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Abstract

Nanoparticle (NP) exposure has been closely associated with the exacerbation and pathophysiology of many respiratory
diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma. Mucus hypersecretion and accumulation in
the airway are major clinical manifestations commonly found in these diseases. Among a broad spectrum of NPs, titanium
dioxide (TiO2), one of the PM10 components, is widely utilized in the nanoindustry for manufacturing and processing of
various commercial products. Although TiO2 NPs have been shown to induce cellular nanotoxicity and emphysema-like
symptoms, whether TiO2 NPs can directly induce mucus secretion from airway cells is currently unknown. Herein, we
showed that TiO2 NPs (,75 nm) can directly stimulate mucin secretion from human bronchial ChaGo-K1 epithelial cells via a
Ca2+ signaling mediated pathway. The amount of mucin secreted was quantified with enzyme-linked lectin assay (ELLA).
The corresponding changes in cytosolic Ca2+ concentration were monitored with Rhod-2, a fluorescent Ca2+ dye. We found
that TiO2 NP-evoked mucin secretion was a function of increasing intracellular Ca2+ concentration resulting from an
extracellular Ca2+ influx via membrane Ca2+ channels and cytosolic ER Ca2+ release. The calcium-induced calcium release
(CICR) mechanism played a major role in further amplifying the intracellular Ca2+ signal and in sustaining a cytosolic Ca2+

increase. This study provides a potential mechanistic link between airborne NPs and the pathoetiology of pulmonary
diseases involving mucus hypersecretion.
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Introduction

Many published reports have demonstrated the association

between NP exposure and pulmonary morbidity and mortality

[1,2,3]. The adverse effects induced by NPs seem to exacerbate

clinical symptoms of pre-existing respiratory illnesses such as asthma,

COPD and Cystic Fibrosis (CF) [1,2,3,4,5,6]. During NP exposure,

individuals with respiratory diseases showed more incidences of

bronchoconstriction, medication use, bronchial hyperreactivity and

lung fibrosis [2,7]. TiO2 NPs are widely used in the nanotechnology

industry due to their vast array of applications that range from

household commodities, such as components of paints and carpets,

to personal products that include cosmetics, textiles, sunscreens and

foods [8,9]. TiO2 is also one of the PM10 components commonly

found in industries or manufacturing plants involved in processing

mineral ore rutile [10]. It has been reported that .50% of TiO2 NP

exposed workers had respiratory symptoms accompanied by

reduction in pulmonary function [10,11]. Other reports have also

indicated that inhalation of TiO2 NPs can induce pulmonary

inflammatory responses (characterized by neutrophil recruitment),

epithelial cell death and increased permeability [2,9]. Furthermore,

TiO2 NPs have been shown to play a role in inducing epithelial

fibroproliferative changes, stimulating goblet cell hyperplasia and in

instigating emphysema-like (such as alveolar enlargement) damages

in the lungs [2,10,12]. Overall, nanotoxicity induced by TiO2 NP

exposure in both the occupational and ambient environment

presents a significant and realistic health concern.

The harmful effects of NPs on the respiratory system not only

encompass cellular apoptosis/necrosis, but also mucus hyperpro-

duction which is closely associated with the pathogenesis of

pulmonary diseases that include asthma, COPD and CF [2,10,13].

In these chronic pulmonary diseases, mucus hypersecretion and

accumulation may lead to recurrent episodes of chronic bacterial

infections, limited airflow and chronic inflammatory responses

[2,14,15]. However, whether TiO2 NPs can directly induce mucin

secretion has not been resolved.

Airway mucus plays a vital role in the constant clearance of

inhaled pathogens and particulates. Mucus is a large, highly

glycosylated protein consisting of an array of mucin peptides

(apomucin) [14]. With their oligosaccharide sidegroups, such as

sialic acid, sulfate, and carboxyl (COO2), mucins are usually

polyanionic in nature [16]. Mucin secretion is closely regulated by

cytosolic Ca2+ concentrations ([Ca2+]C) in various epithelial cells

[17]. A rise in [Ca2+]C is crucial for initiating a cascade of down

stream events including the mobilization of granule-bound Ca2+,

docking of the secretory granules, fusion of the plasma-granule

membrane and the formation of secretory pores, therefore leading

to the exocytosis of the mucin granules [18].
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Agonist-induced opening of various Ca2+ channels expressed on

the cell membrane allows the influx of extracellular Ca2+, which

may serve as the external Ca2+ source [19]. The initial upsurge in

the [Ca2+]C is usually relayed by triggering a secondary wave of

Ca2+ propagation from internal stores, such as the ER

[19,20,21,22]. Ryanodine receptors (RYRs) on the ER have

multiple allosteric Ca2+ binding sites responsible for triggering

Ca2+- induced Ca2+ release (CICR) into the cytosol [19,20,21,22].

The resultant increase in [Ca2+]C could activate other cytosolic

proteins and modulate secretion of mucin, hormones or various

neurotransmitters [17,23,24].

NPs have been shown to disturb cellular functions by elevating

intracellular Ca2+ levels [25,26,27,28]. For example, ultrafine

carbon black NPs can elicit Ca2+-dependent secretion through the

activation of L-type voltage-gated Ca2+ channels [25,26,28].

However, little is known regarding the intricate calcium signaling

pathway regulating the exocytotic events of secretory products. In

this study, we aim to investigate the mechanism through which

TiO2 NPs induce mucin secretion via a Ca2+ signaling mediated

pathway.

Materials and Methods

1. Culture of ChaGo-K1 cells
The human airway bronchial epithelial cell line ChaGo-K1,

obtained from American Type Culture Collection (ATCC,

Manassas, VA, USA), was used because it expresses MUC

proteins and secretes mucin [29]. Cells were cultured in 15 cm

cell culture plates (VWR, CA, USA) in RPMI 1640 medium

(Invitrogen, CA, USA) supplemented with L-glutamine, 1%

penicillin/streptomycin and 10% heat inactivated fetal bovine

serum (FBS). Cultures were incubated in a humidified incubator at

37uC/5% CO2. Cell counts were performed using trypan blue

(Sigma-Aldrich, MO, USA) exclusion and a Bright-Line haemo-

cytometer.

2. Nanoparticles and characterization
A mixture of anatase and rutile forms of ultrafine titanium (IV)

dioxide (,75 nm) (Sigma-Aldrich, MO, USA) was used in this

study because this form has been shown to result in more severe

cellular injuries [30,31]. The TiO2 NPs have a surface area of

36 m2/g and the dispersion conductivity is 1040 mS/cm (infor-

mation from Sigma). All NP samples were sonicated before usage.

The concentrations used were 1 mg/ml, 0.75 mg/ml, 0.5 mg/ml,

0.25 mg/ml, 0.1 mg/ml, and 0.05 mg/ml. The range of concen-

trations used was consistent with the concentrations of TiO2 NPs

found in previous reports [30]. The TiO2 NPs were reconstituted

with Hanks’ solution (Invitrogen, CA, USA) before being tested.

The size of NPs was independently confirmed using homodyne

dynamics laser scattering (DLS) as described in previous studies

[32,33].

3. Cell preparation
Cells were seeded at 26105 cells per well in a 24-well plate, and

incubated for 24 hrs in RPMI 1640 supplemented with 10% FBS.

Following 24 hr incubation, the RPMI medium was removed

from the cells and the culture was rinsed with Hanks’ solution

twice before use.

4. Measurements of cytosolic Ca2+ concentrations
induced by TiO2 exposure

The cells were then loaded with a Rhod-2 AM dye (1 mM)

(Kd = 570 nM, lEx = 552 nm and lEm = 581) (Invitrogen, CA,

USA) for 45 minutes. After the dye loading, the cells were rinsed,

incubated with either normal Hanks’ or Ca2+-free Hanks’ solution,

and treated with the appropriate TiO2 concentrations. All calcium

signaling experiments were carried out on a thermoregulated stage

at 37uC mounted on a Nikon microscope (Nikon Eclipse TE2000-

U, Tokyo, Japan). ChaGo-K1 cells were incubated with cadmium

chloride (200 mM; Sigma-Aldrich, MO, USA) to block the

membrane Ca2+ channels [34], followed by TiO2 NP stimulation.

To investigate the interaction between TiO2 and membrane Ca2+

channels, nifedipine (10 mM; Sigma-Aldrich, MO, USA), an L-

type Ca2+ channel blocker [27], was added to ChaGo-K1 cells

prior to the exposure of TiO2. Antioxidant N-acetylcysteine (NAC,

250 mM; Sigma-Aldrich, MO, USA) was also added to ChaGo-K1

cells to study the involvement of reactive oxygen species (ROS)

[27,35], possibly generated as a result of TiO2 stimulation, and the

activation of Ca2+ channels. Thapsigargin (100 nM; Sigma-

Aldrich, MO, USA) [18] and ryanodine (100 mM; Sigma-Aldrich,

MO, USA) were added separately to deplete the ER Ca2+ content

and to inhibit the CICR mechanism [20,21], correspondingly.

These two blockers were utilized to investigate the contribution

from the internal ER Ca2+ pool.

5. Calcein dye leakage measurements
ChaGo-K1 cells were seeded at the density of 26105 cells per

well in a 24-well plate and cultured for 24 hrs. TiO2 NP prepared

with calcein fluorescent dye (50 mM) (Invitrogen, CA, USA) in

Hanks’ solution was incubated with the cells for 5 minutes at 37uC.

Calcein is a biological inert green-fluorescent molecule of a

molecular mass of 623 Da and an estimated molecular radius of

0.6 nm [36]. TiO2 NP solution containing the calcein dye was

then removed and cells were rinsed twice with PBS to remove

possible remnants of calcein dye in the extracellular solution. The

cells were subsequently stained with a fluorescent nucleus dye,

hoechst (10 mM) (Sigma-Aldrich, MO, USA), for 5 mintues at

37uC and thoroughly rinsed again [33]. Fresh Hanks’ solution was

added into each well before taking fluorescent images of calcein

and hoechst loaded cells with a Nikon fluorescence microscope. A

percentage of calcein loaded cells against total number of cells, as

indicated by hoechst fluorescence, was calculated for each of the

TiO2 NP concentrations used in the experiment.

6. Mucin secretion and ELLA Preparation
The cells were seeded at 26105 cells per well in a 24-well plate

and cultured for 24 hrs. ChaGo-K1 cells were then rinsed with

PBS and treated with BAPTA-AM (Invitrogen, CA, USA),

thapsigargin (Sigma-Aldrich, MO, USA) or ryanodine (Sigma-

Aldrich, MO, USA) for at least 30 minutes. Afterward the cells

were stimulated for 15 minutes with the corresponding TiO2 NP

concentrations (0.75 mg/ml, 0.5 mg/ml, 0.25 mg/ml, and

0.1 mg/ml) or ionomycin (1 mM) (positive control) (Sigma-Aldrich,

MO, USA), both prepared in PBS. The supernatant containing

secreted mucin was collected and briefly centrifuged at 8,000 rpm

to remove the residual TiO2 NPs. The supernatant was then

incubated in a 96 well (Nunc MaxiSorp, VWR, CA, USA) plate

overnight at 4uC. Afterward the 96-well plate was washed with

PBST (PBS + 0.05% Tween-20) and then blocked with 1% BSA.

The 96 well plate was washed again with PBST and incubated

with lectin (Wheat germ agglutinin, WGA) (Sigma-Aldrich, MO,

USA), conjugated to horseradish peroxidase (HRP; 5 mg/ml)

(Sigma-Aldrich, MO, USA), at 37uC for 1 hr. The substrate,

3,39,5,59-Tetramethylbenzidine (TMB; Sigma-Aldrich, MO,

USA), was added to each well at room temperature followed by

H2SO4 (Sigma-Aldrich, MO, USA) in order to terminate the

reaction. The optical density was measured at 450 nm [37].

Titanium Dioxide Stimulates Mucin Secretion
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7. Image Analysis
After staining the treated cells, image analysis was performed

with an inverted Nikon Eclipse TE2000-U fluorescent microscope.

Each photo was taken at a magnification of 2006 and analyzed

using SimplePCI (Compix Inc., Imaging Systems, Sewickle, PA,

USA). The data shown is a representative of Ca2+ signals of more

than 200 cells.

8. Statistical Analysis
The data was presented as means6SD. Each experiment was

performed independently at least three times. Statistical signifi-

cance was determined using a Student’s t-test analysis with p

values ,0.05 (GraphPad Prism 4.0, GraphPad Software, Inc., San

Diego, CA, USA).

Results

TiO2 NP characterization
Dynamic laser scattering (DLS) was used to characterize the

TiO2 NPs. The particle size distribution ranged from ,9 to 80 nm

due to minor aggregation or agglomeration while the predominant

size is ,50 nm (Fig. 1A).

TiO2 NPs induce cytosolic Ca2+ concentration increase
To investigate whether TiO2 NPs could generate an increase in

[Ca2+]C, ChaGo-K1 cells were loaded with Rhod-2 AM dye and

exposed to 0.05–1 mg/ml of TiO2 NPs. The change in [Ca2+]C, as

represented by the fluorescence intensity within ChaGo-K1 cells,

was monitored for 60 seconds. Figure 1B shows that 1 mg/ml of

TiO2 NPs induced an approximate 150% increase, while lower

TiO2 concentrations (,0.1 mg/ml) caused a minor elevation

(,110%) in [Ca2+]C when compared with untreated cells. The

effect of TiO2 treatment on the [Ca2+]C of ChaGo-K1 cells

followed a concentration-dependent manner (Fig. 1B).

Extracellular source for Ca2+ increase
To determine the main source of elevated [Ca2+]C upon

stimulation, ChaGo-K1 cells were exposed to TiO2 NPs in Ca2+-

free Hanks’ solution. EGTA (2 mM) was added in Hanks’ solution

to chelate possible traces of Ca2+. TiO2 (0.05 mg/ml–1 mg/ml)

treatment under Ca2+-free conditions failed to instigate a

significant increase in [Ca2+]C (Fig. 2A). Our data suggests that

the extracellular Ca2+ pool is the primary source of the observed

cytosolic Ca2+ increase. We then tested whether TiO2 NPs can

induce a Ca2+ influx via membrane channels. Blocking the

channels with CdCl2 (200 mM) significantly inhibited an increase

in [Ca2+]C (Fig. 2B). Co-treatment of cells with TiO2 NPs and

nifedipine greatly blocked the NP-induced [Ca2+]C increase

(Fig. 2C). However, the incomplete blockage of extracellular

Ca2+ influx via channels postulates additional Ca2+ leakage

through perturbed cell membranes. To confirm whether TiO2

can instigate membrane disruption, thereby permitting unspecific

extracellular Ca2+ entry, cytosolic leakage was assessed using the

fluorescent calcein dye. It was found that the dye permeation ratio

increased from approximately 4 to 13% with elevated TiO2

concentrations ranging from 0.1 to 1 mg/ml (Fig. 2D).

Oxidative stress induced Ca2+ influx
To demonstrate that TiO2-evoked [Ca2+]C increase can be

associated with oxidative stress, cells were pretreated with an anti-

oxidant, N-acetylcysteine (NAC) [27]. Pre-treatment with NAC

was able to partially attenuate the increase in cytosolic Ca2+ level

triggered by 1 mg/ml and 0.75 mg/ml TiO2 exposure (Fig. 2E).

These results support the idea that oxidative stress, induced by

TiO2 NPs, contributes to the observed [Ca2+]C increase and

promote Ca2+-dependent mucin secretion.

The ER as an intracellular source of Ca2+

In order to determine the involvement of ER Ca2+ pool, it

was depleted by pre-incubating the cells with thapsigargin.

Pre-treatment with thapsigargin impeded TiO2 NPs from

triggering a sustained increase in the cytosolic Ca2+ level

(Fig. 3A). We then investigated the role of the CICR mechanism

by blocking RYRs (ryanodine receptors) [20]. Our results

revealed that CICR was largely inhibited by ryanodine (a blocker

for RYR associated with the CICR response) resulting in a

significantly diminished [Ca2+]C increase induced by NPs

(Fig. 3B).

Figure 1. TiO2 NP characterization and resultant [Ca2+]C changes after NP treatment. A) DLS assessment of TiO2 NPs in Hanks’ solution
showed a size distribution of ,9 to 80 nm. B) Cells were treated with TiO2 NPs with concentrations of 0.05 mg/ml (yellow), 0.1 mg/ml (Light Blue),
0.25 mg/ml (Purple), 0.5 mg/ml (Green), 0.75 mg/ml (Red), and 1 mg/ml (Blue) in normal Hanks’ solution. Each line represents the average
fluorescence intensity of approximately 200 cells per well.
doi:10.1371/journal.pone.0016198.g001

Titanium Dioxide Stimulates Mucin Secretion

PLoS ONE | www.plosone.org 3 January 2011 | Volume 6 | Issue 1 | e16198



Ca2+-dependency of TiO2-induced mucin secretion
Enzyme-linked lectin assay (ELLA) was used to assess the

amount of mucin secreted from ChaGo-K1 cells when stimulated

with TiO2 NPs. When compared to the control, TiO2 NPs

increased mucin secretion by 113%, 125%, 133%, 137% and

150% at 0.05, 0.1, 0.25, 0.5 and 0.75 mg/ml, respectively

(Fig. 4A). Chelating the intracellular Ca2+ with BAPTA-AM

yielded a significant reduction in mucin secretion (Fig 4B).

Addition of thapsigargin (Fig. 4C) or ryanodine (Fig. 4D) also

resulted in diminished mucin secretion induced by TiO2 NPs. Our

data indicates that TiO2-induced mucin secretion is dependent on

the [Ca2+]C, attributed to both external and internal Ca2+ pools

(Fig. 4A–D). Ionomycin (a Ca2+ ionophore) was used to elicit

mucin secretion as a positive control (Fig. 5).

Figure 2. Measurement of the [Ca2+]C and calcein dye leakage after TiO2 NP treatment. Cells were treated with TiO2 NPs with
concentrations ranging from 0.05 mg/ml–1 mg/ml, in A) Ca2+-free Hanks’ solution, B) in the presence of CdCl2 (200 mM), C) nifedipine (10 mM), D)
calcein (50 mM) (n = 12, **P,0.005), and E) NAC (250 mM) (colors are as depicted in Figure 1B).
doi:10.1371/journal.pone.0016198.g002

Titanium Dioxide Stimulates Mucin Secretion
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Figure 3. Measurement of [Ca2+]C after stimulation by TiO2 NPs. Cells were treated with TiO2 NPs with concentrations ranging from 0.1 mg/ml
–1 mg/ml, in the presence of A) thapsigargin (100 nM), and B) ryanodine (100 mM) (colors used are consistent with Figure 1).
doi:10.1371/journal.pone.0016198.g003

Figure 4. Measurement of mucin secretion triggered by TiO2 NPs. Cells were treated with TiO2 NP concentrations ranging from 0.05 mg/ml
–0.75 mg/ml. Figure 4A) shows the relative quantification of mucin secreted after TiO2 stimulation under normal conditions (n$7, **P,0.005), 4B) in
the presence of BAPTA-AM (50 mM) (n$9), 4C) with pre-treatment of thapsigargin (100 nM) (n$8), 4D), and with ryanodine (100 mM) (n$5).
doi:10.1371/journal.pone.0016198.g004
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Discussion

Recently, an increasing number of reports have shown that

airborne particulate pollution found in both the ambient and

working environments, particularly TiO2 NPs, can exacerbate

airway diseases [1,2,3,4,5,6,10,11,38]. Aggravated clinical mani-

festations of COPD, CF and asthma may include intensified

symptoms of mucociliary transport impairment and mucus

hypersecretion [15,39]. The resultant accumulation of thick

obstructive mucus usually occupies airway lumen, thereby limiting

airflow and leading to morbidity [15,39]. Despite documentations

of TiO2-induced cellular nanotoxicity effects, pulmonary inflam-

matory responses and emphysema-like pathology [12], whether

TiO2 NPs can directly trigger mucin secretion has not been

resolved. In this study, we demonstrate that TiO2 NPs can

stimulate mucin secretion from bronchial epithelial ChaGo-K1

cells via a Ca2+- dependent pathway.

Our study showed that TiO2 NPs can induce mucin secretion

that increases as a function of TiO2 NP concentration (Fig. 4A).

The TiO2 concentration range used in our study is consistent with

previous reports representing the concentration found in ambience

and nanotechnology industries [30,40,41,42]. While NP exposure

has been long associated with increasing mucin synthesis due to

goblet cell hyperplasia [13], our study indicates that TiO2 NPs can

directly trigger mucin secretion in the airway.

It has been well established that intracellular Ca2+ plays a vital role

in stimulus-secretion coupling [43]. Previous reports have docu-

mented that an elevated [Ca2+]C precedes mucin granule exocytosis

[17]. NP exposure has been shown to trigger an intracellular Ca2+

increase in various cells; therefore, we examined the cellular Ca2+

signaling pathway involved during TiO2 stimulation [25,28,44]. At

TiO2 concentrations of 0.5, 0.75, and 1 mg/ml, there was a

sustained elevation in [Ca2+]C. At lower doses (0.05, 0.1 and

0.25 mg/ml), the [Ca2+]C increased gradually within the 1st minute

(Fig. 1B). Our data demonstrated that TiO2 NPs induced a

concentration dependent increase in [Ca2+]C, which is consistent

with results from the mucin secretion measurements (Fig. 4A).

The stimulus-induced intracellular Ca2+ signal can be evoked by

the entry of Ca2+ through voltage-gated Ca2+ channels, or by the

release of Ca2+ from intracellular Ca2+ stores [43,45,46]. Previous

researches have suggested that extracellular Ca2+ influx plays an

important role in the elevated [Ca2+]C during NP stimulation

[25,27,28,47]. Data from experiments performed in Ca2+-free

Hanks’ solution confirmed that [Ca2+]C failed to increase when

treated with TiO2 NPs (Fig. 2A). To characterize the nature of the

Ca2+ influx induced by TiO2 NPs, we first evaluated the effect of

cadmium chloride (CdCl2), a general Ca2+ channel blocker

[34,48]. Figure 2B shows that the [Ca2+]C remained low and

relatively unchanged with CdCl2. Secondly, nifedipine, a widely

used L-type Ca2+ channel blocker, markedly diminished the

increase in [Ca2+]C (Fig. 2C). The effect of nifedipine implies that

TiO2 NPs can activate L-type voltage gated Ca2+ channels,

allowing extracellular Ca2+ influx into the cytosol. This observa-

tion is consistent with previous reports showing that ultrafine

carbon black and ZnO NP-induced [Ca2+]C elevation can also be

attenuated by nifedipine [27,28]. In addition, several reports have

suggested that oxidative stress induced by NPs can exert an impact

on the intracellular Ca2+ signaling pathway and that the activity of

Ca2+ channels may be altered by ROS [27,28,44]. Results from

Figure 2E showed that NAC significantly reduced the rising

[Ca2+]C generated by TiO2 NPs. Huang et al, has also

demonstrated that NAC can attenuate the intracellular Ca2+ level

when challenged with ZnO NPs [27]. Our results support the idea

that NAC and other antioxidants may be effective in reducing NP-

instigated mucin hypersecretion. NPs such as TiO2 can damage

cell membrane integrity by possible lipid peroxidation [27,31],

thereby creating pores on the lipid bilayer [49] that may allow the

transient influx of extracellular Ca2+. Our data further demon-

strated that co-adminstration of TiO2 NPs and fluorescent calcein

dye lead to intracellular leakage and the permeation efficiency

increased in a TiO2 concentration dependent manner (Fig. 2D).

Calcein has also been previously utilized to evaluate the efficacy of

peptides in causing membrane perturbation [50]. Our result

suggests that the possible membrane perturbation/transient pore

formation induced by TiO2 NPs allows an extracellular Ca2+

influx and may account for the portion of Ca2+ that can not be

completely abolished by blocking L-type Ca2+ channels with

nifedipine.

Increasing the [Ca2+]C of human goblet cells has been shown to

trigger degranulation [17]. We used BAPTA (cytosolic Ca2+

chelator) to test whether the increase in Ca2+ induced by TiO2

NPs could stimulate mucin exocytosis. It is evident that BAPTA

significantly inhibited mucin exocytosis (Fig. 4B), indicating that

TiO2 NPs can elicit a [Ca2+]C increase, thereby leading to mucin

secretion.

Besides the external Ca2+ source (Hanks’ solution), the ER is

one of the major internal Ca2+ stores. Figures 3A and 4C revealed

that when the ER Ca2+ had been depleted by pretreatment with

thapsigargin, the TiO2 NP-induced [Ca2+]C failed to increase

significantly, and the subsequent mucin secretion was abolished.

Our data indicates that the ER plays a critical role in relaying

TiO2-induced Ca2+ signaling. CICR is a positive feedback

mechanism where the ER amplifies a small increase in [Ca2+]C,

(e.g. due to voltage-gated Ca2+ influx [22]), with the activation of

RYRs that will lead to the release of more Ca2+ from the ER

[19,20]. Previous studies have shown that through activation of

RYRs with Ca2+, CICR can generate an overall increase in

[Ca2+]C [20,21,22]. Our data showed that ryanodine inhibited a

continual rise in [Ca2+]C when applying TiO2 NPs (Fig. 3B).

Therefore, it is indicative that the TiO2-instigated increase in

[Ca2+]C was also CICR dependent. The effect of ryanodine was

further demonstrated by the lack of mucin secretion under TiO2

NP stimulation (Fig. 4D).

Figure 5. Mucin secretion in response to ionomycin application
(positive control, n$3). Concentration of ionomycin used was 1 mM.
doi:10.1371/journal.pone.0016198.g005
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In summary, our study indicates that cellular exposure to TiO2

NPs can activate membrane L-type Ca2+ channels, induce ROS

production and possibly disrupt the cellular membrane. Influx of

extracellular Ca2+ into the cytoplasm raises [Ca2+]C, which in turn

can trigger ryanodine receptors on the ER to release ER resident

Ca2+ via the CICR mechanism. A sufficient increase in the

cytosolic Ca2+ level results in subsequent mucin secretion. More

importantly, our results provide a direct link between airborne

particulate matters and the pathogenesis of chronic airway diseases

involving mucus hypersecretion and airway obstruction. In

addition, we demonstrate that once thought inert and harmless

TiO2 NPs can indeed interfere with intracellular Ca2+ signaling,

possibly leading to pathological states.
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