grain* 1 20 0

healthy grain 2 25 0

3 15 0

4 15 0

5 0 0

6 5 0

artificially inoculated grain 7 1120 1

8 1355 1

9 2350 1

10 1005 2

11 5530 2

12 17280 4

13 2860 5

14 4520 5

15 55445 18

16 41360 20

possibly infected grain 17 35 0

18 1495 8

19 15 0

20 20 0

21 5 0

22 10 0

23 420 2

24 10 0

25 15 0

26 665 5

*Sterilized with alcohol.
**Microorganisms on rice grains were suspended in 1 mL LSM, and 500 mL LSM was incubated for 24 h and then the bacterial cells were counted using FCM.
***B. glumae in the other 500 mL LSM were counted using SMART-Bgl medium.
doi:10.1371/journal.pone.0016512.t004
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and the volume was increased to 1 mL with water. ChemChrome

V23 reacts only with live cells. These samples were analyzed using

a CyFlow (Partec, Germany) equipped with a 20 mm blue solid-

state laser operating at 488 nm. The green fluorescence emission

(FL1) of ChemChrome V23 (FCM count) was measured using a

band-pass filter at 525 nm (510–540 nm).

Growth curves of B. glumae and saprophytes in LSM
The fluctuation in the density of Bgl in LSM was measured as

follows. A small amount of Bgl (fewer than 20 cells) was incubated

with 1 mL LSM in a 1.5 mL tube. During 12 h incubation,

100 mL LSM-incubating Bgl was collected every 3 h (including a

starting point sample) and analyzed with CyFlow to count the

number of Bgl. The number of Bgl at each incubation period was

divided by that at 0 h, and a growth curve per Bgl cell in the LSM

was plotted. The density fluctuation of saprophytes incubated in

LSM was recorded as follows. A rice grain was used as a source of

saprophytes because Bgl is a rice grain pathogen. The microor-

ganisms on the surface of a healthy rice grain were suspended in

1.5 mL tubes containing 1 mL LSM using sonic disintegration.

After removing the rice grain, the LSM was incubated at 37uC.

The saprophyte density was measured using CyFlow 0, 3, 12, and

24 h after incubation, and a growth curve for the saprophytes in

LSM was obtained.

Detection of plant-pathogenic bacteria from infected rice
grains

To confirm the practical use of SMART-FCM, Bgl was detected

from rice grains. The microorganisms on rice grains were

suspended in 1 mL LSM using sonic disintegration. To compare

SMART-FCM to a plating method, half (500 mL) of the LSM was

incubated for 24 h, followed by FCM analysis. The other half of

the LSM (without incubation) was centrifuged at 50006g for

5 min at room temperature. After removing 400 mL supernatant,

the pellet was resuspended and plated on a SMART-Bgl plate.

Supporting Information

Figure S1 Part of the metabolic pathway map of
Burkholderia glumae. Reaction enzymes that B. glumae

encodes and does not encode are denoted by blue and red

arrows, respectively. B. glumae has a pathway from cellobiose,

trehalose, and D-fructose, but not from pectate to alpha-D-glucose-

6-phosphate. Therefore, an a priori methodology predicts that

cellobiose, trehalose, and D-fructose are metabolizable carbon

sources for B. glumae, while pectate is not.

(TIF)

Figure S2 Selective growth of Burkholderia glumae and
the repression of rice seed saprophytes in LSM. B. glumae

and saprophytes from rice grains were incubated in LSM and their

numbers were counted by FCM every 3 h. One cell of B. glumae

multiplied to approximately 104 cfu in LSM after 24 h. In

contrast, the number of saprophytes from a rice grain decreased

to below 10 FCM counts/mL after 6 h incubation.

(TIF)

Figure S3 Soil diagnosis of Burkholderia glumae infec-
tion using the CCM method. (A) B. glumae pure culture was

added to 1 mL LSM and the change in the color of the medium

was observed after 24 h incubation. The color changed from green

to yellow when the number of B. glumae exceeded 6.46102 cfu/mL

before incubation. (B) Samples (0.01 g) of soil were incubated in

1 mL LSM for 24 h. The number of B. glumae in each soil sample

was counted using SMART-Bgl medium before incubation. The

color of LSM changed from green to yellow when the density of B.

glumae exceeded 2.66103 cfu/g (equal to 26 cfu/1 mL LSM)

before incubation.

(TIF)

Table S1 Comparison of the compositions of reported
selective media.

(DOC)

Table S2 Recommended carbon source list.

(DOC)

Table S3 Compositions of the selective media devel-
oped in this study.

(DOC)

Table S4 Metabolizable carbon sources of four target
bacteria based on experimental data and genome-based
predictions.
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Table S5 Antimicrobial resistance predicted by the
NCBI database compared to experimental data.
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Table S6 Determination of the appropriate agar and
moisture concentration for colony formation on paper-
based medium.
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