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Abstract

Skeletal muscle atrophy is a debilitating condition associated with weakness, fatigue, and reduced functional capacity.
Nuclear factor-kappaB (NF-kB) transcription factors play a critical role in atrophy. Knockout of genes encoding p50 or the
NF-kB co-transactivator, Bcl-3, abolish disuse atrophy and thus they are NF-kB factors required for disuse atrophy. We do
not know however, the genes targeted by NF-kB that produce the atrophied phenotype. Here we identify the genes
required to produce disuse atrophy using gene expression profiling in wild type compared to Nfkb1 (gene encodes p50) and
Bcl-3 deficient mice. There were 185 and 240 genes upregulated in wild type mice due to unloading, that were not
upregulated in Nfkb12/2 and Bcl-32/2 mice, respectively, and so these genes were considered direct or indirect targets of
p50 and Bcl-3. All of the p50 gene targets were contained in the Bcl-3 gene target list. Most genes were involved with
protein degradation, signaling, translation, transcription, and transport. To identify direct targets of p50 and Bcl-3 we
performed chromatin immunoprecipitation of selected genes previously shown to have roles in atrophy. Trim63 (MuRF1),
Fbxo32 (MAFbx), Ubc, Ctsl, Runx1, Tnfrsf12a (Tweak receptor), and Cxcl10 (IP-10) showed increased Bcl-3 binding to kB sites in
unloaded muscle and thus were direct targets of Bcl-3. p50 binding to the same sites on these genes either did not change
or increased, supporting the idea of p50:Bcl-3 binding complexes. p65 binding to kB sites showed decreased or no binding
to these genes with unloading. Fbxo9, Psma6, Psmc4, Psmg4, Foxo3, Ankrd1 (CARP), and Eif4ebp1 did not show changes in
p65, p50, or Bcl-3 binding to kB sites, and so were considered indirect targets of p50 and Bcl-3. This work represents the first
study to use a global approach to identify genes required to produce the atrophied phenotype with disuse.

Citation: Wu C-L, Kandarian SC, Jackman RW (2011) Identification of Genes that Elicit Disuse Muscle Atrophy via the Transcription Factors p50 and Bcl-3. PLoS
ONE 6(1): e16171. doi:10.1371/journal.pone.0016171

Editor: Gisela Nogales-Gadea, University Hospital Vall d’Hebron, Spain

Received August 20, 2010; Accepted December 9, 2010; Published January 13, 2011

Copyright: � 2011 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by National Institutes of Health grants R01 AR041705 and R01 AR041705-15S1 to SK and a Boston University Dudley Allen
Sargent grant to CW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rjackman@bu.edu

Introduction

Skeletal muscle atrophy is a highly regulated process in which

the size of a multinucleated fiber is controlled by signaling that

regulates gene expression from triggers in the muscle [1,2]. One

group of signaling proteins that regulate muscle atrophy is the

nuclear factor-kappaB (NF-kB) family of transcription factors. A

role for NF-kB in adult muscle atrophy or wasting has been found

in aging [3,4], disuse [5,6,7,8], denervation [9,10], muscular

dystrophy [11,12], and cachexia due to illnesses such as cancer

[10,13,14]. NF-kB transcription factors (p65, c-Rel, RelB, p52,

p50) act as dimers that bind target genes that have been shown to

regulate cellular processes as diverse as immunity, inflammation,

development, cell proliferation, and apoptosis [15,16,17].

In the case of disuse atrophy, NF-kB is necessary for muscle

fiber wasting. Evidence for this comes from data showing that a

NF-kB reporter is strongly activated in muscle fibers at 3, 7, and

10 days of disuse by hind limb unloading [5,7,8]. Inhibition of

components of upstream NF-kB regulatory proteins such as the

overexpression of a super repressor form of the inhibitor of kB

(IkBa SR) showed a 40% inhibition of fiber atrophy [5], and

overexpression of either a dominant negative (d.n.) form of IkB

kinase beta (IKKb) or a d.n. form of IKKa each showed a 50%

inhibition of fiber atrophy and a complete abolition of unloading

induced NF-kB reporter [6]. Importantly, a 70–100% inhibition of

muscle fiber atrophy was found in mice lacking either the Nfkb1

gene (encodes the NF-kB transcription factor, p50) or the Bcl-3

gene, which encodes a NF-kB co-transactivator [7]. Gel supershift

assays and nuclear levels of p65, p52, and RelB do not suggest

significant involvement of these NF-kB family members [8]. Rel

knockout mice showed that c-Rel is not required for disuse atrophy

[5]. An important feature of NF-kB activation in disuse-induced

atrophy is that there is no evidence of inflammation or

complement activation [8,18,19] as is seen with other types of

muscle atrophy such as that due to primary muscle disease,

systemic illness, or aging [20]. When inflammation is associated

with muscle wasting, involvement of the prototypical NF-kB

family member p65 (Rel A) has been evident [3,4,10,11,12,13,20].

Although we have found that upstream signaling proteins, such

as IkBa, IKKa and IKKb that activate NF-kB transcription are

required for atrophy, we do not understand how NF-kB

transcription factors produce the atrophied phenotype. We do

know that the transcription factors p50 and Bcl-3 are essential for

atrophy during disuse [7], so in the present study we first identified

the genes being targeted by p50 and Bcl-3, thereby identifying

genes that are required to produce the atrophied phenotype in

each case. To do this we performed global gene expression analysis

of plantar flexor muscles from weight bearing and hind limb

unloaded wild type mice and compared these data to the same

muscles from Nfkb12/2 mice and from Bcl32/2 mice. This
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provided a list of genes required for atrophy, and that are

considered either direct or indirect targets of p50 and Bcl-3 during

atrophy. From the lists we selected genes to study in further detail

to determine whether p50 and/or Bcl-3 showed increased binding

to kB binding sites using chromatin immunoprecipitation (ChIP)

assays in weight bearing and unloaded mouse plantar flexor

muscles. An advantage of using gene expression profiling in

combination with ChIP assays is that they reflect mRNA

expression and DNA binding in vivo, at the moment of isolation.

A gene showing increased mRNA expression in wild type muscle

but not in knockout muscle due to unloading and that shows an

increase in p50 and/or Bcl-3 binding in wild type unloaded muscle

is evidence that a p50 or Bcl-3 direct target gene has been

identified.

This work represents the first study to use a global approach to

identify the genes required to produce the atrophied phenotype

due to muscle unloading. Identification of genes that are NF-kB

targets is a first step in the discovery of how these transcription

factors produce the atrophied phenotype during skeletal muscle

disuse.

Results

Muscle Atrophy
There was an 18% decrease in gastrocnemius plus plantaris

muscle mass for wild type 6-day hind limb unloaded mice (wet

weight normalized to body weight), but there were little to no

differences for the same muscles in the Nfkb12/2 or Bcl-32/2 mice

(Table S1). This is consistent with the atrophy we reported

previously in plantaris muscles due to 10 days of unloading in wild

type mice, but little to no differences in plantaris muscle atrophy in

the Nfkb12/2 or Bcl32/2 mice [7].

Microarray analysis of muscle from wild type and
knockout mice to identify direct or indirect targets of p50
and Bcl-3 in atrophy

A major aim of this study was to identify genes from the

atrophied phenotype with unloading. Since Nfkb12/2 or Bcl-32/2

mice showed little or no atrophy with unloading [7], finding the

genes that drive the atrophy process was accomplished by

identifying those genes that were upregulated in the unloaded

muscles from wild type mice but not upregulated in the unloaded

muscles from Nfkb12/2 or Bcl-32/2 mice. The reason for focusing

on upregulated genes is that previous work showed a marked

upregulation of NF-kB dependent binding and transcription in

atrophying muscles [7,8]. The expression data for up and down-

regulated genes due to hind limb unloading for all 3 strains of mice

(wild type, Nfkb12/2, Bcl32/2) have been deposited in the

MIAME compliant Gene Expression Omnibus (http://www.

ncbi.nlm.nih.gov/geo/), accession number GSE23497.

Using the statistical methods described below, we identified

upregulated genes in 6-day unloaded muscle in wild type but not in

knockout mice. There were 185 genes upregulated in wild type mice

but not in Nfkb12/2 mice due to unloading and these genes were

thus considered either direct or indirect targets of the p50

transcription factor during muscle atrophy (Table S2). Functional

classification of these genes was made based on the molecular

function and biological processes annotated by the Gene Ontology

Consortium (Table 1). Most genes were involved in signaling (15%),

translation (10%), metabolism (10%), protein degradation (9%),

transcription (8%), and transport (6%). The same approach was

used to identify direct or indirect targets of Bcl-3 using Bcl32/2

mice. This produced a list of 240 genes that were direct or

indirect targets (Table S2) of this transcriptional co-activator that

is known to bind p50 dimers to induce transcription [21,22,23].

These genes also belong largely to signaling (13%), metabolism

(10%), translation (9%), protein degradation (9%), transcription

(8%), and transport (8%) (Table 1). Upregulation of genes in these

functional categories is consistent with the changes seen in other

studies using microarray data to describe muscle atrophy [18,24].

Selected Genes for Further Study as p50/Bcl-3 Targets
From the microarray data, we identified 25 upregulated genes

that were targets of p50 and/or Bcl-3 and that have at least some

known or inferred function in muscle atrophy (Table 2). All but 6

of these 25 genes are involved in some aspect of protein

degradation. Seven are involved in ubiquitination of protein

substrates (Fbxo32, Fbxo9, Fbxo36, Ubc, Ube2j1, Nedd4l, Cul4a), 9

encode proteasomal subunits (Psma7, Psmb3, Psmc4, Psmd2, Psmd13,

Psmb4, Psmd4, Psmg4, Psma6), 2 are lysosomal genes (Ctsl, Ctss), and

one is involved in calpain mediated protein cleavage (Capns1).

There were 4 genes whose protein product can act as a

transcription factor (Ankrd1 (Carp), Runx1, Jun, Foxo3), a gene

encoding a translational repressor (Eif4ebp1), and the Tweak

cytokine receptor (Tnfrsf12a). Twelve of these 25 genes, a

representative sampling of the functional groups, plus 2 other

genes that were not on the microarray, Trim63 (MuRF1) and

Cxcl10 (IP-10), were chosen for study in more detail (14 genes

total).

Quantitative real-time PCR of selected atrophy genes
Quantitative real-time PCR (qPCR) confirmed significant

upregulation by unloading of the 14 genes selected for further

study and their lack of upregulation in knockout mice (Figure 1).

Table 1. Functional category of target genes for Bcl-3 and
p50 from microarray analysis.

Bcl3 targets p50 targets

Number Percentage Number Percentage

Signaling 31 12.92% 28 15.14%

Metabolism 24 10.00% 18 9.73%

Translation 22 9.17% 19 10.27%

Protein degradation 21 8.75% 17 9.19%

Transcription 21 8.75% 16 8.65%

Transport 19 7.92% 12 6.49%

Non-annotated or
RIKEN cDNA

14 5.83% 9 4.86%

Misc: immune/
proliferation/ECM

13 5.42% 11 5.95%

RNA processing 12 5.00% 9 4.86%

Cytoskeleton 11 4.58% 9 4.86%

Chromatin modification 10 4.17% 7 3.78%

Cell adhesion 7 2.92% 6 3.24%

Structure 7 2.92% 5 2.70%

Development 7 2.92% 4 2.16%

Cell cycle 6 2.50% 4 2.16%

Binding 5 2.08% 4 2.16%

Anti-oxidant 4 1.67% 3 1.62%

Muscle contraction 3 1.25% 3 1.62%

Stress 3 1.25% 1 0.54%

doi:10.1371/journal.pone.0016171.t001

Identification of Genes Required in Muscle Atrophy
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Many of these genes are involved in ubiquitin-proteasome

mediated protein degradation, namely, Trim63 (MuRF1), Fbxo32

(MAFbx), Ubc, Fbxo 9, Psma6, Psmc4, and Psmg4 (Figure 1A–G).

Other genes whose microarray data were confirmed by qPCR and

that play a role in muscle atrophy were Ctsl, Foxo3, Runx1, Ankrd1,

Tnfrsf12a, and Eif4ebp1 (Figure 1H–M). The Trim63 gene was not

on our microarray but has a significant role in muscle atrophy

[25,26,27,28]. Another gene not on the microarray, Cxcl10 (IP-10),

was also studied (Figure 1N) because it was found to be strongly

upregulated in unpublished work and in response to TNFa; it is a

known p50:Bcl-3 target in immune cells [29]. Almost all genes

were shown to be direct or indirect targets of Bcl-3 and p50 since

there was either no upregulation, or significantly less upregulation,

in unloaded muscles from Bcl32/2 and Nfkb12/2 mice compared

to unloaded muscles from wild type mice. The exceptions were

Fbxo9 and Foxo3, which showed upregulation in unloaded muscle

of Nfkb12/2 mice similar to that of wild type mice (Figure 1D, I),

so these two genes were not confirmed targets of p50 during

unloading. GAPDH did not change with unloading in wild type or

mutant mice and so it was used for normalization of all the

mRNAs measured by qPCR (Figure 1O).

Chromatin Immunoprecipitation (ChIP) of selected p50
or Bcl-3 putative target genes

For genes that were direct or indirect targets of p50 and Bcl-3

with muscle unloading, we performed ChIP assays using muscle

from wild type mice to assess whether there was a commensurate

change in p50 and Bcl-3 binding to NF-kB binding sites due to

muscle unloading. For comparison, we also measured changes in

the prototypical NF-kB transcription factor family member, p65,

because there are not definitive data as to whether it is involved in

NF-kB dependent gene regulation by muscle unloading as there is

with Bcl-3 and p50. To identify putative kB binding sites in each

gene to be studied, an algorithm called CLOVER [30] was used to

search for sites in the genomic sequence from 10kb upstream of

each gene’s transcription start site (TSS) to 10kb downstream from

its polyadenylation signal.

Of the 14 genes on which a ChIP assay was performed, 11 had

conserved kB sites. The other 3 genes contained kB sites, but

none were conserved (Fbxo9, Psmg4, Eif4ebp1); not surprisingly,

these 3 genes did not show changes in binding of the 3 kB factors

studied, due to unloading. The most frequent and robust change

in protein binding to kB sites of the 3 transcription factors studied

was Bcl-3. There was an increase in Bcl-3 binding to conserved

kB sites in 7 of the 14 genes studied. These were Fbxo32 (the site

550bp upstream of the TSS), Trim63 (the site in the third intron

4.8 kb downstream of the TSS), Ubc (the site 1.4 kb upstream of

the TSS), Ctsl (the site 5.5 kb upstream of the TSS), Runx1 (the

site 1.7 kb upstream of the TSS), Tnfrsf12a (the site 5.7 kb

upstream of the TSS), and Cxcl10 (the two sites 157 bp upstream

of the TSS) (Figure 2A–G). Of these 7 genes, p50 binding to the

same kB site was either unchanged or, it was increased in Trim63,

Runx1, and Cxcl10. In all 7 genes, the increased Bcl-3 binding to

sites where p50 was bound suggests increased formation of p50-

Bcl-3 complexes with unloading. For p65 binding there were

marked decreases in 4 genes, Fbxo32, Trim63, Ctsl, and Cxcl10

(Figure 2A, B, D, G) and no detectable binding in control or

unloaded muscle in Ubc or Runx1 (Figure 2C, E). The fact that no

kB site showed marked p65 binding with unloading supports

earlier work suggesting that p65 is not a major player in disuse

muscle atrophy [8]. There was a moderate increase in p65

binding in one gene, Tnfrsf12a (Figure 2F). Each immunoprecip-

itation was repeated with different muscles from weight bearing

and unloaded groups.

The proteasome subunit genes studied, Psmc4, Psmg4, and Psma6

(Figure 2H–J), and located 1.9, 2.7, and 3.2kb upstream from the

TSS, respectively, were not direct kB target genes since p65, p50

or Bcl-3 showed no change in binding. The kB sites studied in

Fbxo9, Ankrd1, Foxo3, and Eif4ebp1 (Figure 2K–N) genes, located at

1.2, 2.3, 2.0, and 2.7kb upstream of the TSS, respectively, also did

not show significant changes in binding of Bcl-3, p50, or p65.

None of these 7 genes appear to be direct p50 or Bcl-3 target

genes.

Discussion

This study is the first to identify on a global scale, direct or

indirect target genes of two transcription factors previously shown

to be required for muscle disuse atrophy, p50 and Bcl-3 [7]. This

was done using gene expression profiling of unloaded skeletal

muscle from wild type mice compared to unloaded muscle from

Table 2. Selected genes with known or inferred functions in
muscle atrophy that were target genes for Bcl-3 and/or p50.

Probe ID Gene Symbol FC in WT Bcl-3 Target p50 Target

Ubiquitination

1417522_at Fbxo32 2.9 Y Y

1432211_a_at Fbxo9 1.8 Y N

1419305_a_at Fbxo36 2.4 Y Y

1425966_x_at Ubc* 1.8 Y Y

1448824_at Ube2j1 1.6 Y Y

1423269_a_at Nedd4l 1.5 Y Y

1451971_at Cul4a 1.5 Y Y

Proteasomal subunits

1423568_at Psma7 1.5 Y Y

1460198_a_at Psmb3 1.5 Y Y

1416290_a_at Psmc4 1.5 Y Y

1415831_at Psmd2 1.5 Y Y

1422459_a_at Psmd13 1.5 Y Y

1438984_x_at Psmb4 1.4 Y Y

1425859_a_at Psmd4 1.4 Y Y

1435431_at Psmg4 1.4 Y Y

1435317_x_at Psma6 2.3 Y Y

Lysosomal proteins

1451310_a_at Ctsl 1.6 Y Y

1448591_at Ctss 1.5 Y Y

Transcription factors

1420992_at Ankrd1 7.9 Y Y

1422864_at Runx1 5.3 Y Y

1417409_at Jun 1.7 Y Y

1434832_at Foxo3* 1.6 Y Y

Others

1418572_x_at Tnfrsf12a 2.7 Y Y

1434976_x_at Eif4ebp1 1.6 Y Y

1426400_a_at Capns1 1.5 Y Y

FC = ‘‘fold change’’ of gene expression in weight bearing vs. hind limb unloaded
groups in wild type animals from microarray analysis. Y = a target gene for Bcl-3
or p50, N = not a target gene for Bcl-3 or p50.
*gene significantly increased by t-test but did not pass multiple test correction.
doi:10.1371/journal.pone.0016171.t002

Identification of Genes Required in Muscle Atrophy
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mice deficient for the gene encoding each of these transcription

factors. Genes in wild type mice upregulated by hind limb

unloading that are not upregulated in unloading of knockout mice

are either direct or indirect targets of the gene knocked out. Since

our previous work shows a complete atrophy inhibition when the

genes encoding p50 and Bcl-3 are knocked out, it is not surprising

to have a significant number (,200) of genes that are targets of

these transcription factors. In combination with these data, we

performed ChIP assays on kB sites in 14 of the kB -upregulated

genes (verified by qPCR) to assess whether they were direct targets

of p50 and Bcl-3. We focused on upregulated genes because disuse

elicits an increase in NF-kB binding to DNA and a robust increase

in NF-kB dependent transcription in unloaded muscle from rats

and mice [5,6,7,8].

Figure 1. Quantitative real time PCR (qPCR) to measure mRNA expression of selected atrophy genes. Taqman probe and primer sets
were used to confirm mRNA expression from microarray data of gastrocnemius and plantaris muscles. All 14 genes measured confirmed a significant
upregulation due to 6 days unloading (HU) compared to weight bearing (WB) in muscles of wild type (WT) mice. Gene expression due to unloading in
knockout mice (Nfkb1 and Bcl-3) was either not different from weight bearing or it had a significantly less increase for all cases except Fbxo9 and
Foxo3 in Nfkb12/2 mice. Gene expression was measured for: A) Trim63 (MuRF1), B) Fbxo32 (MAFbx), C) ubiquitin C, D) Fbxo9, E) Psma6, F) Psmc4, G)
Psmg4, H) Ctsl, I) Foxo3, J) Runx1, K) Ankrd1 (Carp), L) Tnfrsf12a (Tweak receptor), M) Eif4ebp1, N) Cxcl10 (IP-10), and O) GAPDH. *significantly
different from weight bearing value (P,0.05), {significantly different from wild type unloaded value (P,0.05).
doi:10.1371/journal.pone.0016171.g001

Identification of Genes Required in Muscle Atrophy
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The microarray and ChIP results show that Fbxo32, Trim63,

Ubc, Ctsl, Runx1, Tnfrsf12a, and Cxcl10 are direct gene targets of

Bcl-3 during disuse atrophy because of their lack of mRNA

upregulation in Bcl-32/2 mice with unloading and the increase in

Bcl-3 binding to conserved kB sites in unloaded muscles of wild

type mice. Since Bcl-3 does not directly bind DNA, we presume

that it bound to existing p50 binding at the kB site under study. All

genes studied showed p50 binding in control muscle, and with

unloading, p50 binding either did not change or increased in the 7

genes where Bcl-3 binding was increased. We interpret these data

to indicate the formation of p50:Bcl-3 complexes. Other data

supporting the idea of p50 and Bcl-3 working together to effect

gene expression changes with unloading is that all of the p50

targets revealed by the microarray data were also Bcl-3 target

genes. Moreover, the increase in NF-kB reporter activity due to

unloading in wild type mice is absent in unloaded muscle from

Nfkb12/2 and Bcl-32/2 mice [7]. In unloaded muscle, binding of

the prototypical kB protein p65 decreased markedly or was not

detectable in all but one of these 7 genes. Taken together, these

data suggest p50:Bcl-3 complexes are important proteins binding

to kB sites during muscle atrophy. There is a significant literature

on the ability of p50 homodimers to induce transactivation when

bound to Bcl-3 in several non-muscle cell types [21,22,23].

There was a marked increase in Bcl-3 binding to conserved kB

sites in 4 upregulated genes with known roles in protein

degradation with muscle atrophy. Thus, they are direct targets

of kB. These are Fbxo32 [28,31] Trim63 [25,26,28], Ubc

[18,24,28,32], and Ctsl [5,24,33]. Although we now clearly show

that p50 and Bcl-3 target these genes and that NF-kB is required

for their upregulation, there may be other factors involved. For

instance, FoxO3 was shown to target Fbxo32 during starvation

atrophy [34]. FoxO1 has been shown to target Ctsl during

starvation atrophy and regulate its transcription [33]. NF-kB was

shown to target Trim63 in skeletal muscle in cachexia [10] and the

present work supports these data in atrophying muscle due to

unloading, although we show a role for p50 and Bcl-3 rather than

involvement of p65.

It was interesting however, that three of the nine proteasomal

genes shown to be targets of p50 and Bcl-3, and chosen for further

study, were indirect rather than direct kB target genes because

there was no change in p65, p50, or Bcl-3 binding with unloading.

This supports the idea that proteasomal subunit upregulation with

atrophy is directly regulated by transcription factors other than

NF-kB, although NF-kB may be regulating these unknown factors

based on the gene expression data in the knockout mice.

Another direct target gene of NF-kB proteins is Runx1,

previously shown to moderate myofibrillar stabilization and

autophagy during disuse atrophy [35]. It is a transcription factor

with 29 putative gene targets in atrophying muscle. These targets

appear to be mostly structural genes, distinct from the structural

unloading-induced kB target genes. While kB regulates Runx1,

Runx1 activity does not seem to involve activation of FoxO or NF-

kB-mediated transcription during disuse muscle atrophy [35]. We

show that Bcl-3 and p50 have structural gene targets (Table S1)

Figure 2. ChIP assays of Bcl-3, p50, and p65 protein binding to genes from Figure 1. ChIP assay was performed using gastrocnemius/
plantaris muscle from weight bearing (WB) and unloaded (HU) mice. For each gene shown, binding of Bcl-3, p50 and p65 protein to a kB binding site
was measured. ChIP showed an increase in Bcl-3 protein binding to 7 of the 14 genes studied, these were: A) Fbxo32, B) Trim63, C) Ubc, D) Ctsl, E)
Runx1, F) Tnfrsf12a, and G) Cxcl10. There were also increases in p50 (B, E, G) and decreases in p65 (A, B, D, G) in these 7 genes. None of the
proteasomal subunit genes showed changes in Bcl-3, p50, or p65 binding, Psmc4., Psmg4, or Psma6 (H–J). Fbxo9, Ankrd1, Foxo3, and Eif4ebp1 (K–N)
genes also did not show changes in the binding of these proteins to kB sites. For each gene, ChIP assays were repeated using different samples from
WB and HU groups. The PCR product size for all 14 ChIP assays performed was between 190 to 400bp.
doi:10.1371/journal.pone.0016171.g002

Identification of Genes Required in Muscle Atrophy
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and some of these share the same functional category (e.g.,

channels, contractile proteins) as targets of Runx1 but none were

the same genes as described by Wang et al. [35].

The Tnfrsf12a gene was unique among the 14 genes studied for

ChIP as it showed an increase in Bcl-3 binding, a moderate

increase in p50 binding, and increased p65 binding. The lack of

increased p65 binding to putative kB sites in all but one of the 14

genes studied by ChIP is consistent with previous work suggesting

a lack of primary involvement of p65 in unloading atrophy [8]. On

the other hand, dominant negative overexpression of either IkBa
SR, IKKa, or IKKb inhibited unloading atrophy by ,50%

suggesting that p65 may be involved in regulating some atrophy

genes. In the case of Tnfrsf12a, regulation via kB proteins may

involve a complex of p65:p50:Bcl-3 binding as previously

described in response to TNFa [29].

Tnfrsf12a, found to be a direct kB target is a receptor for a

member of the TNF superfamily also known as TWEAK. This

cytokine receptor is of interest as it has recently been shown to be

increased with denervation atrophy [36]. In addition, TWEAK is

known to induce muscle wasting in whole muscle [37] and it was

required for denervation atrophy [36]. As with other pro-

inflammatory cytokines, NF-kB is involved in mediating the

wasting due to TWEAK in skeletal muscle [37]. We show here

that the upregulation of the TWEAK receptor requires kB

proteins. Whether unloading also involves TWEAK binding to its

receptor is not yet clear.

IP-10 was also found to be a direct kB target with unloading. It is

a chemokine and a known NF-kB target gene in non-muscle cells

types [29,38]. The strong upregulation of this gene together with the

robust increase in p50 and Bcl-3 binding to IP-10 in unloaded

muscle suggest there may be some role for immune modulator genes

in this type of atrophy. In control muscle there was significant p65

binding to IP-10 but this was undetectable at 6 days of unloading. In

response to TNFa however, p65 binding to bona fide kB sites is

increased [29]. The IP-10 and Tnfrsf12a data suggest further study

of selected chemokines and cytokines/receptors in unloading

atrophy. Consistent with previous work however [7,8], the present

data supports the idea that in the absence of inflammatory response

[19], p65 does not appear to have a major role in binding kB sites on

atrophy genes, in contrast with its involvement in atrophy when

inflammatory triggers are involved [4,10,13].

From these studies we have created a list of NF-kB regulated

genes in unloading atrophy, and, we determined that at least 7 of

the 14 genes studied in detail using ChIP are direct targets of, p50

and Bcl-3. These data in combination with the lack of increases in

p65 binding at kB sites in 13 of the 14 upregulated genes studied,

again suggests a primary role of p50 and Bcl-3 rather than the

canonical NF-kB transcription factor, p65 (RelA). There are very

likely other transcription factors required for unloading atrophy;

gene regulation is created by interactions of several factors in

complexes or in separate sites on the promoter and regulatory

regions. However, it is clear that loss of either of these kB proteins

in the knockout animals eliminates or profoundly reduces the

atrophy produced by unloading and therefore our candidate list

not only outlines the scope of genes whose products create muscle

wasting, but it gives us the keystone genomic sites of regulation

with which we will be able to understand disuse atrophy at the

molecular genetic level.

Materials and Methods

Mice and Hind limb Unloading
Six week-old male wild type mice (B6129PF2/J) and age/sex

matched Nfkb12/2 mice (B6;129P2-Nfkb1tm1Bal/J) and Bcl32/2

mice (FVB; 129P2-Bcl3tm1Ver/J) were purchased from the Jackson

Laboratory (Bar harbor, ME). The B6129PF2/J strain used for

wild type has all of the 129 background which was part of the

knockout cloning and insertion (the embryonic stem cell

background) for each of these mutants. Animals were provided

with chow and water ad libitum and housed individually in Boston

University Animal Care Facility. After 3 days of acclimation, mice

were randomly assigned to weight-bearing (WB) or hind limb

unloaded (HU) groups. Mice in the HU group had their hind

limbs elevated off the cage floor for 6 days to induce unloading

induced muscle atrophy. The sixth day of unloading is a key point

in the atrophy process based on a large literature, and in particular

based on a previous time course study we performed on unloaded

rat soleus muscle [18].

The HU was performed using the methods that we have

previously published [39] with slight modifications for the mice.

Briefly, mice were lightly anesthetized with ketamine/xylazine

(40mg/kg;5mg/kg, i.p.). A strip of adhesive foam pad (ALIMED

Inc, MA) was folded in half and the adhesive surface was loosely

applied longitudinally along the proximal 2/3 of the tail. Elastic

tape (Elastoplast, Medco Supply Co., NY) was wrapped

circumferentially around the adhesive foam. A wire was passed

through the folded end of adhesive foam pad and then was drawn

up to pulley attached to a 360u swivel hook at the top of the cage;

the cage walls were extended in height by 10 inches of Plexiglas on

4 sides to allow room for the vertical suspension. The length of the

wire was adjusted so that the toes of the hind limbs touched the

cage floor only during full hind limb extension. The use of animals

in this study was approved by the Institutional Animal Care and

Use Committee of Boston University (protocol number 09-012).

Muscle harvesting and RNA isolation
Six days after hind limb unloading, mice were anesthetized with

ketamine/xylazine (100mg/kg; 13mg/kg). Gastrocnemius and

plantaris muscles were harvested from weight bearing and hind

limb unloaded wild type mice, Nfkb12/2 mice, and Bcl32/2 mice

and processed immediately for RNA isolation or ChIP assay. Total

RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad,

CA) according to manufacturer’s instructions. Extracted total

RNA was treated with RNase-Free DNase I (Qiagen, Valencia,

CA) to remove any DNA contamination and purified using an

RNeasy Mini kit (Qiagen, Valencia, CA) as previously described

[40]. Total RNA was quantified by absorption spectrophotometry

at 260 and 280nm and quality of total RNA was monitored on a

1% denaturing agarose gel and by a Bioanalyzer 2100 (Agilent,

Palo Alto, CA).

Microarray processing
For microarray analysis 24 mice were used based on 4 mice per

group, 3 mouse stains, and 2 conditions (weight-bearing and

unloaded). Total RNA samples (n = 4 per group) were sent to

Partners HealthCare Center for Personalized Genetic Medicine

for mRNA labeling, hybridization, and scanning using the

Affymetrix system (Santa Clara, CA). In brief, double stranded

cDNA was synthesized by GeneChipH Two-Cycle cDNA

Synthesis Kit (P/N 900432). Biotin-labeled cRNA was then

generated and purified by GeneChip IVT labeling kit (P/N

900449) and cRNA Cleanup kit (P/N 900547). 15mg of labeled

fragmented cRNA was hybridized on to Affymetrix GeneChip

Mouse Genome 430A 2.0 Array, then washed and stained

according to manufacturer’s protocol. The 430A 2.0 Array

measures expression levels of 14,000 characterized genes. The

microarray slides were scanned using a GeneChipH Scanner 3000.

For data extraction and quality control, Affymetix GeneChipH
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operation software was used, which created a single intensity value

for each probe-set assayed in each sample in a .cel file. Data files

were deposited into the MIAME compliant NCBI Gene Ex-

pression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/),

accession number GSE23497.

Data Analysis
Affymetrix .cel files were imported into GenePattern software

3.2.1 (Broad Institute, Cambridge, MA) and a matrix containing

an expression value per probe set for each sample was generated

by Expression File Creator Module using the Robust Multi-array

Average (RMA) algorithm and quantile normalization [41]. Gene

probes were filtered according to the following criteria: maximum

expression value/minimum expression value $1.7, minimum

expression variation (maximum value2minimum value) $9,

expression value greater than 20 or less than 20,000. Genes

complying with these criteria were further processed by the

ComparativeMarkerSelection Module Version7. By default,

ComparativeMarkerSelection compared the mean difference in

gene expressions between weight bearing and unloaded muscle

samples using two-way parametric t-tests and computed false

discovery rate for each probe set using the Q-value [42]. P-

value,0.05 and q-value#0.05 were used to identify genes that

were significantly differentially expressed after hind limb unload-

ing.

We also carried out analyses for the wild type vs. knockouts in

the weight bearing condition as a control for any change in gene

expression that might arise from the knockout itself. We found no

significant differences in muscle gene expression in wild type vs.

Bcl32/2, but 17 genes in the Nfkb12/2 case were lower than wild

type. Only one of those 17 was in our list of genes that could be a

target of p50 and so it was removed from our results.

Quantitative Real time-PCR (QRT-PCR)
Total RNA from 3 strains of mice (two knockouts and one wild

type) for 2 conditions (WB and HU) was isolated as described

above with a sample size of 6 per group. 10mg of total RNA was

reverse transcribed in a 100ml reaction using a High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, Foster

City, CA) according to manufacturer’s instructions. Synthesized

cDNA (0.9 ml) was then amplified with Taqman Gene Expression

Master mix, and gene-specific TaqMan Gene Expression Assay

Buffer (Applied Biosystems). The sequence targeted by each

TaqMan probe is given in Table S3. Amplification was performed

by ABI 7300 Real-Time PCR System at following temperature:

50uC for 2min, 95uC for 10min, followed by 40 cycles at 95uC for

15sec and 60uC for 1min. All samples were run in triplicate and

quantified according to the corresponding gene-specific standard

curve. For the 14 genes for which we measured mRNA expression,

each gene was normalized to GAPDH expression, which was not

different due to mouse strain or to hind limb unloading.

Statistical Analysis
Methods used for statistical analysis of the microarray data have

been described above. All other statistical analysis was performed

using the SPSS software package for windows version 15.0 (SPSS

Inc, Chicago, IL). For qPCR experiments (n = 6 per group),

Levene’s test was first performed to compare the variance between

weight bearing and hind limb unloaded muscles. If 2 groups

showed an equal variance, an equal-variance t-test was performed

to determine whether gene expression was upregulated after

unloading. If 2 groups showed unequal variance, an unequal-

variance t-test was performed. P-value less than 0.05 was

considered statistically significant.

ChIP Procedure
Isolation of nuclei from muscle and subsequent successful ChIP

assay is infrequent in the literature and methods details are scarce.

Our method begins with a modification of Andrews et al. [43].

Gastrocnemius plus plantaris muscles from weight bearing and

hind limb unloaded mice were removed, weighed, and immersed

in 1 ml of the nuclear isolation buffer (NIB: 10mM of HEPES

pH7.5, 10mM MgCl2, 60mM KCl, 300mM sucrose, 0.1mM

EDTA pH8.0, 0.1% Triton X-100, 1mM DTT, 0.15mM

spermine and 0.5mM spermidine, 0.1mM PMSF, 2mg/ml

aprotinin, 2mg/ml leupeptin). The muscle was finely minced using

sterile scalpels and transferred to a 1.5 ml Eppendorf tube. The

minced muscle was crosslinked by adding fresh formaldehyde to a

final concentration of 1% and rotating at room temperature (RT)

for 15 minutes. Crosslinking was stopped by adding glycine to a

final concentration of 0.125M and rotating at RT for 5 minutes.

Tubes were centrifuged at 15006g for 5 minutes at 4uC and

washed twice with PBS containing 16 protease inhibitor cocktail

[(PIC), Roche Applied Bioscience]. After the last spin, the

supernatant was discarded and the pellet was snap frozen in

liquid nitrogen and stored at 280uC. After thawing, each pellet

was suspended in 1.5 ml of NIB, transferred to a 14 ml round

bottom tube (BD Falcon), and homogenized mechanically. The

homogenates were centrifuged at 1806g for 1 minute and

supernatants discarded. Pellets were re-suspended in 1.5 ml NIB

and homogenized again to maximize the number of nuclei

released from myofibrillar material. Homogenates from both legs

of the same mouse were pooled and passed though a 100 mm cell

strainer (BD Falcon) by centrifugation at 11006g for 5 minutes at

4uC to filter residual myofibrillar material from the nuclei. The

filter process was repeated with a 40 mm cell strainer (BD Falcon),

and then nuclei pelleted by centrifugation at 11006g for

5 minutes. Each cell strainer was then washed twice with 2 ml

of ice cold PBS containing 16PIC, then centrifuged to pellet any

nuclei stuck in the strainer.

The nuclei were processed for ChIP using modifications of the

method described by Tachibana et al. [44]. Nuclei were re-

suspended in sonication buffer with PIC. Aliquots of 350 to 400 ml

were sonicated with a Sonic Dismembrator Model 100 (Fisher) at

setting 2 for 30 seconds with one minute in between on ice, for 9

to 12 cycles. Nuclear debris was pelleted by spinning the sonicated

material at maximum speed in a microfuge for 5 minutes, and the

supernatant containing fragmented chromatin was saved for

immunoprecipitation. The extent of sonication was evaluated by

removing 10 ml supernatant for treatment with Pronase, RNase A,

and reverse crosslinked, and then DNA was extracted with

phenol/chloroform and precipitated with ethanol. DNA was size

fractionated on a 1% agarose gel where approximately 90% of the

DNA was visualized as a smear between 100–600 bp. Equal

amounts of fragmented chromatin from each group, weight

bearing and hind limb unloaded, were diluted in IP dilution buffer

[44] and pre-cleared twice using the Protein G conjugated

magnetic beads (Dynabeads, Invitrogen) that had been blocked

overnight with BSA and sonicated fish sperm DNA (Roche

Applied Bioscience). The beads were pelleted by centrifugation

and the supernatant containing the chromatin was aliquoted: a

100 ml aliquot as an input sample not immunopreciptated, and

four aliquots with equal amount of the remaining supernatant

(,700–1000 ml each). One aliquot was incubated with IgG as a

negative control and the other three chromatin aliquots were

immunoprecipitated by incubation with 10 mg of antibody (Santa

Cruz), directed against either p65 (SC-372X), p50 (SC-1190X), or

Bcl3 (SC-185X) for 16 hours at 4uC. The antibody-chromatin

complexes were warmed to RT in a water bath and an equal
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volume of pre-blocked magnetic beads was added and placed on a

rotator for 15 minutes at RT. The tubes were then placed in a

magnetic tube rack (Magnasphere separation stand, Promega) to

allow capture of beads on the side of the tube. The liquid was

removed and beads were washed in a succession of buffers

according to Tachibana et al. [44]. Finally the conjugates were

eluted from the beads for 30 minutes. The protein and RNA were

removed from the immunoprecipitated samples and the input

sample by incubation with Pronase and RNase A for 2 hrs at

42uC. The sample and input tubes were processed to reverse the

crosslinking and DNA was precipitated in ethanol with glycogen as

carrier. The DNA from ChIP was re-suspended in 30 ml of Tris-

low EDTA buffer (10 mM Tris 8.0, 0.1 mM EDTA). For PCR, 1/

15th of the each DNA sample and 1/100th of each input were used

as templates in a standard Platinum Taq PCR reaction for 32

cycles. PCR products were separated on a 10% TBE gel (Ready

Gel, BioRad) and stained by SYBR Gold.

NF-kB sites for study were selected by the CLOVER algorithm

of Motifviz (http://biowulf.bu.edu/MotifViz/), which uses the

JASPAR database (http://jaspar.genereg.net/) for its binding

matrices. We selected kB sites for ChIP that had the best score for

matching the kB consensus sequence using the JASPAR matrix

ID: MA0061.1. Conservation between mouse and human gene

sequences was determined by locating the kB site in the mouse

genome using Blat and displaying the comparative sequences at

that site in the University of California Santa Cruz gene browser

(http://genome.ucsc.edu/). Primers were designed with Primer

3.0 from the online workpage (http://frodo.wi.mit.edu/primer3/).

The size of the PCR products containing the kB sites was between

190 and 400bp for all 14 ChIP assays.
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