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The nonlocal nature of the protein-ligand binding problem is investigated via the Gaussian Network Model with which the
residues lying along interaction pathways in a protein and the residues at the binding site are predicted. The predictions of
the binding site residues are verified by using several benchmark systems where the topology of the unbound protein and
the bound protein-ligand complex are known. Predictions are made on the unbound protein. Agreement of results with the
bound complexes indicates that the information for binding resides in the unbound protein. Cliques that consist of three or
more residues that are far apart along the primary structure but are in contact in the folded structure are shown to be
important determinants of the binding problem. Comparison with known structures shows that the predictive capability of
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Introduction

Ligand binding is generally known as a local process where the
binding molecule finds a suitable location on the protein that has
the right shape and the favorable energetic interaction [I].
However, observation of both short and long range conforma-
tional changes upon binding led to the suggestion that the full
topology of the protein should be taking part in the ligand binding
process [2]. According to this hypothesis, binding should depend
not on the local structure, but rather on an interaction pathway on
the protein that takes part in the collective reorganization of the
residues to accommodate for the best and most favorable
conformation of the protein-ligand complex. Numerous experi-
mental observations are in support of this hypothesis. The changes
in conformation in calcium binding proteins is cited in the first
comprehensive review of this phenomenon [3]. All experimental
evidence points out to the fact that the full topology of the protein
should take part in such rearrangements. Thus, the information
needed for determining the interaction pathway should somehow
be hidden in the topology. In the simplest case, a coarse grained
picture of the protein is satisfactory. The topology of the protein in
this case is represented by the connectivity matrix, or the contact
map, of the three dimensional structure, where the 1j’th element of
the matrix is unity if the ith and jth residues are in contact, and
zero otherwise. Several successful models of proteins exist at this
level of the topology, 1 e the residue based coarse grained topology.
One of them is the Gaussian Network Model [4] which uses the
connectivity matrix as its force constants matrix. In several recent
papers [5,6,7,8], using the GNM, we proposed a statistical
thermodynamics argument that leads to the determination of the
interaction path of the ligand binding problem. The method,
which we term as the ‘maximum eigenvalue method’ [9] is based
on determining the residues that exchange energy with their
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neighbors and the surrounding medium. In the present paper, we
give several examples where we show that these residues which are
closely associated with binding are located on paths of spatially
contiguous residues. The concept of interaction pathways or
networks in relation to ligand binding has been addressed from
different perspectives. Lockless and Ranganathan [10] suggested
that correlations between two residues resulting in energy transfer
among them lead to interaction paths and are evolutionarily
conserved. Nelson et al proposed a relation between long range
perturbations and the interaction path [11]. Pan et al [12] and
Amitai et al introduced the topological closeness measure as a
determinant of interaction paths [13]. Our approach is an addition
to this series of papers that emphasize the significance of topology
in binding. The prediction of binding sites based on GNM is
simple and easy to apply as demonstrated in the following
examples, using thirty benchmark systems, presented in Table 1
and in the Supplementary data. A new additional concept that we
introduce here is the ‘clique’, defined as a subset of three or more
pairs of vertices, with each pair being connected by an edge, i.e.
contacting (or interacting with) each other [14]. Cliques are
expected to have great significance in protein-protein or protein-
ligand interactions, as they are stiff regions, therefore likely to be
conserved throughout evolution. In our data set, cliques made up
of residue triads are identified since triads are frequently observed
as spatial forms in the active sites of the proteins. We show the
significance of cliques in relation to ligand binding.

Results

1. Human Heme-Oxygenase-1

The first system that we analyze is an oxireductase, Heme
oxygenase (HO) which is responsible for the degradation of heme
to biliverdin. In the heme bound state, Human heme-oxygenase-1
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Table 1. Six selected proteins from the test set.

Identification of Ligand Binding Sites of Proteins

FUNCTION NAME OF THE PROTEIN

PDB CODE/CHAIN ID

Ligand-free state Ligand-bound state

Oxireductase Human Heme-Oxygenase-1 1NI6/B 1N3U/B
Transferase Human glutathione transferase A1-1 1K30/A T1K3Y/A
Hydrolase Catalytic domain of Protein Tyrosine Phosphatase 1B 2HNP/A 1BZC/A
Ligase BC' Domain of Acetyl-coA Carboxylase2 (residues Val259-761Ala) 3GLK/A 3GID/A
Lyase Human Carbonic Anhydrase Il 2CBE/A 1A42/A
Ca*2-binding Protein S100A6 1K9P/A 1K9K/A

doi:10.1371/journal.pone.0016474.t001

(HO-1) arranges its helical shape with the help of highly
conserved, distal helix residues, so that it supplies flexibility to
accommodate substrate binding and product release [15]. Human
HO-1 has a dynamic active-site pocket, which is enlarged in the
apo state as distal and proximal helices surrounding the heme
plane move farther apart. In the holo form, the active site residues
Thr21, Val24, Thr23, Thr26, Ala28 and Glu29, which reside on
the proximal helix, and Tyr-134, Thr-135, Leu-138, Gly-139, Ser-
142, and Gly-143, which reside on the distal helix, are important
as they interact with heme [16,17]. According to the given crystal
structure (PDB Code: 1N3U), the binding site for heme in the B
chain contains the residues, Lys18, His25, Glu29, GIn38, Tyr134,
Thr135, Gly139, Lys179, Phe207, Asn210 and Phe214. Phe207,
Asn210 and Phe214 also lie on the proximal side of the active-site
pocket. Below, we show that these specific features can be
identified by applying the GNM to the apo form of the protein, i.e.
INI6.pdb.

Figure la shows the total correlation, (7, of a given residue,
presented as the residue index along the abscissa, obtained by using
INI6.pdb. Figure 1b is the contour plot of the distance fluctuations
where the residues that exchange energy with the surroundings are
identified with a darker hue. The heavy vertical strip shows that the
residues 118-124 interact with all the residues of the protein.

In Figure 2a, the ligand and the residues on the interaction
path, i.e. the set of residues with non-zero values of Cz; are shown
in yellow and green, respectively. Figure 2b is an enlarged version

A B

of figure 2a. Residues between 17 and 29 constituting the active
site residues exhibit non-zero values of €'z The path that connects
the surface to the heme starts with Leul7 and Glu23 at the surface
and ends at His25 that neighbors the heme. The path is colored in
red and the mentioned residues are labeled in Figure 2b. Residues
53-66 lie on helix H4 that contains the catalytic site Tyr38. The
appearance of this region in Figure 1a is mostly due to its stability,
resulting from hydrogen-bonded and electrostatic pair interactions
with neighboring helix and loop structures such as Tyr58-Asp140,
Glu62-Arg86, and Glu66-Tyr78 [18,19]. Similar to the Leul7-
His25 path, the residues between Pro109 and Thr135 form a path,
one end of which is at the surface of the protein and the other with
Tyr134 and Thrl35 terminates at the heme.

The path that is lined by residues Pro109-Asp140 is colored in
blue in Figure 2b. Finally, the largest peak corresponding to
Ala203, which we define as the hub residue, and the second largest
peak corresponding to Phe207, seen in Figure la, identifies the
two residues neighboring the heme. The group of residues
between Vall99 and GIn212 are represented as the green path,
most of which neighbor the heme molecule. All of the residues
observed in Figure la are obtained from the apo structure,
indicating that the information for binding is already present in the
unbound structure.

The residues with non-zero total correlation values and that are
in contact with the ligand, are presented in Table 2. The
interaction path residues that are identified in Figure 2 are also
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Figure 1. Important residues of human 5-I0-1 predicted with GNM. a) Total correlation C; of residues as a function of residue indices. b)
Contour plot of distance fluctuations <(AR,~j) > of 1NI6.pdb. Highest values indicated by black.

doi:10.1371/journal.pone.0016474.g001
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Figure 2. Three dimensional structure of one chain of human HO-1 chain. a) with Heme (yellow), interaction path (green) and the cliques
(pink). b) Enlarged version showing interaction path residues and cliques (pink) with their labels. Green dashed line represents the hydrogen bond

between Gly144 and Asp140.
doi:10.1371/journal.pone.0016474.9g002

presented in Table 3. Tabulating all the residues that lie on the
pathways would lead to excessive detail. Therefore only residue
pairs on the pathway separated by less than 7.2 A are shown.
Because of this, some of the residues cited in the text may not
appear in Table 3, which we are presenting to supplement the
information given here. The hub residues are identified in Table 3
with yellow highlight. As will be seen from Figure 2 and the
following ones, the interaction paths do not consist of a single well
defined line of contiguous residues, but rather of several
bifurcating paths. Therefore, it is not possible to uniquely identify
two extremities to an interaction path. The residues at the multiple
extremities of the paths are defined as the gate residues.

Cliques of size three are shown in pink in Figure 2b. These are
obtained at cut-off 6.2 A, as 33Phe-214-Phe-218GIn and Gly144-
Lys148-Phel67. The first triad is located on the proximal side while
the latter lies on the distal side of the Heme molecule referring to the
proximal and distal helices that sandwiches the Heme molecule
upon binding[15]. Phe214 is a binding site residue while Gly144 is a
highly conserved, catalytic residue [20]. Cliques obtained by a cut-
off distance of 6.2 A account for more than 50 percent of the highest
conserved cliques of the proteins studied. In Table 4, residues with
highest conservation for the six proteins that we present here are
shown. These are obtained from the residue conservation data in
PDBsum [21]. Among these, the highlighted residues are those
belong to cliques of size three obtained by the 6.2 A cut-off.

2. Human glutathione S-transferase

Glutathione S-transferases (GSTs) are involved in the catalysis
of xenobiotics, carcinogens and conjugations with endogenous

Table 2. List of contacting residues.

ligands. In addition, they can perform a variety of functions in
metabolic pathways, which are not related with detoxification,
such as the intracellular storage or transport of a variety of other
hydrophobic, non-substrate compounds including hormones,
metabolites, and drugs. Besides, due to the elevation of GST
levels in tumor cells, they have been the focus of significant interest
with regard to drug resistance [22,23,24,25,26]. In three-
dimensional structures, a tyrosine or a serine has been shown to
be central in catalysis [22,23,26,27]. In addition, the side chain of
Argl) is thought to be involved in the inner coordination sphere of
the sulfur[27].

Figure 3a shows the total correlation, Cof residues. Figure 3b is the
corresponding distance fluctuation correlation contour plot. The chain
A of unbound crystal structure, 1K30O.pdb was used for calculations.
Both chains are identical in sequence and in three dimensional
structures, so are the ligands they bind. According to the given ligand-
bound crystal structure 1K3Y.pdb, the binding site residues for S-
hexyl-glutathione (GSH), are Tyr9-Arg45-GIn54-Val55-Pro56-GIn67-
Thr68-Vall 1 1-Met208-Leu213-Phe220-Phe222 (chain A) and Ap101
-Argl131 (chain B). In this structure, GST binds two glycerol molecules,
as well.

In Figure 4a, GSH and the residues on the interaction paths are
shown in yellow and green, respectively. Figure 4b shows all of
identified residues in detail. In Figure 4b, red colored residues line
a path starting with a surface residue, Lys64 and ending with the
binding site residues Tyr9 and Pro56, which is the hub residue.
Tyr9 is conserved among the majority of known GSTs and it is
emphasized as an important catalytic residue in literature
[22,23,27,28]. The three-dimensional structures have shown that

1N3U/B 1K3Y/A 1BZC/A 3GID/A 1A42/A 1K9K/A
PHE207ASN210 TYR9 ARG15ARG45 CYS215SER216ALA217 GLU593 ILE649 GLN92 HIS94 THR28 GLU33 ASP61 ASN63
PHE214 GLN54 VAL55 GLN67 GLY218ILE219 GLY220 ASN679PHE704 HIS96 GLU117 ASP65 GLU67

THR68 ARG69 ARG221GLN262 HIS119

doi:10.1371/journal.pone.0016474.t002
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Table 3. List of residue pairs along the interaction paths and the distances between them.
1N3U/B 1K3Y/A 1BZC/A 3GID/A 1A42/A 1K9K/A
i j dist i dist i j dist i j dist i j dist i j dist
17 200 57 6 58 56 70 82 54 501 519 56 95 116 68 28 67 60
17 203 70 6 59 50 70 83 53 501 520 44 95 117 55 28 68 52
21 203 70 6 60 69 70 84 66 501 521 6.1 95 118 45 29 67 55
24 207 60 7 57 63 81 211 51 519 532 66 % 116 55 29 68 54
25 207 6.1 7 58 47 81 212 62 519 533 53 % 117 53 31 60 53
31 211 66 7 59 66 81 213 70 519 534 46 % 118 67 31 63 64
31 214 63 8 34 61 82 211 59 519 535 53 9% 245 55 31 64 46
53 111 59 8 55 69 82 212 46 520 533 52 98 115 63 31 67 62
55 89 56 8 5 60 82 213 60 520 534 65 98 116 67 31 68 66
56 111 7.1 8 57 54 83 212 59 520 535 7.1 102 114 63 35 60 63
56 115 68 8 58 62 83 213 49 531 649 68 102 115 58
57 114 69 9 34 55 83 214 58 531 650 56 103 114 58
57 115 57 9 55 62 8 219 70 531 651 46 103 115 52
60 115 59 9 56 56 83 222 68 532 649 6.0 104 114 6.1
60 118 62 15 56 69 84 212 70 532 650 5.1 104 115 48
60 119 64 15 68 7.1 84 213 62 532 651 65 104 116 46
61 118 60 16 56 62 84 214 50 533 648 56 104 117 70
64 119 63 19 72 64 84 217 66 533 649 47 104 245 6.1
64 122 49 24 193 65 85 214 56 533 650 6.1 105 115 60
111 213 66 24 194 68 85 215 63 534 595 7.0 105 116 45
114 209 58 25 193 53 85 216 53 534 647 59 105 117 47
128 199 50 25 194 52 85 217 41 534 648 53 105 147 68
128 202 64 5 66 69 8 214 59 534 649 68 105 245 65
131 199 59 55 66 68 8 215 58 535 647 65 114 147 62
131 200 7.0 56 66 60 8 216 49 595 647 64 114 148 62
131 202 59 56 67 69 86 217 64 647 706 54 114 149 57
131 203 48 56 68 7.0 104 211 55 647 707 52 115 148 58
132 203 64 104 212 68 647 709 53 115 149 53
132 206 62 106 211 53 647 710 55 116 147 60

106 212 66 647 713 6.1 116 148 50

107 211 59 648 704 65 116 149 70

107 212 49 648 705 53 117 145 65

107 213 59 648 706 44 117 147 46

108 175 60 648 707 65 117 148 58

108 212 62 648 713 60 118 145 56

108 213 45 649 704 57 118 147 64

108 214 6.1 649 705 52 148 217 56

109 175 47 649 706 6.6 148 218 65

109 213 62 649 713 62 149 217 50

109 214 52 649 714 67 149 218 63

109 215 57 650 703 57

110 175 6.1 650 704 44

110 214 62 650 705 6.4

110 215 49 651 703 54

110 222 67 651 704 65

219 261 6.1 680 703 69

220 261 41 680 704 56
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Table 3. Cont.
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1N3U/B 1K3Y/A 1BZC/A

3GID/A 1A42/A 1K9K/A

i j dist i j  dist i j  dist

i i dist i i dist i dist

224 261 6.0

680 705 4.3
680 706 6.3
680 716 6.9
680 717 6.8
680 720 6.8
705 716 6.3
705 717 5.4

Residues shown in bold are the hub residues.
doi:10.1371/journal.pone.0016474.t003

the hydroxyl group of Tyr9 stabilizes the thiolate of GSH through
hydrogen bonding [27]. Similarly, residues Leu50-Pro56 (also
shown in red) form a shorter path, which has one end at the
surface and the other end at the binding site. Three highly
conserved residues GIn54, Val55 and Pro56, which also interact
with the ligand via hydrogen bonds, play significant roles in the
stability and function of the protein [29,30]. Argl5 and Metl6 are
also interacting with the residues on the Tyr9 path. Argl) is
mentioned as an important active site residue in literature as
well[31]. The residues between GIn67 and Tyr74 form another
path, which is represented as the green path in Figure 4b, begins at
the surface and ends where GIn67 and Thr68 are positioned to
participate in hydrogen bonds with the amino group and Y-
glutamyl carboxyl group of glutathione, respectively [32]. It
involves five conserved residues GIn67, Thr68, Ala70, Ile71 and
Tyr74[33]. A member of this path, Arg69 makes three hydrogen
bonds with the second glycerol molecule.

The remaining binding site residues are situated on helix 9,
which is known to be highly dynamic. Since, the region is assumed
to become structured and localized upon ligand binding
[28,34,35], its electron density is unresolved for apo human
GST Al-1[36,37]. Therefore, the binding site residues between
Glu210-Phe222 do not appear in Figure 3a.

The residues Ala24 and Vall94 display relatively high total
correlations. They belong to two different secondary structures
and are in contact with each other. Yet, in literature there is no
comment on their contribution to the structure and function of the
protein. These two residues are not shown in Figure 4b.

Cliques of size three, at cut-off 6.2 A, are found as I1e92, 1le96
and Alal56 which are located near the interface of chain A and
chain B. These three residues are shown in pink in Figure 4b.

Table 4. Residues with high conservation.

Unlike 1le92 and 11e96, Alal56 is a highly-conserved residue[33].
11e96 is at the glycerol binding site and hydrogen-bonded to the
first glycerol. (Figure 4b).

3. Tyrosine phosphotase.

The protein tyrosine phosphatases (PTPs) work complementa-
rily with protein tyrosine kinases in regulating signal transduction
pathways which control many physiological processes, such as cell
growth or cell differentiation[38,39]. Protein tyrosine phosphatases
display a great diversity both in structure and mechanism and they
are recognized by the motif HCX5R at their active sites, with an
essential cysteine residue (Cys 215 in PTP1B)[40,41].

As seen from Figure 5a, the residues in between His214-Ser222
exhibit the highest total correlation, C'7; where His214 is the hub
residue. This group of residues is also observed in Figure 5b, the
distance fluctuation matrix contour plot, to form a dark strip,
implying that they are correlated with rest of the residues. The
catalytic domain of PTPIB is composed of a single o/ domain,
structured around a highly twisted B-sheet which spans the entire
molecule. A-well known catalytic residue Cys215 is located on the
loop that stays at the edge of this B-sheet. The His214-Ser222
region, which appear in total correlation plot (Figure 5a), indeed
corresponds to the catalytic region of the protein [42]. In PTP1B,
the residues His214, Cys215 and Ser 216 have central roles in the
activation of the active-site [43]. Cys215 is emphasized as an
important catalytic residue in literature [40,41,43]. In the inset of
Figure 5a, the small peaks around the residues Arg45, Pro5l,
Tyr66-Asn68, Leu83-Gln85, Metl09, Lys120, Thrl54-Argl56,
His175 and GIn262 can be seen. In addition to His214-Ser222
region, these mentioned residues draw an interaction path, which
is shown in green in Figure 6a, around the ligand, which is shown

1NI6: 129,130,131,132,133,134,135,136,137,138,139
1K30: 2,13,23,56,67,68,70,71,140,150,154,156,157

1K9P: 16,20,29,33,61,65,72

2HNP: 40,43-45,51,56,57,59,66-70,82,83,85,87,91,94-96,98,107,109,124,126,179,185,213-218,220-223,250,254,257,262,266

3GLK: 267-270,274,298,300-303,305-307,311,315,321,328,329,352,355,356,36 1, 373,374,384,448,450,454-456,458,490,492,500,501,504,508,517,518,521,524,
528,529,535,562,565,567,580,582-584,586-590,592-594,601,604,675,683,700-702,704,716

2CBE: 5,16,28-30,61,63,96,98,105-107,117,119,121,122,186,194,196-201,203, 205, 207, 209, 222, 244, 246,249,254,259

Clique residues obtained by cutoff 6.2 A are shown in bold.
doi:10.1371/journal.pone.0016474.t004
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Figure 3. Important residues of human GZST A1-1 predicted with GNM. a) Total correlation Cr of residues as a function of residue indices. b)
Contour plot of distance fluctuations <(ARU) > of 1K30.pdb. Highest values indicated by black.

doi:10.1371/journal.pone.0016474.9003

in yellow in the same figure. In Figure 6b, the ligand and the
interaction path is depicted in more detail and all residues with
non-zero total correlation, (7, are labeled. All these residues are
mentioned in literature. To start with, Arg45 sits in the loop where
phospho-Tyr recognition occurs, with Pro51, a clique residue
(shown in pink in Figure 6b). Being located in the binding site of
PTPIB, Arg45 is also responsible from the electrostatic attraction
of the ligand. Asn68 makes a hydrogen bond with Asn44 and it is
located near a highly conserved residue, Arg257. Leu83 packs or
surrounds the PTP loop (residues 213-223) where GIn85 makes a
hydrogen bond with a highly buried water molecule. Residues
11e82-Pro87 (not shown in Figure 6b) form the core structure that
surround the PTP loop. Residues around Metl09 form the
hydrophobic core structure and they are less conserved compared
to the Ile82-Pro87 motif. Lys 120 is another binding site residue,
which H-bonds to Ser216 and interacts with Asp181 (not shown in
Figure 6b), known as a general acid catalyst among the vertebrate
PTPs. Argl56 is conserved more than %80 among all vertebrate
PTP domains. His175 is found in the surface exposed WPD loop
(residues His 175-Val 184), where a major conformational change

B

ILE 92

ALA %}E 96 A
. " ‘ /

ARG 157 TYR ofF

takes place upon binding of phosphopeptides to the PTP loop. The
PTP loop then, moves several angstroms to close the active site
pocket and trap the bound phosphotyrosine [44]. The WPD loop
is also not shown in Figure 6b. GIn262 is also actively involved in
ligand-binding process [43].

Cliques of size three are found as Pro51-Ser70-Arg257 and
Gly86-Cys121-Ser216 at cut-off 6.1 A, all of which are highly
conserved (pink residues in Figure 6b). The first triad is located
around the active site; Pro5l is on the phosho-Tyr recognition
loop and Arg257 is on the loop Leu250-Leu267 that spans the
active site [43]. Arg257 makes a hydrogen bond with the PTP loop
and also believed to be involved in stabilization of the nucleophilic
nature of the active site cysteine, Cys215[36]. Cys121, another
clique residue is interacting with Cys215, as well[36]. It has been
previously reported that Cys121 in PTPIB is a highly nucleophilic
group accessible and ready for covalent attachment of 1,2-NQ),
which is a known inhibitor of PTPIB. It causes considerable
reduction in dephosphorylation activity of PTP1B. Moreover,
Cys121 was reported as a non-active site cysteine residue, but it sits
on an allestoric site, where it can inhibit the enzyme activity

d_LYS 64

/ GSH

Figure 4. Three dimensional structure of one chain of human GST A1-1 chain A. a) with S-benzyl-glutathione (yellow), interaction
path(green) and cliques (pink). b) Enlarged version showing interaction path residues and cliques (pink) with their labels. Dashed lines are the

hydrogen bonds.
doi:10.1371/journal.pone.0016474.9g004
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Contour plot of distance fluctuations <(AR;,-) > of 2HNP.pdb. Highest values indicated by black.

doi:10.1371/journal.pone.0016474.g005

through specific mechanisms [35,45]. There are a number of PTPs
in which Cys121 (90%) is highly conserved [44]. Ser216 lies on the
active site and functions in the activation of Cys215[43].

All of the residues observed in Figure 5 and Figure 6 are
obtained from the apo structure, 2HNP.pdb.

4. Biotin Carboxylase Domain of Acetyl-CoA
Carboxylase 2

Acetyl-CoA Carboxylase (ACC) is responsible from the biotin-
dependent synthesis of malonyl-CoA, through its catalytic
domains, biotin carboxylase (residues Val259-761Ala) and
carboxyltransferase (residues Leul809-Gly2305). [46] Since it
has a crucial role in fatty acid metabolism, ACC has become a
target for therapeutic intervention against the treatment of diseases
such as type II diabetes, cardiovascular diseases and atheroscle-

rosis, metabolic syndrome in general, and in the control of
obesity[47,48,49,50]. Acetyl-CoA Carboxylase 2 (ACC2) in

B

mammals is expressed in the heart and skeletal muscle cells where
it regulates the fatty acid oxidation via its malonyl-CoA product
[50,51,52,53,54]. Therefore, the inhibitors of ACC2 may be used
as novel anti-obesity drugs or therapeutic agents against the
metabolic syndrome[50,51,52,53,54,55]. Among currently known
small potent inhibitors of mammalian ACCs, only Soraphen A
binds to an allosteric site which is about 25 A distant from the
active site of the biotin carboxylase (BC) domain[56,57].Soraphen
A interacts extensively with the BC domain where it is in contact
with highly conserved residues [50].

In its crystal structure, (PDB code: 3GID), where Sarophen A is
bound to the human ACC 2, the binding site residues are given as
Lys274-Ser278-Arg277-Glu593-Met594-Asn599-Asn679-Trp681-
Phe704-Trp706. Figure 7a shows total correlation, (7 as a
function of residue index and the residues between Phe704—
Ser715, exhibit non-zero values of (7, obtained by using
3GLK.pdb. Figure 7b is the contour plot of the distance
fluctuations. Residues that exchange energy with the surroundings

VAL 155

THR 15%Bm«s 156
A-adls 175

MET 109

Figure 6. Three dimensional structure of one chain of human PTP 1B. a) with TPI (yellow), interaction path(green) and cliques (pink). b)
Enlarged version showing interaction path residues and cliques (pink) with their labels. Dashed lines are the hydrogen bonds.

doi:10.1371/journal.pone.0016474.9g006
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Figure 7. Important residues of BC domain 2of ACC2 predicted with GNM. a) Total correlation Cr of residues as a function of residue indices.
b) Contour plot of distance fluctuations <(ARl-j) > of 3GLK.pdb. Highest values indicated by black.

doi:10.1371/journal.pone.0016474.g007

are shown in black. The intense vertical strips indicate that the
residues around GIn504, Glu533, 11e649 and Ala713, which is the
hub residue, are able to communicate with the rest of the protein.

Figure 8a shows the ligand, Soraphen A, in yellow and the
interaction path in green. Figure 8b, is a more detailed version of
Figure 8a where all identified residues are labeled. As it can be
seen from Figure 8b, Glu711, a surface-exposed residue, sits where
the green path starts. This green path terminates at Phe704 and
Val648, which is also a clique residue (shown in pink in Figure 8b).
Phe704, with Ser705 and Trp706, surrounds the ligand. Ile649
and Asn679 are located around the Phe704—Ser715 path. Ile649
appears with the second highest C7 value, according to Figure 7a.
The blue path (Figure 8b), which starts with Arg710, involves
Glu533, Argbl9 and ends with GIn>04. Glu533 is a well-
conserved residue[33]. There are small peaks around the 500"
and 520" residues, which may correspond to the residues GIn504
and Arg519, lying in blue path. These two residues are known as
catalytic residues in ACC2 [33,58].

In this paper, we present no more than the fastest mode results
for total coupling of residues. Yet, we checked the results for the

second and the third fastest modes and identified new paths of
same kind which extend from surface to the ligand binding (active
site) pocket. For instance, residues around Ser278 show the highest
total correlation values in the fastest third mode. Lys274, Ser278
and Arg277 indeed stabilize the ligand via hydrogen bond
formation[33]. Results for the second mode are presented in the
inset of Figure 7a. Yet, these residues are not shown in Figure 8b.
We will present the contributions from higher modes in detail in
our future work.

Cliques of size three, at cut-off 6.1 A, are found as Ala534-
Cys591-Val648 and Val648-Ser705-Ala713. Clique residues
which are shown in pink in Figure 8b, reside either in close
proximity or within the active site pocket, most of which fall on the
interaction paths. All clique residues are highly conserved
residues|33].

5. Human Carbonic Anhydrase I

Carbonic anhydrases are found almost in all organisms, and
they are used as catalysts in reversible hydration of carbon
dioxides. Zn*? jons are essential for their catalytic activity which

Figure 8. Three dimensional structure of BC domain of ACC2. a) with Soraphen A (yellow), interaction path (green) and cliques (pink). b)
Enlarged version showing interaction path residues and cliques (pink) with their labels. Dashed lines are the hydrogen bonds.

doi:10.1371/journal.pone.0016474.g008
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Figure 9. Important residues of Carbonic anhydra}se Il predicted with GNM. a) Total correlation Cr of residues as a function of residue
indices. b) Contour plot of distance fluctuations <(AR,-j) > of 2CBE.pdb. Highest values indicated by black.
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can bind four or more ligands in carbonic anhydrases. Three
coordination sites are occupied by the imidazole rings of the His
residues and the forth coordination site is occupied by a water
molecule or a hydroxide ion [59]. Carbonic anhydrase II, which is
a major element of red blood cells, is one of the most active
carbonic anhydrases and has been the most widely studied. It has
evolved as a proton shuttle with the primary component His 64
[59]. The catalysis of carbon dioxide hydration by carbonic
anhydrase, so the reaction rate, depends heavily on pH. The
enzyme is more active in high pH values [59].

In its crystal structure (PDB code: 1A42), human carbonic
anhydrase II is complexed with the drug used for glaucoma
therapy, the sulfonamide inhibitor brinzolamide. The given
binding site residues are His64-GIn92-His94-His96-His119-
Vall21-Phel31-Vall35-Leul98-Thr199-Thr200.

Residues between His96-His107, Tyrl14-Hisl119, Phel47—
Lys149, Ser217-Val218 and Asn244—Arg246 exhibit non-zero values
of total correlation according to Figure 9a. These residues interact
with all residues of the protein, referring to the contour plot of the
distance fluctuations given in Figure 9b. These two plots are obtained
using the unbound structure of the protein. (PDB code: 2CBE).

B

In Figure 10a, the ligand and the residues on the interaction paths
are shown in yellow and green, respectively. Figure 10b depicts all of
identified residues in detail. The first path, which is colored in green
in Figure 10b, has one end at Ser217-Val218 and Lys149, and the
other end at His119. The blue path starts with Alall5 and ends
where the two paths are merged by the H-bonds Glul06 and
His107 make with Glul17. Through the path Alal15 also interacts
with Glyl04 via hydrogen bonding. Ser105, which is the hub
residue, links Gly104 with Glul06 and His107. The purple path has
surface exposed Ser99 at one end and terminates at His96, which
interacts with the Zn*? ion that is directly bound to the ligand
(Figure 10b). Indeed, the active site cleft is characterized by this
Zn*? ion which is tetrahedrally coordinated by N atoms of three
histidine residues His94(not shown in Figure 10b), His96 and
His119 and a water/hydroxide molecule [60]. Ser105 and Glul17
are within the 10 residues that are completely invariant among the
whole family of a-CAs and o-CA-related proteins. Serl05 is
involved in stabilizing the protein structure, while Glul17 function
as an indirect ligand in the active enzyme [61]. Asn244 and Arg246
are two conserved residues, (colored in purple in Figure 10b) which
also neighbor the ligand [33].

SER99 PHE 231

LYS 170

Figure 10. Three dimensional structure of Carbonic anhydrase Il. a) with Brinzolamide (yellow) and Zn+2(orange), interaction path (green)
and cliques (pink). b) Enlarged version showing interaction path residues and cliques (pink) with their labels. Dashed lines are the hydrogen bonds.

doi:10.1371/journal.pone.0016474.g010
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Cliques of size three are calculated at cut-off 6.1 A. The residue
triads His96-Glyl04-Alal16 and Gly63-Lys170-Phe231 appear
around the catalytic site of the protein (pink residues in Figure 10b).
His96 is an important residue which interacts with the Zn*? ion
during the catalysis. Gly104 and Alal16 are located in a conserved
region, which involves Ser105 and Glull7 [61]. Gly63 is next to
His64 which acts as a protein shuttle during catalysis[59]. The side
chain of Lys170, the closest of all other residues to the pathway for
protein transfer with His64 in the outward orientation [62]. It is
believed that one function of Lys170 is to maintain an
environment of His64 that maximizes protein transfer and
catalysis of the hydration of CO, and dehydration of bicarbonate,
by keeping it in its outward orientation [63]. In the outward
conformation, the imidazole ring of His64 heads out of the active
site cavity and the hydrophobic residue Phe231 is located near that
cavity.

6. S1T00A6

S100 proteins are small dimeric proteins which belong to the
EF-hand family of calcium-binding proteins. They are character-
ized by a pair of calcium-binding sites each having the helix-loop-
helix structural motif. Upon calcium binding, the conformation of
the protein changes through a hand-type motion, which renders
the angle between the helices of EF2 from negative to positive
[64].

The expression of S100 proteins is cell and tissue-specific. Most
S100 genes are localized within human chromosome 1q21[65], a
region which is susceptible to changes during tumor progression in
transformed cells. [66] The expression of the SI00A6 gene, is
particularly increased in leukemia cells [67] and during the Gl
phase of the cell cycle [68], which implies its role in cell cycle
progression. Experiments at the protein level also show that
S100A6 may be involved in cell growth, cell differentiation and
motility [69,70,71,72].

In the crystal structure of human S100A6 (PDB code: 1K9K),
binding sites for Ca*? ions are given as, Ser20-Glu23-Asp25-Thr28-
Glu33 and Asp61-Asn63-Asp65-Glu67-Glu72. In Figure 11a, it is
observed that residues between Thr28-Lys35, which contains the
hub residue Lys31, and Asp61-Glu67 exhibit non-zero values of
total correlation, C'7- Figure 11b shows the contour plot of the
distance fluctuations where the residues that exchange energy with
the surroundings, are identified with a darker hue. The heavy
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vertical strip shows that especially the residues 28-33 interact with
the rest protein.

In Figure 12a, the ligand and the residues lining the interaction
paths are shown in yellow and green, respectively. Figure 12b is an
enlarged view of the ligand and the interaction paths through the
protein. In human S100AG6, secondary structure elements are
arranged into two calcium binding motifs, which compromise
Ca*? binding site I and site II. For site II (S100-hand motif), the
most noticeable difference, upon Ca*? binding is the movement of
Glu33. In contrast, the coordination of the Ca*? in site I (EF-hand
motif), is largely mediated by main chain carbonyl of Glu67 and
the side chains of Asp61, Asn63, Asp65 and Glu72. [73] As shown
in Figure 12b, residues between Thr28-Lys35 form a path
beginning with hydrogen bonded residues Lys35 and Lys31, that
terminates with two binding site residues Thr28 and Glu33. The
path that surrounds site I is shorter and involves Asp61, Asn63 and
Glu67, which indeed begins with Leu60, a well-conserved surface-
exposed residue[33].

According to our results, obtained by using the unbound
structure, 1K9P.pdb, the residue pairs with the highest total
correlation appear around the residues Lys31 and Leu60.
Interaction path residues are mostly the binding site residues.
Other residues line a network through the protein between the two
Ca*™ binding sites. (Figure 12a) Cliques are calculated at cut-off
6.1 A and shown in pink in Figure 12b. The triad Lys 31-Leu 60-
Lys 64 also appears around the catalytic site of the protein.

Results for the remaining twenty four systems are provided in
the Supporting Information SI.

Discussion

Based on the GNM, structural and thermodynamic features of
the bound state are predicted by using the unbound structures.
This shows that the binding information is already present in the
unbound structure. This was also observed by us in a recent work
[6].

We have presented a collection of computational techniques to
study the relationship between the 3-dimensional structure and the
dynamics of protein. These two methods relate protein structure
with protein function and protein dynamics in terms of ligand
binding. Contact map of a protein can be investigated by the tools
of graph theory and provides information about the stiff and
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Figure 11. Important residues ofzs1 00A6 predicted with GNM. a) Total correlation C; of residues as a function of residue indices. b) Contour
plot of distance fluctuations <(AR,-,-) > of 1K9P.pdb. Highest values indicated by black.

doi:10.1371/journal.pone.0016474.9011
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Figure 12. Three dimensional structure of one chain of S100A6. a) with bound Ca*? ions (yellow), interaction path (green) and cliques (pink).
b) Enlarged version showing interaction path residues and cliques (pink) with their labels. Dashed lines are the hydrogen bonds.

doi:10.1371/journal.pone.0016474.g012

conserved, therefore functionally important regions. These certain
regions are the cliques made up of residue triads and they typically
reside either along the catalytic region, if the protein is an enzyme,
or along the ligand binding pocket. This kind of approach
establishes the structure-function correlations in proteins. Gaussian
Network Model (GNM), on the other hand, correlates the
fluctuations of residues with the three dimensional structure of
the protein. The two computational methods are applied to the
crystal structures of known systems. Ligand-free structures are
used to find the cliques and the interaction pathways through
which the energy is transferred to the system. Then, ligand-bound
systems are used as positive controls.

We conducted our study in a diverse set composed of 30
proteins each having a distinct function. Among those we obtained
successful results in 29 systems. Residues with non-zero total
correlation (Crp) values appear along a path with one end located
at the surface and the other end exposed to the ligand binding
pocket (site). These residue interaction networks indicate the
existence of the interaction path which is directly related with
ligand binding and highly dependent on the topology of the
protein. In this paper, we present no more than the fastest mode
results for total coupling of residues. Yet, we checked the results for
the second fastest mode and identified new pathways of same kind
which extend from different energy gate residues (to the ligand
binding pocket).

In a limited set of six proteins, presented in Table 4, several
cliques made up of residue triads, obtained by a cutoff distance of
6.2 A, appear as conserved residues. For other proteins,
presented in Supporting Information S1 we saw that cutoff
distances around but not exactly equal to 6.2 A were needed for
favorable agreement of the predictions with experimental
observation. Thus, a clear-cut specification of a clique-cutoff
distance is not available, at least within the level of approximation
of the present model. However, the shortcoming due to lack of a
single cutoff value notwithstanding, we can say from the data we
analyzed that several of the catalytic residues which are
emphasized in the literature are predicted by the present
Gaussian model.

@ PLoS ONE | www.plosone.org
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Our approach exhibits a high predictive capability. Table 1
involves the data set and the summary of results for the remaining
proteins is presented in Supporting Information S1. We have
shown this approach to be successful in the identification of
interaction pathways and conserved regions in a diverse set of
protein-ligand systems.

Methods

A coarse grained GNM analysis based on C* atoms of residues
and a harmonic potential is used. The position of the ith C* is
denoted by R;. The 1/ matrix of GNM is defined as

—px i#j and Ry <teuof
ry- 0 i=jand Rj>7cuof (1)
— >k i=j#k
k

Here, R;= |Rj—Ri‘ is the distance between residue i and j,
Teuor 18 the distance that defines the neighborhood condition
generally taken between 6.5-7.5 A. % is a positive scaling
parameter. The correlation of fluctuations follows from the
harmonic assumption as

ARAR] Y =kTI™! )
where, AR; is the fluctuation vector of the ith C*, ARjT is the
transpose of the fluctuation vector of the jth C*, £is the Boltzmann
constant and 7 is the temperature. The correlation matrix may be
expressed in modal form as [74]

(ARAR] Y= "7 " [exef] i (3)
k

where, i is the kth eigenvalue of the 17 matrix, ey is the

corresponding eigenvector, and sz is the ijth element of the
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enclosed matrix. In our recent work [8] we considered only the
largest eigenvalue component of the /" matrix for a comparative
study of various HLA proteins.

The mean square fluctuations of the distance between residue 1
and j is then written as

(AR;?Y=((AR)*>—2(AR;ARTY +{(AR))*>  (4)

The correlation of residue fluctuations with an energy exchange
AU of the protein is

(AU(ARy)*y =kT<(ARy)*> (5)

Equation 5 now shows the correlations of energy fluctuations
with the squared fluctuations of the distance between residues i
and j [8]. Summing both sides of Eq. 5 over the jth index leads to
the total coupling Cr; of residue 1 to its surroundings

Cri= Y <(ARy)*>=kT 'S _<AU(AR;)>>  (6)
J J

The last term in Eq. 6 acknowledges the role of energy
exchange of residue 1 with its surroundings that consist of the
neighboring residues and the surroundings of the protein. Our
exploratory calculations showed that there is a small dependence
on the cutoff value, usually taken as 7 A as the radius of the first
coordination shell for C,, atoms. In the present study, in order to
eliminate, or at least minimize, this dependence, we averaged the
Cr, values over the interval 6.9 <7 <7.1 measured in
Angstorms. The lower and upper values are selected by trial and
error. If 700 < 6.9, then some relevant interactions are not taken
into account. If, on the other hand, reuey >7.1, then too many
residues all of which do not lie on the same path result that are not
of interest to the binding problem are included.

In the largest eigenvalue formalism, the set of residues with non-
zero values of Cr; constitute the interaction pathway. As has been
shown before [8], and as will also be shown below, these residues
are in contact with each other, in general, and constitute a path,
the ends of which are exposed to the surroundings of the protein,
which we termed as energy gates. Along this path lies a residue
that is highly interactive with a large number of residues of the
protein, and hence is referred to as the hub.

By its structural nature, a clique constitutes a stiff region of the
protein. Considering the contact matrix 4 of the protein, cliques of
size three are obtained according to the following recipe

Aj=Aj=Api

O<i<j<k<n

k>j+c (7)
j=i+c

4<c

where 1, j and k are residue indices, ¢ is the residue distance
(number of residues) between contacting residues, and n is number
of residues for each protein.

@ PLoS ONE | www.plosone.org
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We studied several different systems, six of which we selected in
the present study. These are given in Table 1. The last two
columns of Table 1 give the pdb codes of the ligand free and
ligand bound structures. In all our calculations, we perform the
predictions on the ligand-free structure and compared the results
using the ligand-bound structure.

The cutoff distances for the /" matrix were chosen as follows:
Using 4810 non-redundant PDB structures obtained from
Reference [75], we counted the frequency of observation of
residue contacts for different values of Rcyzefr, which was varied in
the interval 5-15 A. The results are shown in the first figure of
Supporting Information S2, where the filled circles are the results
of calculations. The straight line drawn to the linear part of the
curve therein shows the scaling region. In this region, changing the
Reysofr value by a factor changes the number of observations
proportionately, and this relates simply to the size effect. Below the
scaling region, effects other than size effects are accounted for as
R usofr is increased. An R0 at the boundary of the non-scaling
and scaling regions reflects all the effects that are of interest. The
arrow in the first figure of Supporting Information S2 corresponds
to an Reyprvalue of 7.2 A. In order to include effects that would
come from smaller R values, we took five equally spaced
stations between 6.9-7.2 A, and averaged the reported total
correlation values over these five stations.

The cutoff distances for the cliques were chosen with a similar
analysis described in the preceding paragraph for the contacting
residue pair’s analysis. The results are shown in the second figure
of Supporting Information S2, where the filled circles are the
results of calculations. The straight line drawn to the linear part of
the curve shows the scaling region. An Ry has to be chosen
below the scaling region. The arrow in the figure corresponds to
an Ry value of 6.2 A. In the calculations, we tried Reyofr
values of 6.0, 6.1, 6.2, 6.3 and 6.4 A, and accepted the value of
Ry that led to the most consistent comparison of the model
with observations.

The binding site residues using the bound complexes are
defined as follows: In the complex, if the distance between an atom
of a residue and an atom of the ligand were less than 3.5 A, and if
this residue had a non-zero total correlation calculated by using
the unbound PDB file, then the residue was defined as a
contacting residue. The list of contacting residues for the six
systems analyzed in this study is given in Table 2.

Supporting Information

Supporting Information S1 Total correlation Cy of residues as
a function of residue indices and the corresponding three
dimensional structures showing the nteraction paths and the
cliques for the 24 benchmark proteins.

(DOC)

Supporting Information $2 Log-Log plots of the relation
between Number of residue-residue contact versus Reysorand of
the relation between number, N, of cliques versus Reufr.

(DOCX)
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