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Abstract

Metabolic profiling is increasingly being used to investigate a diverse range of biological questions. Due to the rapid
turnover of intracellular metabolites it is important to have reliable, reproducible techniques for sampling and sample
treatment. Through the use of non-targeted analytical techniques such as NMR and GC-MS we have performed a
comprehensive quantitative investigation of sampling techniques for Pichia pastoris. It was clear that quenching
metabolism using solutions based on the standard cold methanol protocol caused some metabolite losses from P. pastoris
cells. However, these were at a low level, with the NMR results indicating metabolite increases in the quenching solution
below 5% of their intracellular level for 75% of metabolites identified; while the GC-MS results suggest a slightly higher level
with increases below 15% of their intracellular values. There were subtle differences between the four quenching solutions
investigated but broadly, they all gave similar results. Total culture extraction of cells + broth using high cell density cultures
typical of P. pastoris fermentations, was an efficient sampling technique for NMR analysis and provided a gold standard of
intracellular metabolite levels; however, salts in the media affected the GC-MS analysis. Furthermore, there was no benéefit in
including an additional washing step in the quenching process, as the results were essentially identical to those obtained
just by a single centrifugation step. We have identified the major high-concentration metabolites found in both the extra-
and intracellular locations of P. pastoris cultures by NMR spectroscopy and GC-MS. This has provided us with a baseline
metabolome for P. pastoris for future studies. The P. pastoris metabolome is significantly different from that of
Saccharomyces cerevisiae, with the most notable difference being the production of high concentrations of arabitol by P.

pastoris.
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Introduction

Pichia pastoris 1s a methylotrophic yeast commonly used for
recombinant protein production. It combines the advantages of
Escherichia coli expression systems, such as ease of use and
mexpensive simple media requirements, with the ability to
perform basic eukaryotic post-translational modification thus
folding and processing the recombinant proteins correctly. It has
recently been engineered to glycosylate proteins in a human-like
manner, making the recombinant products more acceptable to the
regulatory authorities [1].

Metabolomics is the systematic and comprehensive analysis of
large numbers of low molecular weight compounds from a
biological system. Sampling metabolites is a non-trivial problem,
especially for planktonic cells, as the sampling process may perturb
metabolism. Therefore, an important consideration for metabo-
lomic investigations is the rapid “quenching” of metabolism and
the following extraction of metabolites. A quenching procedure
mnitially developed for Saccharomyces cerevisiae involves sampling the
culture directly into cold (below —40°C) aqueous methanol (60%)
followed by centrifugation to separate the intra- and extracellular
metabolites [2]. A concern is the potential for solvent damage of
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the cell membrane, resulting in the possible leakage of intracellular
metabolites. This was investigated by de Koning et al. through
targeted (enzymatic) analyses of selected phosphorylated metab-
olites. They concluded that S. cerevisiae cells do not leak metabolites
when quenched in 60% methanol at —40°C [2], and this has also
been supported by several other studies [3,4]. The situation is
different for bacteria, as there have been numerous reports of
metabolite leakage of intracellular metabolites from bacterial cells
during the quenching process [5,6,7]. Bolten et al. reported
significant leakage (>60%) of intracellular metabolites for a variety
of Gram-positive and Gram-negative bacteria (Bacillus subtilis,
Corynebacterum ~ glutamicum, Escherichia  colr, Gluconobacter ~oxydans,
Pseudomonas putida, and Jymomonas mobilis) [8].

However, even for yeast, there are still contradictory reports on
the efficacy of the ‘standard’ methanol quenching procedure.
Villas-Boas et al. reported that the cell membrane of S. cerevisiae is
damaged by contact with cold methanol, and that leakage of a
number of metabolites including the organic acids phosphoenol-
pyruvate and cis-aconitate occurred; although they did confirm the
earlier reports [2,3] that metabolites including pyruvate, sugar
phosphates, and nucleotides were all compatible with the
quenching procedure [9]. Canelas ef al. also reported that the
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standard methanol quenching method with S. cerevisiae resulted in
metabolite leakage, and that previous studies had underestimated
intracellular metabolite levels by at least twofold [10]. A recent
study compared five different yeast species (S. cerevisiae, Kluyver-
omyces marxianus, P. pastoris, Schizosaccharomyces pombe and ygosac-
charomyces bailir) for metabolite leakage during the quenching
protocol, but only analysed amino acids [4]. They reported that
overall, quenching in cold methanol was successful, but there was
significant leakage of aspartate and glutamate from P. pastoris.

These results highlight the need for untargeted metabolite
profiling in combination with accurate quantification of metabo-
lites in order to evaluate the validity of sampling protocols. Given
this, it is surprising that there have been no evaluations of
quenching and metabolite extraction that have used NMR
spectroscopy. While it is true that NMR reports only on high-
concentration metabolites, it has significant advantages including
near-universal detection across metabolite classes, high instrument
precision and highly quantitative results for inter-metabolite
comparisons [11,12,13]. Here, we have revisited the problem of
sampling and quenching for metabolome analysis in P. pastoris,
using both "H NMR and the complementary technique GC-MS,
to establish efficient quenching and extraction procedures that
minimise metabolite leakage. We determined absolute concentra-
tions using NMR, giving us greater power to detect losses during
the quenching procedure. Metabolite extractions with boiling
ethanol or with a freeze thaw methodology with aqueous methanol
are popular methods with yeast cells and these were also
investigated [3,9]. In addition, we have characterized the baseline
metabolome of P. pastoris, by identifying the high-concentration
(NMR-visible) metabolites.

Materials and Methods

Continuous culture

Pichia pastoris GS115 (HIS4 ) was obtained from Invitrogen,
Carlsbad, California. The continuous culture was performed in a
1.5 L fermentor (Applikon, Netherlands) at a working volume of
1.2 L. The initial glycerol batch phase was performed in basal salts
medium, which was inoculated from a 30 ml overnight YPD
culture grown to an ODgyy of ~0.7. Upon depletion of the
glycerol the continuous culture was initiated with a 0.652 M
methanol-containing medium at a dilution rate of 0.04 h™'.
Steady state samples were collected after four complete volume
changes at an ODggg of 34. The culture was supplied with
400 ml/min filtered air and the dissolved oxygen tension
maintained at a minimum of 35% by variation in the impeller
speed; pH was maintained at 5.0 by addition of 25% w/v
potassium hydroxide; foaming was controlled with 0.01% v/v
Acepol-83E (Emerald Foam Control, Hamburg).

Media

Basal salt medium contained per litre: 26.7 ml phosphoric acid
(85%), 0.93 g CaSO,, 18.2 g KySO4, 14.9 ¢ MgSO,.7H,0,
4.13 ¢ KOH, 6 g (NH4)2SO4, 19.08 ml glycerol, 1 ml PTM4,
10 ml 1% w/v histidine.

Continuous culture medium [14] contained per litre 0.2 g
CaCly.2H50, 9 ml phosphoric acid (85%), 8.5 g KOH, 6 g
K580y, 4.67 ¢ MgSO,4.7H0, 6 g (NH4)»SOy4, 1 ml PTM4, and
10 ml 1% w/v histidine.

PMT4 Trace Elements Solution contained per litre 2 g
CuSO45H,0O, 0.08 g Nal, 3 g MnSO,4H,0O, 0.2 g Nay-
Mo0,.2H,0, 0.02 g boric acid, 0.5 g CaSO,.2H50, 0.5 g CoCl,,
7 g ZnCly, 22 g FeSO4.7H,0, 0.2 g biotin, and 1 ml concentrat-
ed sulphuric acid.
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Sampling

Cell suspension (~2 ml) from steady state continuous culture
was sampled rapidly (under reduced pressure) into four different
cold (<—=50°C) methanol quenching solutions (13 ml): A) 60%
(final conc.) aqueous methanol; B) 86% (final conc.) methanol; C)
60% (final conc.) methanol 10 mM Tricine buffer, pH 7.4; D)
60% (final conc.) methanol, 0.11 M ammonium bicarbonate. The
solutions were mixed thoroughly and centrifuged for 5 min at
5000 g and —19°C (Biofuge Stratos). All samples were still below
—20°C, following centrifugation. The supernatant was separated
from the cell pellet and concentrated under reduced pressure. An
optional cell-washing step was performed for each of the four
different quenching solutions. The cell pellets were quickly
vortexed in the presence of 5 ml of the appropriate cold
(<=50°C) quenching solution and centrifuged as before. Intra-
cellular metabolites were extracted from cell pellets by a cold
methanol extraction procedure modified from Maharjan et al.
[15]. Cell pellets were quickly vortexed in the presence of cold
(<=50°C) 60% aqueous methanol (5 ml) and frozen in liquid
nitrogen. The sample was then thawed in an ultrasonic bath for
15 min and centrifuged for 5 min at 5000 g. The supernatant was
concentrated under reduced pressure and samples were stored at
—80°C until analysis. In each quenching experiment, sampling
was carried out threefold in rapid sequence.

Comparison of Extraction Protocols

The efficiency of the cold methanol extraction procedure
described above was compared with the boiling buffered ethanol
extraction method proposed by Gonzalez et al [3]. Batch cultures
(50 ml) of Pichia pastoris were grown to stationary phase at 30°C in
YPD. The cultures were pooled to remove all biological variability
and 6x10 ml samples were centrifuged for 5 min at 5000 g to
collect the cells. Metabolites from cell pellets were extracted either
by the cold methanol extraction procedure described above or by
the boiling buffered ethanol extraction method. A boiling ethanol
(80°C) solution containing 0.1 M tricine, pH 7 (5 ml) was added to
the cell pellet and the sample incubated for 3 min at 80°C. After
cooling on ice for 3 min, the solution was centrifuged for 5 min at
5000 g. The supernatant was concentrated under reduced
pressure and samples were stored at —80°C until analysis. In
each experiment sampling was carried out threefold in parallel.

Biomass Estimation

We sampled cell suspensions from the fermentor under
pressure, meaning that we could not exactly control the volume
sampled, and so we measured the protein concentration of the
cellular debris pellet after extraction in order to assess the amount
of biomass sampled, following the method of Villas-Boas et al. [16].
Briefly, protein was solubilised from the cell pellet with the
addition of 0.2 M NaOH (2 ml) and solutions were incubated at
98°C for 20 min. The solution was cooled to room temperature
and protein concentration was estimated with the Bradford assay
[17], relative to a BSA standard curve.

Comparison of P. pastoris with S. cerevisiae

We compared samples from batch cultures (25 ml) of Pichia
pastoris NCYC 175) and Saccharomyces cerevisiae NCYC 505), grown
at 30°C in minimal glycerol medium (1.34% yeast nitrogen base,
1% glycerol, 4x107°% biotin). The cultures were sampled during
exponential growth (10 ml, two independent biological replicates),
and centrifuged for 10 min at 5000 g to collect the cells. The cell
pellets were extracted by the cold methanol extraction procedure
described above, and analysed by NMR.
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NMR Analysis

Spectra were acquired on a Bruker Avance DRX600 NMR
spectrometer (Bruker BioSpin, Rheinstetten, Germany), with 'H
frequency of 600 MHz. Samples were introduced with an
automatic sampler and spectra were acquired following the
procedure described by Beckonert et al. [18]. Briefly, a one-
dimensional NOESY sequence was used for water suppression;
data were acquired into 64 K data points over a spectral width of
12 KHz, with 8 dummy scans and 512 scans per sample.

Spectra were processed in INMR 2.6.3 (Nucleomatica, Molfetta,
Italy). Fourier transform of the free-induction decay was applied
with a line broadening of 0.5 Hz. Spectra were manually phased
and automated first order baseline correction was applied.
Metabolites were assigned using the Chenomx NMR Suite 5.1
(Chenomx, Inc., Edmonton, Alberta, Canada) relative to
trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (T'SP). Metabolite
concentrations were normalised either with respect to the protein
concentration of the corresponding cellular debris pellet, or by the
probabilistic quotient normalisation method described by Dieterle
et al. [19].

GC-MS Analysis

Samples were derivatised for GC-MS by a two-step methox-
imation/silylation derivatization procedure [20]. We added 2,3,3-
ds-Leucine (20 ul, 1 mM) and U-"*C-Glucose (20 ul, 1 mM) to
the samples as derivatization standards. The dried samples were
first methoximated with a solution of 40 mg/ml methoxyamine
hydrochloride (10 pl) in anhydrous pyridine at 30°C for 90 min.
Samples were then silylated with MSTFA (90 pl) at 37°C for
30 min. Following derivatization, 2-fluorobiphenyl in anhydrous
pyridine (10 pl, 1 mM) was added to the samples as an injection
standard.

GC-MS analysis was performed on an Agilent 7890 gas
chromatograph connected to an Agilent 5975 MSD (Agilent
Technologies UK Ltd.). Samples were injected with an Agilent
7683 autosampler injector into deactivated splitless liners accord-
ing to the method of Fiehn et al. [20]. Metabolites were assigned
using the Fiehn Library [20] with the deconvolution program
AMDIS [21]. Metabolite concentrations were normalised either
with respect to the protein concentration of the corresponding
cellular debris pellet, or by the probabilistic quotient normalisation
method described by Dieterle ef al. [19].

Results

Extraction

"H NMR spectroscopy was used to compare metabolite
extraction efficiencies from Pichia pastoris with buffered boiling
ethanol and a freeze-thaw-ultrasonication method with aqueous
methanol. The cell suspensions were sampled from the fermentor
rapidly under reduced pressure, so we did not have precise
volumetric measurements of samples. Therefore, it was necessary
to estimate the sampled biomass by measuring the protein
concentration from the cell debris pellet, which was then used to
normalise metabolite concentrations. The two extraction methods
had very similar extraction efficiencies, and gave essentially
identical results (Figure 1A). We have throughout presented all
our raw data (as heatmaps), rather than just summary statistics, to
allow the reader to view the data directly. The extracted
metabolites for both methods were closely correlated with each
other (log|( concentrations), with a linear regression between them
with a slope of 0.996 (R*=0.98).

While the metabolite profiles of ethanol and methanol
extractions were quite similar, the coefficients of variation for
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metabolites from methanol extractions were relatively high
(Figure 1C, left). This could have been due to additional error
from the protein estimation protocol; internal normalisation, i.e.
giving relative concentrations, reduced the variation between
replicates to more acceptable levels (Figure 1C, right), though the
metabolite concentrations were largely unchanged and the two
extraction methods remained quite similar (Figure 1A, right).

Quenching

The efficiency of current quenching procedures with P. pastoris
was analysed by both NMR spectroscopy and GC-MS. We
sampled cells from a steady-state chemostat directly into four
different cold (<—50°C) aqueous methanol quenching solutions
(A-D see Materials and Methods) to halt metabolism. Cells were
collected by centrifugation and intracellular metabolites analysed
by 'H NMR, or derivatised before analysis by GC-MS. For all
experiments, we report metabolite concentrations normalised both
with respect to the protein concentration of the cellular debris
pellet, and internally (probabilistic quotient normalization, giving
relative concentrations). The absolute concentrations (normalised
to total protein) have the advantage that they can be easily
compared across different studies, but using relative concentra-
tions removes any additional error introduced in the protein
determination, and so we have presented both sets of data.

Intracellular Metabolite Concentrations. As can be seen
by inspection of the raw NMR data, either as absolute or relative
concentrations (Figure 2A), there were few differences in
intracellular metabolite levels between the four quenching
solutions. Fumarate was found to be greatly increased in cells
quenched by method A (the ‘standard’ quenching protocol).
Despite this, metabolite concentrations for each of the quenching
solutions correlated well with each other, with slopes for the
regression line close to 1 (Figure 2B). A higher precision of
replicate metabolite measurements was obtained for quenching
solution D. For comparison, metabolite concentrations from
unquenched (centrifuged) cells are also shown. Metabolite
concentrations show an overall correlation with the quenched
samples, but clearly all the quenching methods are more similar to
each other than to the centrifuged samples (Figure 3). Considering
specific metabolites, AMP is increased and UDP-glucose is
decreased.

The high cell concentrations achievable in simple salts media
and typical of P. pastoris protein production cultures’ gives us the
option of a differential/subtractive approach for robust m wvivo
metabolite measurements. For this method we collected two
samples. One sample was quenched and directly extracted into the
quenching solution, i.e. without any separation of cells from
medium, while the second sample was centrifuged without
quenching to obtain supernatant profiles (Figure 4). By subtracting
the concentrations of metabolites in the supernatant sample from
the total extract, we could measure the intracellular metabolite
concentrations with no possibility of losses during a centrifugation
step. As a result, this total extract can serve as a benchmark, and
we can determine percent loss/recovery of individual metabolites
during the different quenching processes.

The metabolite levels of the total extract were very similar to
those of the other quenching solutions, which included a
centrifugation step (Figure 2A). Noticeable differences were that
fumarate was significantly lower for quenching solutions B, C and
D. However, overall, the quenching solutions B and D had
metabolite recoveries distributed around 100% of the expected
levels, while quenching solutions A and C showed lower recoveries
(Figure 5A, left). By comparing the relative standard deviations we
can see that quenching solutions C and D are more reproducible
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Figure 1. Comparison of metabolite extraction methods. A) Metabolite concentrations extracted from P. pastoris either with buffered boiling
ethanol (EtOH) or using a freeze thaw methodology with aqueous methanol (MeOH). Concentrations were determined from 'H NMR spectra of the dried
extracts using the Chenomx software suite. Data was normalised by either the cellular debris protein concentration (left: nM/mg cell debris protein) or by
the probabilistic quotient method (right: nM) [19], and log transformed. MO = 3-Methyl-2-oxovalerate, GPC = Glycero-3-phosphocholine. B) Correlation
of metabolite concentrations extracted from P. pastoris with either buffered boiling ethanol or methanol; C) Relative standard deviation of replicate
concentration measurements of metabolites extracted from P. pastoris with either buffered boiling ethanol or methanol.

doi:10.1371/journal.pone.0016286.g001
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Figure 2. "H NMR measurements of intracellular metabolite concentrations following quenching. A) 'H NMR metabolite concentrations
extracted from P. pastoris samples that have either been unquenched (O), or quenched with 60% (final conc.) aqueous methanol (A), 86% (final conc.)
methanol (B), 60% (final conc.) methanol 10 mM Tricine buffer, pH 7.4 (C), 60% (final conc.) methanol, 0.85% ammonium bicarbonate (D), or
quenched and extracted with the total culture (T). Concentrations were determined from 'H NMR spectra of the dried extracts using the Chenomx
software suite. Data was normalised by either the cellular debris protein concentration (left: nM/mg cell debris protein) or by the probabilistic
quotient method (right: nM) [19], and log transformed. MOV = 3-Methyl-2-oxovalerate, GPC = Glycero-3-phosphocholine; B) Correlation matrix of
metabolite concentrations (logo) extracted from the samples of P. pastoris described above. The lower half of the matrix displays the values for the
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gradient (above) and R? (below) for the corresponding linear regression; C) Relative standard deviation of replicate measurements of metabolite
concentrations extracted from the samples of P. pastoris cells described above.

doi:10.1371/journal.pone.0016286.9002

(Figure 5B, left). Normalising the data by the probabilistic quotient
method reduces the differences between the different quenching
solutions and improves metabolite retention for quenching
solutions A and C, although quenching solutions C and D still
provide lower relative standard deviations for replicate measure-
ments. All data used for these analyses (Figures 1, 2, 3, 4 and 5) is
given in supplementary information (Table SI).

We also analysed samples from the quenched extracts by GC-
MS, and similarly to NMR the four different quenching solutions
resulted in very similar metabolite concentrations overall
(Figure 6A), although 3-phosphoglycerate, phosphoenol pyruvate
and glycerol-1-phosphate were significantly lower in quenching
solution B. Despite this however, the metabolite concentrations
from different quenching solutions correlated well with each other
resulting in regression lines with slopes close to 1. Interestingly, the
metabolite levels for the total quench extract were significantly
lower for a number of metabolites. This is likely to have been
caused by effects on derivatization efficiency, leading to a large
relative standard deviation for the total extract samples (Figure 6C).
Quenching solution D had the smallest relative standard deviation
for replicate samples.

Exometabolome measured  extracellular
(supernatant) metabolite concentrations to make it easier to
identify metabolites that leaked during the quenching process.
The metabolite levels in the supernatants of each of the quenching
solutions generally compare well with the unquenched supernatant
standard (Figure 7). However, a few metabolites are significantly
different. Alanine was not found in the unquenched sample but
appeared in the supernatants of all quenching solutions, and
arabitol was higher in quenched supernatants for all solutions.
Aspartate was also significantly higher in quenching solutions A, C
and D. NAD was not present in the supernatants of solution B,
which may perhaps be due to a reduced recovery. We could not
confidently assign asparagine in the "H NMR spectra of the

analysis. We

quenched supernatant sample from solution D due to overlapping
peaks. Interestingly, using quenching solution A gave higher intra-
and extracellular concentrations of fumarate. Despite these
differences in some individual metabolites, overall the profiles of
the different quenching solutions correlated well with each other,
with regression lines with slopes close to 1. The reproducibility was
slightly better for quenching solutions A and D, as shown by the
distributions of relative standard deviations.

In addition to the NMR-based profiling, we used GC-MS as a
complementary analytical technique for the exometabolome data
(Figure 8). The metabolite profile from quenching solution C was
quite different from the other quenching solutions, giving
significantly lower concentrations for a number of metabolites.
This is presumably the result of interference by the tricine buffer,
e.g. in the derivatization process. However, the levels of
metabolites in the other quenching solutions correlated well with
the unquenched supernatant sample as well as with each other.
Arabitol was higher in all quenched supernatants for all solutions,
consistent with the NMR results. Glutamate and aspartate
concentrations were also found to be higher for quenched
supernatants compared with the unquenched supernatant
standard.

The supernatant data can be used to estimate metabolite
leakage during the quenching process, expressed as a percentage
of the unquenched supernatant concentrations (Figures 9, 10). The
NMR data show that overall solutions B and C had a much
smaller level of metabolite leakage than the other quenching
solutions. Even so, for quenching solutions A and D, the losses
were generally small: 75% of the metabolites that leaked were
below 5% of their intracellular levels. Despite this, however, the
results using quenching solutions A and D gave a much smaller
relative standard deviation for replicate samples. Fumarate was the
main metabolite with a high percent leakage; the other metabolites
were below 15%.

I

J‘_I }J_lij
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Figure 3. Clustering of the different quenching methods. Similarity of "H NMR metabolite concentrations extracted from P. pastoris samples
that have either been unquenched (O), or quenched with 60% (final conc.) aqueous methanol (A), 86% (final conc.) methanol (B), 60% (final conc.)
methanol 10 mM Tricine buffer, pH 7.4 (C), 60% (final conc.) methanol, 0.85% ammonium bicarbonate (D), or quenched and extracted with the total
culture (T); Data was normalised by either the cellular debris protein concentration (left) or by the probabilistic quotient method (right) [19].

doi:10.1371/journal.pone.0016286.9g003
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Figure 4. "H NMR spectra of extracted metabolites. Overlay of a portion of the 'H NMR spectra of metabolites from quenched cell extracts
(red), quenched supernatants (orange), and the total quench benchmark sample (blue).

doi:10.1371/journal.pone.0016286.g004

The GC-MS data gave a similar picture (Figure 10). Although a
few metabolites leaked into the quenching solutions at relatively
high levels, the majority were at low levels compared to their
mtracellular concentration. Quenching solutions A and B overall
had the lowest levels of intracellular metabolite leakage, but even
for C and D, 75% of metabolites found in the quenching
supernatant were at less than 15% of their intracellular levels.

Wash Step. We investigated the usefulness of an additional
wash step following quenching with the four different quenching
solutions. Correlations of the washed quenched cell extracts with
the quenched cell extracts had slopes close to 1, indicating that no
significant leakage occurred during the wash step (Figure 11).

Direct visual comparison of spectra for washed and unwashed
quenched cell extracts shows that the profiles are extremely similar
(Figure 11C). Notably, the unwashed quenched cells did not
contain a significant amount of resonances from contaminating
extracellular metabolites — although washing the cells reduced a
small number of signals between 1.08 and 1.2 ppm, including
resonances from 3-methyl-2-oxovalerate, this spectral region does
not contain a lot of signals from other intracellular metabolites.

Baseline Metabolome of Pichia pastoris. In this study we
have thoroughly characterised the high concentration metabolites
in both the extra- and intracellular locations by NMR
spectroscopy (Figure 2A). The assignments of metabolites were
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Figure 5. Recovery of intracellular metabolites following quenching. A) Percent recovery of intracellular metabolites extracted from P.
pastoris samples that have either been quenched with 60% (final conc.) aqueous methanol (A), 86% (final conc.) methanol (B), 60% (final conc.)
methanol 10 mM Tricine buffer, pH 7.4 (C), 60% (final conc.) methanol, 0.85% ammonium bicarbonate (D), as compared with the total culture
extraction standard; B) Relative standard deviation of replicate measurements for the percent recovery of intracellular metabolites extracted from the
samples of P. pastoris cells described above; Data was normalised by either the cellular debris protein concentration (left) or by the probabilistic

quotient method (right) [19].
doi:10.1371/journal.pone.0016286.g005
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Figure 6. GC-MS measurements of intracellular metabolite concentrations following quenching. A) GC-MS metabolite concentrations
extracted from P. pastoris samples that have either been unquenched (0O), or quenched with 60% (final conc.) aqueous methanol (A), 86% (final conc.)
methanol (B), 60% (final conc.) methanol 10 mM Tricine buffer, pH 7.4 (C), 60% (final conc.) methanol, 0.85% ammonium bicarbonate (D), or quenched
and extracted with the total culture (T). Data was normalised by either the cellular debris protein concentration (left: nM/mg cell debris protein) or by the
probabilistic quotient method (right: nM) [19], and log transformed; B) Correlation matrix of metabolite concentrations (log,o) extracted from the
samples of P. pastoris described above. The lower half of the matrix displays the values for the gradient (above) and R? (below) for the corresponding
linear regression. Data was normalised by either the cellular debris protein concentration (left) or by the probabilistic quotient method (right) [19]; C)
Relative standard deviation of replicate measurements of metabolite concentrations extracted from the samples of P. pastoris cells described above.
Data was normalised by either the cellular debris protein concentration (above) or by the probabilistic quotient method (below) [19].

doi:10.1371/journal.pone.0016286.g006
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Figure 7. "H NMR measurements of extracellular metabolite concentrations following quenching. A) 'H NMR metabolite concentrations from
supernatant samples of P. pastoris cultures that have either been unquenched (O), or quenched with 60% (final conc.) aqueous methanol (A), 86% (final
conc.) methanol (B), 60% (final conc.) methanol 10 mM Tricine buffer, pH 7.4 (C), 60% (final conc.) methanol, 0.85% ammonium bicarbonate (D).
Concentrations were determined from "H NMR spectra of the dried extracts using the Chenomx software suite. Data was normalised by either the cellular
debris protein concentration (left: nM/mg cell debris protein) or by the probabilistic quotient method (right: nM) [19], and log transformed. MOV =3-
Methyl-2-oxovalerate, GPC = Glycero-3-phosphocholine; B) Correlation matrix of metabolite concentrations (log) extracted from the various samples of P.
pastoris. The lower half of the matrix displays the values for the gradient (above) and R? (below) for the corresponding linear regression; C) Relative standard
deviation of replicate measurements of metabolite concentrations extracted from the supernatant samples of P. pastoris cultures described above.
doi:10.1371/journal.pone.0016286.g007
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Figure 8. GC-MS measurements of extracellular metabolite concentrations following quenching. A) GC-MS metabolite concentrations from
supernatant samples of P. pastoris cultures that have either been unquenched (O), or quenched with 60% (final conc.) aqueous methanol (A), 86% (final
conc.) methanol (B), 60% (final conc.) methanol 10 mM Tricine buffer, pH 7.4 (C), 60% (final conc.) methanol, 0.85% ammonium bicarbonate (D). Data was
normalised by either the cellular debris protein concentration (left: n(M/mg cell debris protein) or by the probabilistic quotient method (right: nM) [19], and
log transformed; B) Correlation matrix of metabolite concentrations (log;,) extracted from the various samples of P. pastoris. The lower half of the matrix
displays the values for the gradient (above) and R? (below) for the corresponding linear regression; C) Relative standard deviation of replicate measurements
of metabolite concentrations extracted from the supernatant samples of P. pastoris cultures described above.

doi:10.1371/journal.pone.0016286.g008
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Figure 9. '"H NMR measurements of metabolite leakage
following quenching. A) 'H NMR data for the percent leakage of
intracellular metabolites extracted from supernatant samples of P.
pastoris cultures that have either been quenched with 60% (final conc.)
aqueous methanol (A), 86% (final conc.) methanol (B), 60% (final conc.)
methanol 10 mM Tricine buffer, pH 7.4 (C), 60% (final conc.) methanol,
0.85% ammonium bicarbonate (D), as compared with the unquenched
supernatant standard; B) Distributions of the percent leakage of
intracellular metabolites for the samples described above; C) Relative
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standard deviation of replicate measurements for the percent leakage
of intracellular metabolites extracted from the samples of P. pastoris
supernatants described above. GPC = Glycero-3-phosphocholine.
doi:10.1371/journal.pone.0016286.g009

confirmed through the use of various 2D NMR techniques such as
COSY, TOCSY and HSQC and spike in experiments. In addition
to this we also used GC-MS as a complementary analytical tool to
extend the detection to lower concentrated metabolites (Figure 6A).
This has provided us with a baseline metabolome for P. pastoris for
future studies.

In comparison with S. cerevisiae, intracellular metabolite profiles
of exponentially growing P. pastoris are clearly different. The NMR
profiles of the two yeast species grown on the same medium are
clearly different (Figure S1), although it should be noted that these
spectra were obtained from centrifuged rather than quenched
cells. One of the most obvious metabolic differences is that P.
pastoris cells produce arabitol, a five-carbon sugar alcohol, whereas
S. cerevisiae cells do not. This metabolite, which has the highest
intracellular concentration in P. pastoris, has been identified in
other yeast species, such as Pichia anomala [22] and Pichia sorvitophila
[23], and may be involved in regulating osmotic conditions within
the cell [23]. This job may also be shared by trehalose, which is the
next highest concentrated carbohydrate within P. pastoris cells and
is also present in . cerevisiae. This metabolite is believed to be
responsible for controlling osmotic conditions in . cerevisiae and in
a variety of other yeasts and bacteria [23,24], and contributes to
survival during various stress conditions such as heat, freezing,
dehydration and desiccation by acting as a membrane protectant
[24]. We have also confirmed the assignment of a number of
nucleotide sugars in P. pastoris, such as UDP-glucose and UDP-N-
acetylglucosamine. As the strains we are currently working with
are histidine auxotrophs, a relatively high concentration metab-
olite within P. pastonis cells is histidinol. Such mutants lack histidine
dehydrogenase (HIS4) and are unable to convert histidinol into
histidine, the last step in its biosynthesis. A interesting extracellular
metabolite that has been identified in P. pastoris cultures is tyrosol
[2-(4-hydroxyphenyl)ethanol]. Tyrosol, which is derived from
tyrosine, is a known quorum-sensing molecule in Candida albicans
that stimulates the formation of germ tubes [25]. There is a
growing recognition of the potential importance of quorum
sensing in yeasts, although to date the only evidence within Pickia
species is that the induction of pyruvate decarboxylase is density-
dependent for P. stipitis (although a signalling molecule was not
identified) [26].

In an attempt to evaluate the equivalency of the two analytical
platforms, we calculated correlations between NMR and GC-MS
concentrations for individual metabolites (supplementary informa-
tion, Figure S2). While not all metabolites were highly correlated
across the two techniques, it must be noted that all the samples
were obtained under very similar biological conditions from a
steady-state chemostat fermentor. As such the samples should
contain very little biological variation and therefore, correlations
would obviously be lower than for studies where there was a lot of
metabolite variation between studies. Previous studies with NMR
and GC-MS however have shown a high degree of comparability
between the two platforms for metabolites that are detected by
both methods [27].

Discussion

The vast diversity of cellular structures and intra- and
extracellular metabolites necessitates the validation of metabolo-
mic sampling protocols for different organisms. While yeast species
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Figure 10. GC-MS measurements of metabolite leakage following quenching. A) GC-MS data for the percent leakage of intracellular
metabolites extracted from supernatant samples of P. pastoris cultures that have either been quenched with 60% (final conc.) agueous methanol (A),
86% (final conc.) methanol (B), 60% (final conc.) methanol 10 mM Tricine buffer, pH 7.4 (C), 60% (final conc.) methanol, 0.85% ammonium
bicarbonate (D), as compared with the unquenched supernatant standard; B) Distributions of the percent leakage of intracellular metabolites for the
samples described above; C) Relative standard deviation of replicate measurements for the percent leakage of intracellular metabolites extracted
from the samples of P. pastoris supernatants described above.

doi:10.1371/journal.pone.0016286.g010
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Figure 11. Evaluation of the wash step following quenching. A) Correlations of "H NMR metabolite concentrations for the washed quenched
extracts (WA, WB, WC and WD), with their corresponding unwashed quenched extracts from P. pastoris cultures that have either been quenched with
60% (final conc.) aqueous methanol (A), 86% (final conc.) methanol (B), 60% (final conc.) methanol 10 mM Tricine buffer, pH 7.4 (C), 60% (final conc.)
methanol, 0.85% ammonium bicarbonate (D). Data was normalised by either the cellular debris protein concentration (left: nM/mg cell debris
protein) or by the probabilistic quotient method (right: nM) [19], and log transformed. The squares on the right display the values for the gradient
(above) and R? (below) for the corresponding linear regression; B) Correlations of GC-MS metabolite concentrations for the washed quenched
extracts with their corresponding unwashed quenched extracts from P. pastoris cultures. Data was normalised by either the cellular debris protein
concentration (left: nM/mg cell debris protein) or by the probabilistic quotient method (right: nM) [19], and log transformed; C) Overlay of a portion
of the "H NMR spectra of metabolites from quenched cell extracts (red) and quenched cells that have been through a wash step before extraction
(blue).

doi:10.1371/journal.pone.0016286.9011

such as S. cerevisiae have been well studied, only one previous paper resulted from such targeted analyses. Here, we used both 'H
has investigated sampling conditions with P. pastoris [4]. However, NMR and GC-MS as untargeted profiling tools to evaluate
this was a targeted analysis of amino acids, and much confusion in extraction and quenching protocols with P. pastoris. We chose

the literature about the validity of quenching protocols has NMR because it has high analytical precision for a wide range of
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metabolites, and can readily be used to determine absolute
concentrations, and so is particularly well suited to comparing
sample preparation methods which may result in only subtle
metabolic differences. Because NMR is limited to reporting on
only a small set of high-concentration metabolites, we also used
GC-MS as a complementary tool to extend metabolome coverage.

For metabolomic investigations, it is vital to get accurate
measurements of i vivo metabolites representing all functional
categories, and therefore efficient extraction methodologies are
necessary. Our results indicate that extraction with buffered
boiling ethanol is just as efficient as the freeze-thaw methodology
with aqueous methanol plus sonication. Given this, we preferred
the freeze-thaw aqueous methanol extraction for a number of
reasons. The protocol is simpler and does not require heating,
which therefore prevents the potential degradation of heat-labile
compounds. The boiling ethanol extraction method also required
an additional step as we observed an insoluble precipitate
following resolubilization with the NMR buffer, and filtering was
required to remove it. Furthermore, tricine is used as a buffer in
the boiling ethanol extraction, which results in peaks at 3.67 and
3.76 ppm in the NMR spectra of cell extracts.

The cell suspensions were sampled rapidly from the fermentor
under pressure directly into chilled solvent. As a result, we could
not sample precise volumes, and so needed to normalise the data
to allow for this. One method was by estimating the amount of
biomass that was sampled by measuring the total protein content
of the cellular debris pellet following metabolite extraction. This
has the great advantage that it gives metabolite concentrations in a
form that are directly comparable across different studies;
however, it also means that the process of measuring the protein
concentration is also a potential source of error. This is
exemplified by Figure 1, where one of the methanol extract
replicates showed consistently higher concentrations for all
metabolites extracted, resulting in a much higher relative standard
deviation compared with the ethanol extract replicates. Because of
this, we also normalized all the data internally, i.e. expressing all
data as relative concentrations. This removes any variation
introduced by the protein determination, and hence provides the
best comparison between sampling protocols for metabolome
analysis. For completeness both normalisation methods have been
applied to all data for comparison.

The high turnover of intracellular metabolites highlights the
need for reliable, reproducible quenching techniques for microbial
metabolomics. A number of methods have been proposed to
address the problem of metabolite leakage during quenching.
Canelas et al. reported that higher concentrations of methanol
might reduce metabolite losses, rather than increase them [10].
Several methods attempt to reduce osmotic shock through the
addition of salts and buffers such as tricine, HEPES and PIPES
[28,29]. However, many of these may cause undesirable ion
suppression effects in mass spectrometry studies, or else lead to
unwanted resonances in NMR spectra. For mammalian cells, 60%
methanol with ammonium bicarbonate was found to result in the
greatest recovery of the metabolites being measured [29], although
a recent paper reported contradictory results [30].

Unfortunately, it is not a trivial matter to evaluate different
quenching techniques, and this has led to confusion in the
literature as to the effectiveness of quenching protocols. Some
studies have tested expected metabolite ratios, such as measuring
the adenylate energy charge. However, although this could
identify cases where in vivo metabolite ratios had been disrupted,
it could not by itself confirm the success of quenching protocols
(e.g. there could be metabolic changes that would still maintain the
AEC). Furthermore, this focuses on highly labile metabolites, but
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says nothing about possible changes in the rest of the metabolome.
Alternatively, we could compare intracellular levels of other
metabolites to see if there were any significant losses, but the i vivo
value would not be known ahead of time. Conversely, metabolite
concentrations in supernatants of quenched samples could be
compared, with any significant increases indicating metabolite
leakage. However, if a metabolite leaks for all quenching protocols
being compared, then this would go unnoticed. Therefore, it
would be more convenient to compare quenching methods to a
“gold standard” of intracellular metabolite concentrations, which
unfortunately does not exist. A close approximation would involve
direct quenching and extraction of the culture broth (i.e. cells +
supernatants, therefore removing the problematic washing step)
and a differential/subtractive method for estimation of intracel-
lular metabolite concentrations [31]. However, this method may
not be suitable for all microbial cultures. Given that the cytosolic
volume is much smaller than the total culture volume for most
microbial experiments, this can lead to very small intracellular
metabolite peaks of interest against very high background peaks
from the growth medium. P. pastoris can be grown at extremely
high cell densities in a simple salts medium, and therefore offers
the great advantage that ‘total’ quenching of the cells + broth
combined can give a good picture of the endometabolome, even
when using an untargeted method such as NMR (Figure 4). The
supernatant sample contains only very low concentrations of
metabolites compared with the quenched cell extract sample, and
luckily resonances from extracellular metabolites, for example
signals at 1.17, 1.38, 2.28 and 2.61 ppm, do not overlap greatly
with intracellular metabolite resonances. In other words, total
quenching offers us a gold standard method to compare against for
P. pastoris.

There were subtle differences between the four quenching
solutions, e.g. metabolites such as fumarate fell well below their
estimated intracellular concentrations for methanol quenching,
but a broad comparison showed that, overall, they all gave very
similar results. The intracellular metabolite concentrations from
quenched extracts also correlated well with the total quenching
‘gold standard’. While the total quenching method worked well for
"H NMR, it was not as effective for GC-MS. Many metabolites
had apparently lower concentration than in the quenched extracts,
which was presumably the result of the high amounts of salts as
well as metabolites interfering with the derivatization process.

We could get an accurate estimation of extracellular metabo-
lites, through centrifugation of an unquenched culture sample.
This simplicity is part of the advantage of metabolic footprinting
[32], and gives a reliable standard for comparison of the
exometabolome data from the quenched samples. This showed
that extracellular alanine and arabitol both increased following the
quenching protocol, indicating leakage from cells. This is
consistent with other studies; Bolten et al. [4] reported leakage of
aspartate and glutamate from P. pastoris following the standard
methanol quenching procedure. Our 'H NMR results confirm the
increase of aspartate in the 60% methanol (A), 60% methanol,
10 mM tricine (C) and 60% methanol, 0.11 M ammonium
bicarbonate (D) quenching solutions, though glutamate was not
significantly increased. However, the GC-MS results showed
significantly increased levels of both aspartate and glutamate in the
quenching solutions.

Given the evidence for metabolite leakage during quenching, it
is useful to represent the increased extracellular metabolite
concentrations relative to their intracellular concentration. The
"H NMR results suggest that the leakage of metabolites was at a
low level, with increases in the quenching solution below 5% of
their intracellular level for 75% of metabolites. The GC-MS
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results suggest a slightly higher level with increases below 15% of
their intracellular levels.

Current quenching protocols include a wash step to ensure the
complete removal of the extracellular metabolites. However, this
extra step may risk further metabolite leakage or may result in
metabolite turnover. With the current conditions (high cell
concentrations, salts medium) the wash step did not seem to
provide a significant advantage to warrant its inclusion. While, no
turther significant leakage occurred during the washing procedure,
the unwashed quenched cell extracts did not contain large
concentrations of contaminating extracellular metabolites. Fur-
thermore, in the '"H NMR spectra these metabolites did not
greatly overlap with intracellular metabolite signals (Figure 11C).

From these results it is difficult to recommend one quenching
solution over another, as each of the methods have resulted in
similar intra- and extracellular profiles. Parsons e al. have
proposed using median relative standard deviation as a practical
benchmark [33]. In this case the 60% methanol, 0.11 M
ammonium bicarbonate (D) quenching solution showed lower
relative standard deviation values for both intra- and extracellular
metabolite levels. Therefore, this method perhaps provides an
improvement over the other quenching methods. For mass
spectrometry studies, further consideration should be given to
any buffer additives to the quenching solution. The GC-MS
analysis of extracellular metabolites from the 60% methanol,
10 mM tricine (C) quenching solution, resulted in low concentra-
tions for a number of metabolites compared with the other
quenching solutions. This was perhaps a result of interference of
the tricine buffer, e.g. in the derivatization process, though
surprisingly this was not evident for quenching solution D, which
contained ammonium bicarbonate.

In summary, we have performed a comprehensive investigation
of appropriate sampling techniques for P. pastoris using NMR and
GC-MS, which led to an untargeted and highly quantitative
analysis of intra- and extracellular metabolites. We have identified
the major high-concentration metabolites found in P. pastoris
during exponential growth. Quenching protocols based on the
common procedure using cold methanol did cause some
metabolite losses from cells, but the losses were fairly small
compared to the remaining intracellular concentrations, and so the
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Figure S2 Comparison between NMR and GC-MS for
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(TTF)
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