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Abstract

Many real-world networks tend to be very dense. Particular examples of interest arise in the construction of networks that
represent pairwise similarities between objects. In these cases, the networks under consideration are weighted, generally
with positive weights between any two nodes. Visualization and analysis of such networks, especially when the number of
nodes is large, can pose significant challenges which are often met by reducing the edge set. Any effective ‘‘sparsification’’
must retain and reflect the important structure in the network. A common method is to simply apply a hard threshold,
keeping only those edges whose weight exceeds some predetermined value. A more principled approach is to extract the
multiscale ‘‘backbone’’ of a network by retaining statistically significant edges through hypothesis testing on a specific null
model, or by appropriately transforming the original weight matrix before applying some sort of threshold. Unfortunately,
approaches such as these can fail to capture multiscale structure in which there can be small but locally statistically
significant similarity between nodes. In this paper, we introduce a new method for backbone extraction that does not rely
on any particular null model, but instead uses the empirical distribution of similarity weight to determine and then retain
statistically significant edges. We show that our method adapts to the heterogeneity of local edge weight distributions in
several paradigmatic real world networks, and in doing so retains their multiscale structure with relatively insignificant
additional computational costs. We anticipate that this simple approach will be of great use in the analysis of massive,
highly connected weighted networks.
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Introduction

Network analysis has become a significant epistemological tool

in the study of dense, complex relationship structures [1].

Sometimes the network structure is intrinsic to the relationships

(e.g., the WWW [2], airline networks [3], or real neuronal

networks [4]). In other cases it is a useful framework for codifying

relationships of interaction such as those that might exist between

organisms [5], social groups [6,7], or technological structures such

as the Internet [8].

In many important examples, network structure is imposed as a

topological framework for enabling the useful visualization and

subsequent analysis of a dataset (often ‘‘massive’’) whose data

points come a priori not as a network, but rather with a notion of

similarity (or dissimilarity) between them. In these cases a weighted

network can be used to summarize the similarity structure in the

data as well as to provide a framework enabling exploration. For

instance, this sort of structural assumption is the foundation of the

spectral clustering approach to data analysis [9]. Important

examples are ‘‘correlation networks,’’ in which the underlying

data may be time series (see e.g., [10]), DNA microarrays [11], or

any sort of multivariate feature vector, and the edge weights reflect

a natural notion of correlation between the nodal data. These

networks are generally ‘‘fully connected,’’ in the sense that there is

a nonzero edge weight between (almost) any two nodes. Although

the entire weighted network contains all relevant information, the

important structure that exists within it often is not easy to

recognize because the network itself is simply too dense with edges

of nonzero weight. This problem is only amplified when the

number of data points is large. This situation can pose problems,

both for analytic methods (e.g., some spectral techniques) that may

only be appropriate for a sparse network, as well as for

visualization and the accompanying implications for gaining

intuition from and communicating information about large data

sets.

For these reasons it is often useful to extract the ‘‘backbone’’ of a

network or to ‘‘sparsify’’ it by judiciously removing edges with the

goal of elucidating underlying structure. Commonly, this is

achieved through the application of a hard threshold, keeping

only edges whose weight exceeds a predetermined value. In cases

where the scale of the similarity values is constant across the nodes,

such an approach will preserve meaningful geometry, insofar as

this geometry is reflected in the connections between nodes with

high similarity value. However, in real-world networks, similarity

weight is often highly unevenly distributed. Consider the example

of the Internet, where similarity between nodes can be defined as

the bandwidth of the (direct) connection between them. Individual

computers rarely are directly connected to the large lines that form

the backbone of the Internet, and their connections through an

Internet service provider will have bandwidth several orders of

magnitude smaller than the highest bandwidth lines. If a threshold

were applied to this network, the resulting set of connections would

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e16431



not accurately reflect the true underlying multiscale nature of the

Internet. Indeed, only the highest-bandwidth connections would

be preserved and all nodes in smaller bandwidth communities

would be left as isolated points.

An alternative approach is to consider the local distributions of

similarity weight and preserve edges that are statistically significant

in a local, as opposed to a global, sense. Under such a model, the

important connectivity of each node is considered separately from

all others. This seems to have been first addressed by Slater in the

context of the study of a directed graph of migration flows [12–

14]. Therein we find the development and use of the so-called

‘‘bistochastic filter,’’ that aims to derive a single scale of

importance by rescaling the edge weights via an iterative

proportional fitting procedure (whose outcome is a doubly

stochastic matrix) and then to create a backbone via the

incremental addition of edges according to some global stopping

criterion (e.g., fixed number of edges, fixed edge weight threshold,

or connectivity constraint). In more recent work, local analysis has

motivated the development and application of the ‘‘disparity filter’’

[5], wherein the statistical significance of edges at a particular node

is determined relative to a null model obtained by dividing up the

unit interval by throwing uniformly at random a set of points (of

size equal to one less than the number of nonzero weighted

neighbors of the node) onto the unit interval ½0,1�. This provides a

comparison set for the observed distribution of weights emanating

from the node and a way to measure significance. As with any

parametrized family of distributions, implicit is an a priori

assumption about the shape of the distribution of similarity at

any particular node. This approach is computationally very

efficient and for some networks it can be quite useful.

While both of these methods can prove useful in particular

instances, they each have their drawbacks. For example, the

positing of a global constraint (in either the disparity or the

bistochastic filter) ignores local heterogeneity. This can have the

effect that the resulting network backbone may omit important

multiscale structure.

With the drawbacks of previous approaches in mind, we make

two important contributions to the analysis of complex networks.

We show, for several paradigmatic weighted networks (including

the US airline network [3] analyzed in [5]), that there is significant

heterogeneity in similarity distributions, as mentioned above.

Motivated by this, we present an approach to sparsification in

which we let the data speak for itself: we use the empirical edge weight

distribution at each node to determine statistically significant

geometry. We show in the same set of examples that this

approach, which makes no prior assumptions about the charac-

teristics of the local distribution of similarity, adapts well to the

heterogeneous nature of node-specific similarity distributions and

at the same time preserves the important multiscale geometry of

these networks. In three diverse ‘‘real-world’’ datasets we

demonstrate that our method outperforms the disparity filter of

[5] and the bistochastic filter [14] in its ability to recognize and

account for the heterogeneity present in real-world networks.

While these examples are specific, we see them as illustrative of the

kinds of networks often encountered in real-world data. We

anticipate that our approach to sparsification will be of great use in

the analysis of massive, highly connected weighted networks.

Backbone extraction and sparsification
Throughout, we assume that we are given a directed network

with nonnegative edge weights wij on the edge from node i to node

j. A traditional method for uncovering the underlying structure

and visualizing such networks is to fix a threshold value T and

retain all edges for which wijwT . This method is straightforward

to implement, but fails to retain important information when

meaningful geometry is distributed across multiple scales of edge

weights.

Another approach to capturing the multiscale structure of

complex (similarity) networks is to find the spanning tree with

maximal weight. A spanning tree of a network is a tree (a graph

with no cycles) such that all nodes are connected and the edges

that make up the tree exist in the original network. The weight of a

spanning tree is the sum of the weights of all the edges that make

up the spanning tree. Efficient algorithms exist to compute the

minimum spanning tree of a network [15]. The maximal weight

spanning tree can be easily computed via transformation of the

non-zero edge weights we?
1

we

, where wew0 is the weight of edge

e, and then running a minimum spanning tree algorithm on the

transformed network. The resulting maximum spanning tree keeps

all nodes connected no matter the scale of the edges, but the

imposed tree structure generally removes any community structure

(clusters of nodes) that may be present.

The advantages and disadvantages of the previous methods

offer some insight into the design of an effective network

sparsification method for networks. There are obvious important

requirements: we need an effective way to remove weak edges (as

with thresholding), yet at the same time retain the most important

edges at a local level (as in the maximal spanning tree).

Furthermore, we want to allow important geometry such as cycles

to persist so that communities remain intact.

The ‘‘disparity filter’’ of [5] was proposed as a method for

backbone extraction that meets these criteria. Let

pij~
wij

PNi

k~1

wik

denote the fractional edge weight from node i to node j. Here, Ni

denotes the number of neighbors of node i (for a weighted

network, we say that j is a neighbor of i if wijw0). This edge

distribution at node i is compared to a null model in which Ni{1
points are thrown down on the unit interval to create a random

distribution of Ni weights that sum to one. An edge is declared to

be significant if the probability of observing an edge fraction p
larger than pij under the null model is less than some fixed value,

i.e. P(pwpij)va for a fixed a. This approach is quite efficient and

was applied by [5] to the US airline network [3] and the Florida

Bay Food Web [16].

The ‘‘bistochastic filter’’ is another approach to sparsification,

introduced in the study migration flows [12–14]. Through an

iterative procedure, this method accomplishes a rescaling of the

original edge weights matrix, creating a bistochastic matrix in

which all columns and rows sum to one [17]. Once these

transformed weights are obtained, edges are added to the network

in order of non-increasing weight until a stopping criterion (such as

a specific number of edges) is met. While this procedure does

eliminate any multiscale structure in the weights themselves, it

preserves certain important properties of the original matrix [14].

It is important to point out that the iterations do not always

converge – see the discussion of the airline network example below

and [14] – and in this case the algorithm is executed on a modified

weight matrix. However, such a modification may in fact

significantly alter the original network structure.

Both of these approaches can be useful for some kinds of

networks. However, the underlying assumptions of each can in

many instances result in a backbone that omits important structure

– especially when the local weight distributions are highly

Nonparametric Sparsification of Complex Networks
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heterogeneous. It is this concern that motivates the approach

presented below.

Materials and Methods

As above, given the original positive edge weights wij , let pij

denote the corresponding fractional edge weight from node i to

node j. For such edge weight-normalized networks we will say that

the out-degree (resp. in-degree) of a node is the number of positively

weighted outgoing (incoming) edges. In the case of undirected

networks, we simply consider the degree of a node to be the number

of positively weighted edges incident to that node. For each node i
and all neighbors j, we consider the fraction of non-zero edges

with weight less than or equal to pij

F̂F (pij)~
1

Ni

XNi

k~1

1fpikƒpijg,

where 1fg is the indicator function, Ni is the number of neighbors of

node i in the network, and the sum is over the neighbors of node i.
This calculation is effectively equivalent to the computation of the

empirical cdf for the fractional edge weights at each node. For each

edge, this gives the probability of choosing an edge at random of

fractional weight less than or equal to pij . If 1{F̂F (pij) is less than a

predetermined significance level a, we say the edge is locally significant

and include it in the backbone network. Thus, the edges that we

select are ones that are statistically significant at the a level and

cannot be explained by random variation. If we desire a symmetric

backbone network we may include the edge in the other direction as

well. We call this method for backbone extraction locally adaptive

network sparsification, or LANS. Note that we refer to LANS as a

nonparametric method because it is a distribution-free method, in that

no assumption is made as to the form for the underlying distribution

of similarity weight at a node; instead, we rely only on the empirical

distribution to judge statistical significance.

In Figure S4 we show pseudocode for generating backbone

networks using LANS. Because we require the computation of the

empirical cdf at each node, this algorithm runs in O(n2 log N)
time, where n is the number of nodes in the network and N is the

maximum node degree in the network. For networks with nonzero

weight between any two nodes, N~n{1, but in sparser real-

world networks, N may be significantly smaller than n. The

asymptotic running time of the disparity filter method of [5] is

O(n2), as is the basic step in the construction of the bistochastic

filter (although, as an iterative algorithm it may not converge – see

the example below of the airline network), and thus the running

time of LANS is a factor of O( log N) greater than either of the

other approaches. Therefore, we pay a small asymptotic price in

running time efficiency for the added flexibility of this algorithm.

However, some of this cost can be mitigated by taking advantage

of the fact that the algorithm is fully (and easily) parallelizable.

In order to understand the differences between LANS and the

disparity and bistochastic filters, as well as the way in which real-

world networks can display the heterogeneity we need to account

for, we consider a toy network (described below) and three

exemplary real-world weighted networks: a correlation network of

equities composed of the S&P 500, FTSE 100, Nikkei 225, and

Eurofirst 100 indices, the US airline network [3] (studied in [5]),

and a similarity network of visual art. In the first example, the edge

weight reflects the correlation between the ‘‘delta’’ time series of

the daily closing price (that is, instead of closing price we use the

one-period fractional return, Rt~
Pt{Pt{1

Pt{1
, where Pt is the price

of the stock at time t) for equities over the period January 2, 2007

to December 31, 2009 [18]; in the second data set edge weights

reflect passenger traffic between airports; in the last of these

examples, images were summarized by feature vectors derived

from a set of filters (learned via a sparse coding model) previously

shown to be reflective of visual style [19] and with edge weights

given by the symmetrized Kullback-Leibler divergence [20]

between these feature vectors. Table 1 gives the number of nodes

and nonzero edges for each of these data sets.

Figure 1 shows the heterogeneity in the local edge weight

distributions for the equities network and the art style network.

Specifically, for these example networks we computed each of the

local fractional edge weight distributions. We also compute the

distribution that would serve as the null model of [5] for each of

these examples. Note that since both of these networks are fully

connected there is a single distribution that serves as the null

model for each of the nodes. We then computed a distance on this

set of distributions by using the symmetrized Kullback-Leibler

divergence between the distributions. Figure 1 presents the two-

dimensional multidimensional scaling [21] scatter plots of the

fractional edge weight distributions (blue circles) for our example

networks and the disparity filter’s distribution (red star), according

to this pairwise distance. In each case the heterogeneous

distribution of local edge weights is such that the parametric

distribution is generally quite far from many of the local

distributions. The Supporting Information provides a second

measure of the heterogeneity of these weight distributions (relative

to the disparity filter) via the Kolmogorov-Smirnov test (Table S1).

In short, for each network, there is a significant amount of diversity

in the empirical distributions. Moreover, they are judged as

statistically different from the comparison parametrized distribu-

tion that produces the disparity filter. This particular test is not

relevant for the bistochastic filter, since it does not consider local

edge weight distributions when choosing which edges are added to

the backbone network.

Results

We start by comparing the application of LANS and the

disparity and bistochastic filters in a motivating example: a simple

weighted undirected network made from a combination of a star

network and a ring, the ‘‘Simple star,’’ depicted in Figure 2. We

assign weights to create a variation in which the higher weight

edges are on the inner portion of the network. In particular, the

red edges have weight 2 while the gray edges have weight 1. This

adjustment emphasizes the ‘‘star’’ geometry in the network (i.e., a

central node connected to a ring of outer nodes). In a backbone we

would expect to recover the interior edges.

For this simple weighted network, LANS extracts the correct

underlying geometry based on the differential weighting of edges

in this network, and does so robustly across significance levels

spanning several orders of magnitude. The disparity filter requires

Table 1. Number of nodes and nonzero edges in each of the
three real-world networks we studied.

#Nodes #Edges

Equities 874 381,501

Airlines 1256 13,239

Art 45 990

doi:10.1371/journal.pone.0016431.t001
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a very high significance level (i.e., large probability) to recover the

expected geometry, and with stricter significance criteria the

network is completely disconnected (i.e., no meaningful underlying

geometry is discovered). A backbone network created using the

bistochastic filter with the same number of edges as LANS

included the edges that made up the ‘‘ring’’ geometry, but not the

‘‘star’’ geometry. This is a result of the iterative weight adjustment:

the weak outer edges ultimately have a higher weight than the

inner edges after the transformation, which clearly fails to capture

the geometry that was emphasized. For this network, LANS

provides a more flexible solution precisely because it does not

assume a distribution on the fractional edge weights.

In order to test the capabilities of each of the methods to recover

multiscale geometry in networks, we constructed a network out of

several star/ring networks (the ‘‘Complex star’’ depicted in

Figure 2), each with the star geometry emphasized. In this

example, the central portion of the network is identical to the

original ‘‘Simple star’’ network, but with edge weights 100 times

those in the original network (yielding weights 200 and 100). The

outer networks are copies of the simple network (with weights 2

and 1), and the connections between the central network and the

peripheral networks have weight 100, as indicated in Figure 2. As

before, the red edges highlight the important geometry in this

network. This network is intended as a rudimentary analogue of

the Internet. Using the same significance levels as with the Simple

star network, LANS creates a backbone network that retains the

correct multiscale structure of this network and preserves

connectivity. Although the disparity filter does group nodes in

an intuitive manner, it fails to preserve connectivity in this

network. The bistochastic filter creates a backbone network (with

the same number of edges as the two other examples) that retains

the correct geometry in the central portion of the network, but

incorrect geometry in the outer networks, as indicated by the edge

colors in Figure 2. Once again, this occurs as a result of the weight

transformation that does not emphasize the intended geometry.

Each of these approaches aims to extract backbones from

networks whose degree distribution and edge weight distribution

vary over several orders of magnitude. However, both the

disparity filter and bistochastic filter ignore important local

variation in edge weight. The disparity filter parameterizes local

edge weight distributions according to node degree only, while the

bistochastic filter ultimately ignores local information when

choosing which edges to add to the network. In the case of the

method of [5], there is an implicit assumption that the local edge

weight distributions for nodes of the same degree in real-world

networks are homogeneous. This implies that, for a given degree,

there is a natural scale at which important geometry may exist that

the method nevertheless fails to discover because it ignores the

variability in the shape of local edge weight distributions – a

variability that we will witness in the coming examples. This can

be particularly problematic for fully connected networks, since

nodes in these networks all have the same degree.

We will now explore the three real-world examples (the equities,

airline, and art networks) in detail and see how LANS produces

sparsifications that retain and expose the multiscale structure

inherent in these networks.

Equities network
In Figure 3 we compare the results of applying LANS (Box a),

the disparity filter (Box b), the bistochastic filter (Box c), and a

hard threshold (Box d) to the similarity network derived from the

equities data. Using a~0:005 with the LANS method yielded a

network with 3621 edges. The significance level for the parametric

model (a~0:294) and the hard threshold (0:9245) were chosen to

retain roughly the same number of edges, and the bistochastic

filtering process was stopped to include exactly this many edges. In

(a) there are three connected components corresponding to the

S&P 500, the Nikkei 225 and the combination of the FTSE 100

and Eurofirst 100 (which are both European indices). Within each

component we see dense clusters of nodes which correspond to

sectors (see below).

In comparison, in Boxes b, c, and d, we see that while some

market-level structure is retained in each sparsified network, many

stocks are completely disconnected from any larger cluster of

Figure 1. Demonstration of the heterogeneity of local fractional edge weight distributions in two weighted networks: equities from
the S&P 500, Nikkei 225, FTSE 100, and Eurofirst 100 and the visual art network. The blue nodes represent the fractional edge weight
distributions at each node in the network, the red star represents the corresponding null distribution produced by the technique of [5] (since the
network is fully connected, there is a single comparison distribution). Distances are the output of a two-dimensional multidimensional scaling of the
symmetrized Kullback-Leibler divergence between the distributions.
doi:10.1371/journal.pone.0016431.g001
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nodes. Furthermore, much of the large-scale structure is lost since

the connected components of the networks in b, c, and d are both

smaller and denser, and include only the connections between

strongly correlated stocks while disregarding weaker, but signifi-

cant, inter-cluster information. This reflects the fact that both the

disparity filter and thresholding possess a natural scale that is

inflexible to the actual distribution of fractional similarity weight

on nodes, while the bistochastic filter simply does not consider

local information when adding edges. In contrast, LANS, a

nonparametric technique, uncovers the underlying geometry at

multiple scales (markets all the way down to sectors and individual

stocks), as opposed to retaining only the geometry corresponding

to the largest correlations. To demonstrate the ability of LANS to

capture local structure, we also created a backbone network on the

S&P 500 equities only, using the LANS method with a~0:003,

shown in Figure 4. The nodes of this network are colored

according to the cluster assignment found via spectral clustering

with 22 clusters (see Text S1 for more detail on the method).

LANS clearly captures intuitive local structure (i.e., market sectors)

within the larger equities network, and we have identified several

clusters that correspond to commonly identified sectors.

A primary reason that an inflexibility to scale and local

heterogeneity is so problematic is that it does not allow for smooth

variation in the number of edges retained in the backbone

network. This can be seen in the left panel of Figure 5, which

shows the fraction of total edges in the equities network retained

Figure 2. Two simple example networks with important geometry emphasized. In the ‘‘Simple star’’ network, the interior edges are
emphasized by giving the edges in red weight 2 and the gray edges weight 1. LANS finds this significant geometry robustly across several values of a
(0.05 chosen for demonstration). The disparity filter finds this geometry first at a&0:26. The bistochastic filter does not find the imposed geometry. In
the ‘‘Complex star’’ network, the interior edges of each network are emphasized once again through differential weighting. However, the weights in
the central network are two orders of magnitude larger than those in the peripheral networks. Red edges in the central network have weight 200,
while gray exterior edges have weight 100. The red edges that formed the connections to the peripheral networks have weight 100. The peripheral
networks have edges with weights 2 (red) and 1 (gray), as in the ‘‘Simple star’’ network. The disparity filter was applied to the ‘‘Complex star’’ network
with the same value of a and the bistochastic filter method was stopped when the number of edges was equal to the number of edges in the
network produced by LANS.
doi:10.1371/journal.pone.0016431.g002
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by LANS and the disparity filter as a function of a. When using

LANS, increasing a causes a smooth, linear increase in the

number of edges in the backbone network, while the disparity filter

provides a very small viable range in which the number of edges

can be varied (below which there are no edges and above which

the network is fully connected). Within this range, the number of

edges increases at least exponentially. We also explored how edges

were retained using the bistochastic filter by varying the edge

weight threshold. In the equities network, edges were removed at

an exponential rate, once the threshold was only slightly above

zero (see Figure S5 for more detail).

The value of a in LANS is a lower bound on the fraction of

edges retained, and although local distributions vary, in practice

we observed that the fraction of edges retained was well

approximated by a and grew linearly in a (as shown in the left

panel of Figure 5). This smooth transition arises directly from the

use of the empirical cdf of the distribution of fractional edge

weight, since cutoff can vary not only by changing a, but also

based on the characteristics of the fractional weight distribution

itself. As we have shown in the example of fully connected

networks, when using the disparity filter, the weight cutoff is

determined for every node, once a is chosen. This indicates that the

LANS method possesses a level of flexibility that the disparity filter

does not.

Airline network
In practice, we find that LANS provides a more flexible solution

than the disparity and bistochastic filters, even in real-world

weighted networks that are not fully connected. As a second

example, we considered the airline traffic network (measured in

passengers traveling between airports), originally studied in [5], for

U.S. domestic non-stop flights in the year 2006 [3]. This network

represents the flow of airline passenger traffic around the U.S., and

is not complete, since a direct connection does not necessarily exist

Figure 3. Comparison of four different sparsification methods for the equities market data. Box a shows the backbone created using
LANS with significance level a~0:005. The backbone network shows three connected components, each of which correspond to the indices in which
the stocks are present (with the two European indices fused). Box b shows the backbone created using the disparity filter [5], with a chosen to keep
approximately the same number of edges. Box c shows the backbone network created using the bistochastic filter with the same number of edges as
the network produced by LANS, and Box d shows a thresholded version of this network, with the threshold value once again chosen to retain
approximately the same number of edges as in the network in Box a. The parametric backbone created using the disparity filter and the thresholded
network retain some significant geometry, but fail to preserve even market-level connectivity. The backbone network produced by bistochastic filter
contains a component that corresponds to the Nikkei and a few individual sectors, but most multiscale geometry has not been retained.
doi:10.1371/journal.pone.0016431.g003

Nonparametric Sparsification of Complex Networks
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Figure 4. Clustering of the S&P 500 network (a~0:003) into 22 clusters using the spectral clustering algorithm [9]. Node colors indicate
cluster membership. Some representative clusters have been labeled by industry and we see that the algorithm has done well at segmenting the
network into groups of correlated stocks. In contrast, spectral clustering would have a hard time obtaining clusters of this quality from the complete
network. We see that the nonparametric backbone is a useful preprocessing step for cluster analysis of networks. The number of clusters was chosen
by using a Gaussian mixture model as part of spectral clustering and using the number of mixtures that maximized the likelihood of the data as the
number of clusters.
doi:10.1371/journal.pone.0016431.g004

Figure 5. Fraction of edges retained in the equities network (left panel) and airline network (right panel) as a function of a. In the
equities network the number of edges retained by LANS (circles) exhibits an almost linear trend, while that of the disparity filter (crosses) resembles a
step function. With the disparity filter we witness a sharp increase in the complexity of the backbone network when a certain value of a is reached,
and very quickly the backbone becomes the entire network. Using LANS, as we increase a, complexity is added gradually, allowing the extraction of
structure at whatever scale is desired. The same linear relationship between a and the number of edges added by LANS exists in the airline network.
The disparity filter adds edges in a non-uniform way: sub-linearly at first, then very quickly as a?1.
doi:10.1371/journal.pone.0016431.g005

Nonparametric Sparsification of Complex Networks

PLoS ONE | www.plosone.org 7 February 2011 | Volume 6 | Issue 2 | e16431



between every pair of airports. We created a sparsified version of

this network using LANS and the disparity and bistochastic filters

(see Figure S3). The resulting backbone created using LANS had

1019 edges, and highlights the multiscale nature of this network:

large numbers of passengers flow through important geographi-

cal/transportation centers (such as New York, Chicago, Atlanta,

Dallas, etc.), and from these hubs to more distant locations. This is

reflected in the tree-like structure of the network. The backbone

network created using the disparity filter had 965 edges, roughly

equal to the number of edges in the LANS version, but was unable

to preserve much of the underlying connectivity in the airline

network. Edges are added more quickly to clusters that are already

connected, rather than between (more weakly connected) clusters.

This leaves a great number of the nodes in this network completely

disconnected from any larger component. The application of the

bistochastic filter in this situation was somewhat problematic. In

this case the iterative algorithm did not converge on the original

matrix (which, as is mentioned in [14], can happen) and so in this

case, the recommended approach is to augment the original

weights by effectively inserting a small positive weight for

transitions that were originally zero (this idea is revisited in the

Discussion). This produced a backbone network that had tree-like

structure, which would be expected, but without any multiscale

features. Although some geographical localization was evident in

this network, its meaning was not clear, unlike in the case of LANS

(and to some extent the disparity filter) in which major cities are

seen as connections between close-by airports and far-away

destinations, as one would expect for airline traffic.

As with the equities network, we plot the fraction of edges

retained in the backbone network as a function of a for LANS and

the disparity filter (see Figure 5, right panel). Using LANS, the

network exhibits a linear increase in the number of edges, whereas

the disparity filter creates backbone networks that initially increase

quickly in the number of edges, then sub-linearly, and finally

exponentially as a?1. Using the bistochastic filter with an edge

weight threshold, edges were removed exponentially quickly even

when the edge weight threshold was only slightly above zero (see

Figure S5 for more detail). Although for most values of a, the

disparity filter retained fewer edges, the actual backbone networks

generated make it clear that this does not necessarily translate into

a better description of the multiscale structure in this network.

This is due primarily to the heterogeneity that exists in the local

fractional edge weight distributions in this network (see Text S1

and Figure S2 for more detail). LANS adapts to this heterogeneity,

retaining the most important geometry in such networks.

Image network
The examples shown thus far have dealt with intuitive networks

arising from a priori quantitative phenomena (stock price

correlations, airline traffic); however, LANS is also useful for

discovering important structure in feature-based representations of

objects/phenomena. This type of data is common in machine

learning and artificial intelligence applications, in which natural

phenomena (such as images or speech audio) are transformed into

a set of quantitative features in order to perform statistical

calculations on them. As an example of such a dataset, we

considered the similarity of the stylistic tendencies of a number of

visual artists, and how these artists’ works compare to images of

the natural world.

In order to quantify ‘‘style’’ in this context, we measured the

spatial frequency content in the images by examining the

distribution of spatial bandwidths for a set of learned filters

trained to optimally represent each artist’s works (see e.g., [19],

[22]). The bandwidths of these filters reflect the underlying

distribution of spatial frequency content in each class of images

(i.e., those by a particular artist). We computed the symmetrized

(i.e., average) Kullback-Leibler divergence between the bandwidth

distributions for all pairs of trained filters for these images (having

trained five sets per image class).

It was clear from visual examination of the similarity matrix

derived from these values alone that the distribution of bandwidths

was relatively consistent within a particular class (i.e., that filters

trained on the same set of images had, as expected, highly similar

distributions of spatial frequency bandwidth). However, the

structure of the between-class similarity was not readily apparent

from simple inspection of the raw values. Using LANS we created

a sparsified network based on the derived similarity matrix (shown

in Figure 6) in which each node represented a particular instance

of a set of trained filters (and thus also its spatial frequency

bandwidth distribution). The groupings of nodes were, as was

evident from the similarity matrix, composed primarily of works

by a particular artist. However, the geometry of this network

indicated and reflected stylistic connections, after subjective

examination of the division of clusters in the network, between

artists based on how ‘‘painterly’’ they are. This quality refers to the

extent to which brushstrokes themselves (as opposed to contours

created by paint) are visible in an artist’s work. Since the presence

of visible brushstrokes would indeed affect the composition of

spatial statistical structure in works of art, it is not surprising that

this characteristic appears to affect the distribution of the

bandwidths of the learned filters.

This example demonstrates the usefulness of LANS: whereas

thresholding would have disconnected the individual clusters,

masking the lower-level connections between them, LANS

revealed an aspect of the relationship between these artists that

was not otherwise apparent. Using the disparity filter, we created a

backbone network with approximately the same number of edges

and a backbone network using the bistochastic filter with exactly

the same number of edges (both shown in Figure 6). Each of these

methods retained the significant within-class node groupings that

would be expected from the structure of the original data.

However, the disparity filter nevertheless failed to highlight any

multiscale structure that incorporated connections between classes.

In the case of the bistochastic filter, multiscale interactions were

captured, but once again at a price of denser connectivity between

nearby nodes (which itself conveys little additional information).

Discussion

We have presented a nonparametric, data-driven method,

called locally adaptive network sparsification, for capturing the

multiscale structure of weighted networks. We have shown that its

flexibility adapts well to weighted networks in which local

fractional edge weight distributions are highly heterogeneous, a

quality that we have shown in three important and distinct real-

world examples. Critically, LANS captures the multiscale structure

present in these networks, preserving connectivity while including

both local and global geometry. In each of the real-world examples

we demonstrate that LANS outperforms the disparity filter

method of [5] and the bistochastic filter of [14] in its ability to

recognize and account for the heterogeneity present in real-world

networks.

An interesting aspect that differentiates LANS from the

disparity filter is that, in real-world networks, we observe an

exponential increase in the number of edges in the network as a is

increased when using the disparity filter (see Figure 5). In contrast,

LANS adds edges roughly linearly as a increases. An intuitive

analogy that accounts for this phenomenon is that LANS extends
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the disparity filter in the way that Lebesgue integration extends

Riemann integration [23]. That is, whereas the disparity filter

implicitly uniformly partitions fractional edge weights (i.e., the

domain of the distribution function), LANS uniformly partitions

the range of the distribution function. This implies that, for LANS,

there is a fixed lower bound for the difference in the distribution

function between any two unique values of fractional edge weight,

equal to 1=k, for a node with k neighbors. Since the empirical cdf

is monotonically increasing on [0,1] and by definition uses the

entire interval, the value of the distribution function for each

unique fractional edge weight falls into a bin of size at least 1=k.

Thus, in order to incrementally add edges by unique weight, we

need to consider steps of a that are linear in the number of

neighbors k of a particular node. However, when using the

distribution function specified in the method of Serrano et al.,

there are regions of fractional edge weight values in which the

distribution function increases exponentially quickly. As a result, in

order to incrementally add edges according to unique fractional

edge weight, a must be increased by an exponentially small value.

This is a computationally impractical method for discovering the

important underlying geometry in a network, and this problem is

exacerbated by the fact that such tiny gradations of a provide little

additional benefit for large portions of the range of a.

A further discussion of computational aspects of each of the

methods compared in this paper is warranted. The computational

cost of both LANS and the disparity filter depends only on fixed

quantities, namely the number of nodes in the network (both

methods) and the maximal node degree (LANS only). The running

time of LANS is O(n2 log N), where n is the number of nodes in

the network and N is the maximal node degree, while the running

time of the disparity filter is O(n2). Since the bistochastic filter

requires the use of an iterative algorithm to transform the edge

weights, we can only discuss the cost of each iteration (O(n2)), but

the number of iterations is possibly unbounded. In practice, we

observed that when it converges, the iterative re-weighting

algorithm converges relatively quickly; however, in some cases

(e.g., the airline network), convergence does not occur and it is

necessary to find an approximate solution by augmenting the

original matrix [17]. This highlights another drawback of the

bistochastic filter: there are a number of matrices for which the

iterative weight adjustment algorithm will not converge, because

they do not have an associated doubly stochastic matrix [17].

Methods such as adding infinitesimal weights to zero-valued

entries in the weight matrix can be used to overcome certain

difficulties, but at the cost of altering the original weight matrix. In

cases where edge weights vary over several orders of magnitude

and can be quite small, such an approach would cause a significant

alteration in the underlying geometry of the network.

Almost all of our examples have great heterogeneity in the edge

weights. In the case of a network with highly homogeneous edge

weights, the disparity filter will provide an increasingly accurate

model of fractional edge weight distributions (see Figure S1). It is

not clear that this is the case for the bistochastic filter – note that in

the ‘‘Simple star’’ example network, with its relatively homoge-

neous edge weights, the bistochastic filter did not articulate the

expected geometry. It is important to recognize, however, that

Figure 6. Art style backbone networks capturing the spatial frequency characteristics of several image classes created using LANS,
the disparity filter (inset, top), and the bistochastic filter (inset, bottom). Each node represents one set of filters trained to optimally
represent the corresponding image class, with five nodes per class, since five sets of filters were trained for each class. Image classes were composed
of works by each of the artists indicated, as well as natural images and a grouping of all of the images together (the ‘‘All images’’ class). Similarity
weight was derived from the symmetrized Kullback-Leibler divergence between the distributions of spatial frequency bandwidths for the learned
filters. Clouds indicate the spatial arrangement of nodes in the network and that nodes in the same class were grouped together in this
representation. The top inset shows the backbone network created using the disparity filter, with approximately the same number of edges as the
LANS version. It is clear that, while some structure is retained, the relationships between image classes are largely ignored in the disparity filter
version. Most of the important structure is retained in the backbone network created using the bistochastic filter, but local groups of nodes are
denser with edges.
doi:10.1371/journal.pone.0016431.g006
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even in this case LANS will still correctly capture the uniform

nature of these distributions, since it adapts to the shape of the

distributions, regardless of their form.

In the future, we plan to extend the LANS approach to dynamic

networks that evolve in time and to a probabilistic framework in

which we learn posterior distributions over edges belonging to a

backbone network. Furthermore, we will examine the connections

between LANS, the disparity filter, and Markov Chains and will

consider efficient implementations for large-scale data analysis (e.g.,

web-scale). We anticipate that LANS will be of great use in analysis

and visualization of massive, highly connected weighted networks.

Supporting Information

Text S1 Supplementary Text

(PDF)

Figure S1 Comparison of the shape of the parametric model’s

cdf curves for varying values of k~2,3,4,5,10,15,20,25,30,50
(node degree) going right to left. As k??, the cdf approaches a

step function at x~0.

(TIFF)

Figure S2 Comparison of cdfs for several randomly selected

nodes in the equities (left) and airline (right) networks, along with

the cdf for the parametric model. In each panel, the dashed, pink-

colored line depicts the cdf for the parametric model. In the

equities network, all nodes had degree 873, so the parametric cdf

was parameterized according to this value. In the airline network,

nodes had many different degrees, so we plot the cdf for all nodes

with degree 51 and the corresponding parametric cdf. The

a~0:05 significance level is marked with the dashed line and

indicates which edges would be retained at that significance level

among the nodes. Any nodes with fractional weights to the right of

the inverse of the cdf at the point it crosses the dashed line would

be retained. It is clear that, at this significance level, no edges

would be retained in the equities network using the parametric

method. In the airline network, some of the empirical cdfs lie to

the left of the model’s cdf, and some to the right, demonstrating

that, due to the heterogeneity of these distributions, the parametric

model will add edges to the network in a non-uniform way.

(TIFF)

Figure S3 Box a shows the backbone network created using

LANS with a~0:002. Although some nodes and small components

are disconnected from the large primary connected component, the

network itself is tree-like and exhibits the expected multiscale

structure in the airline network (in particular, that major cities serve

as connections for more outlying airports). Box b shows the

backbone network created using the disparity filter with a~0:002,

which had approximately the same number of edges as the network

in Box a. Clearly, many more nodes are disconnected and the

clusters that do exist are dense, indicating that this method tends to

add edges to existing clusters, rather than form connections between

them. Box c shows the backbone network created using the

bistochastic filter. It does not retain any multiscale information (i.e.,

that large cities serve as hubs for airline travel).

(TIFF)

Figure S4 Pseudocode for creating a backbone network using

LANS.

(TIFF)

Figure S5 Fraction of edges retained as a function of edge weight

threshold for backbone networks created using the bistochastic filter

from the equities and airline networks. Note the exponential drop in

the number of edges retained, indicating that the bistochastic

transformation does not allow for a smooth addition of edges.

(TIFF)

Table S1 Number of Kolmogorov-Smirnov tests that rejected

the null hypothesis that the empirical distributions and the

parametric distributions of [5] were the same, at the 0:05 and

0:01 significance levels. The total number of tests for each network

is given as well. We chose to compare the empirical distributions of

fractional edge weight to the correct parametric cdf for all nodes in

each network that had at least 40 unique nonzero edges. This

number was chosen to ensure accurate results.

(PDF)
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