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Abstract

Ticks that feed on vertebrate hosts use their salivary secretion, which contains various bioactive components, to manipulate
the host’s responses. The mechanisms controlling the tick salivary gland in this dynamic process are not well understood.
We identified the tick D1 receptor activated by dopamine, a potent inducer of the salivary secretion of ticks. Temporal and
spatial expression patterns examined by immunohistochemistry and reverse transcription polymerase chain reaction
suggest that the dopamine produced in the basal cells of salivary gland acini is secreted into the lumen and activates the D1
receptors on the luminal surface of the cells lining the acini. Therefore, we propose a paracrine function of dopamine that is
mediated by the D1 receptor in the salivary gland at an early phase of feeding. The molecular and pharmacological
characterization of the D1 receptor in this study provides the foundation for understanding the functions of dopamine in
the blood-feeding of ticks.
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Introduction

Ticks are obligatory ectoparasites that feed on the blood of

vertebrate hosts and often transmit pathogens, including viruses,

bacteria, and protozoa. Tick saliva is essential during feeding for

the manipulation and suppression of host defense responses and

may contain key components in the transmission of pathogens.

Biochemical analyses of tick salivary secretions have identified

antihemostatic, anti-inflammatory, and immunomodulatory activ-

ities [1,2]. Promising strategies for the prevention of tick blood

feeding and for the interruption of pathogen transmission include

the disruption of salivary gland (SG) functions.

The SG of female tick is composed of three different types of

acini: acini I, II, and III. Each acinus contains several different

types of cells, and different categories of secretory vesicles [3,4].

Acini II and III are considered the major groups that function in

producing secretory proteins/compounds and in osmoregulation

during feeding, while acinus I is thought to be involved in

absorption of water in free-living ticks [5,6]. For the successful

completion of feeding, which requires several days, heteroge-

neous cells and vesicles in the SG are sequentially activated as

follows: 1) secretion of cement to fix and seal the mouth part to

the host skin, 2) secretion of antihemostatic, anti-inflammatory,

and immunomodulatory salivary components to facilitate the

blood feeding and prepare for rapid engorgement toward the end

of the feeding phase, and 3) osmoregulation to remove excess

fluid during the feeding. Mechanisms underlying the precise

control of phase-specific activities of the SG are not well

understood.

Control of salivary secretion involves the nervous system.

Anatomical and pharmacological studies have implicated several

neural components in salivary secretion: dopamine (DA), acetyl-

choline, and multiple neuropeptides [7,8,9]. Among the neuro-

transmitters/modulators, DA directly stimulates salivary secretion

in the isolated SG likely through D1-type receptor [10], while

acetylcholine is likely involved in the sensory-mediated processes

in the synganglion (brain) that lead to salivary secretion [11]. We

previously described peptidergic network in innervation of the SG

acini II and III suggesting important roles of neuropeptidergic

control of salivary glands. [12,13].

A model for DA actions on the SG of partially fed ticks has been

proposed [14], in which DA activates two independent signaling

pathways: cAMP-dependent signal transduction leading to fluid

secretions; and a calcium-dependent signaling pathway activating

prostaglandin E2 production, which eventually leads to secretion

of other protein components in the saliva. Previous studies of DA

activity on the SG have mainly focused on the SGs of partially fed

ticks using in vivo and in vitro assays, but this strategy limits the

understanding of the roles of DA to only salivary secretion in the

specific feeding phase of ticks. In this study, we identified and

characterized a DA source and the D1 receptor for DA in the SG

of the blacklegged tick I. scapularis. In contrast to the presumption

of neuronal DA controlling the SG in previous studies (i.e., [7]),

our study proposes an alternative or additional function of

paracrine DA in the SG during the early feeding phase of ticks

and contributes to understanding of mechanisms governing the

release of bioactive secretory proteins associated with transmission

of pathogens into the host.
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Results

The gene encoding the dopamine receptor D1
Phylogenetic analyses comparing the I. scapularis D1 receptor

with Drosophila (D1, D1-like, and D2) and human (D1–D5)

dopamine receptor sequences demonstrated a clear orthologous

cluster in the D1 group, including human D1 and D5 (Figure 1A).

The tick D1 receptor is the ortholog of Drosophila NM_057659.3,

which was previously shown to be involved in the DA-induced

elevation of cAMP in a heterologous expression system [15].

Another tick G protein-coupled receptor (GPCR), tentatively

named D1-like, is orthologous to Drosophila NM_170420.2, in the

group closely related to the D1 group, but without vertebrate

counterparts. The third tick GPCR was clearly categorized into

the D2 group according to the sequence similarities to Drosophila

NM_001014758.2 and human D2, D3, and D4 (Figure 1A). The

GenBank Accession Numbers of the sequences for this analysis are

in the Fig. 1.

We were able to obtain the full-length open reading frame

(ORF) encoding the D1 receptor, The primers designed on each

putative start (ATG) and stop (TAG) codons amplified the full-

length ORF. RNA template was treated with DNase to avoid the

contamination by genomic DNA in the reverse transcription-PCR

of this intronless gene. The gene encoding I. scapularis D1 receptor

encodes 461 amino acid residues containing seven putative

transmembrane segments (Figure 1B).

Dopamine production in basal cells of acini
In female I. scapularis, DA immunoreactivities were found in the

large cells located in the basal region of acini II and III,

respectively, but not in acini I (Figure 2A C–E’). One to two and

three to four basal cells were immunoreactive in acini II and III,

respectively. Within the basal cells, only subsets of large vesicles

(,2–5 mm in diameter) or their surrounding regions were strongly

stained. Sampling at 12-hour intervals over the first 48 hours and

daily samplings afterward until the repletion, which happened in

day 7 or 8 after the onset of blood feeding showed that DA

production in the basal cells occurred between 12 and 40 hours

(Figure 2A–F’). DA immunoreactivities in other phases were not

detected. The numbers of positive individual females were as

follows: unfed (0/8, number positive/number tested individuals),

0–4 h (0/8), 12–16 h (3/8), 24–28 h (4/8), 36–40 h (6/13), 48–

52 h (0/8), 3rd day (2/9), 4th day (0/8), 5th day (0/8), 6th day (0/9),

and repletion stage (0/6).

Expression pattern of the D1 receptor
Tissue-specific quantitative real time reverse transcriptase PCR

(qRT-PCR) revealed that D1 receptor mRNA was abundant in

the salivary gland and the synganglion of partially fed (6th day)

females, while low levels of mRNA were also found in carcasses

(Figure 3A, 4). Further examination of the SGs from different

feeding phases showed that the D1 receptor mRNA was

constitutively detected in the SG from pre-blood feeding to

repletion of the tick. The mRNA level in the SG fluctuated

between one to two-fold during the blood feeding. The D1

receptor transcript in the synganglia was significantly increased (7-

fold) in the 1st day of feeding (Figure 3A, 4).

Nomenclature of neurons followed those used for the hard tick,

Rhipicephalus appendiculatus and I. scapularis previously published

[12,13]. The first two letters refer to the position of each D1

positive neuron in a specific lobe of the synganglion protocerebral

(Pc), pedal 1–4 (Pd1–4), opisthosomal (Os), and the letters that

follow refer to the anatomical location of the neuron: dorsal (D),

ventral (V), anterior (A), medial (M) or lateral (L).

D1-like immunoreactivity in the synganglion was found in a

cluster of three pairs of small anterior neurons in the protocer-

ebrum (PcAM). Two pairs of neuronal cells (PcDM, PcDL) were

found in the dorsal protocerebrum and three pairs of PcVM1,3 on

the ventral protocerebrum. One pair of small neurons (Pd1DL)

was found in the pedal ganglia I (Figure 3B, C, G). We observed

six pairs of cells (Pd3VM1–4 and Pd3VM5–6) in the ventral side of

pedal ganglia 3 (Figure 3B,D, G-I). The Pd3VM1–4 cells had

bilaterally symmetric projections directed anteriorly toward the

pedal ganglia III and arborized in a loop in each pedal ganglion I–

IV. Strong stains were also found in two large neuronal cells in the

medial region of the opistosomal ganglia (OsDM) and two smaller

pairs on the ventral side (OsVM1,2) (Figure 3B,E,G,H). Immuno-

reactive axons terminals exhibited arborizations in the surface of

the periganglionic sheath (Figure 3B,F). Among the immunoreac-

tive patterns of unfed female synganglion, PcDM, PcDL, Pd1DL

and OsDM cells were always found, but Pd3VM1–4 cells were

found in only three positive of six tested synganglia. On the other

hand, synganglia of 6th-day fed and fully engorged females showed

a reaction only in PcAM, PcVM1–3 Pd3VM5,6, OsDM (only in 6th-

day fed females), and OsVM1,2 neurons. In 6th-day fed females,

only a weak axonal network was observed inside the synganglia,

while strong reactions in the cell bodies and their axonal

projections in all regions within the synganglia were observed for

the fully engorged females (Figure 3G,I).

Strong positive signals in the SG were observed in the pre–

blood feeding stage (Figure 4, 5A–B’, E,). A weaker signal was also

found in the SG in the 1st and 2nd day after the initiation of

feeding in some individuals. The staining completely disappeared

in the 3rd and 4th day, and staining reappeared in some

individuals’ SGs on the 5th and 6th day after attachment

(Figure 4, 5C, D, F). Then, no positive signals were observed on

the 6th day or 7th–8th days after repletion. The numbers of positive

individuals were as follows: unfed (18/25, positive/tested individ-

uals), 1st day (11/13), 2nd day (2/13), 3rd day (0/3 tested), 4th day

(0/8), 5th day (4/11), and 6th day (3/14) (Figure 4).

D1 expression was limited only to acini II and III, but not found

in acini I. Rod-shaped immunoreactive patches (,2–3 mm long)

on the luminal surface were clustered in the junctions between

cells (Figure 5A–F). In the acini III, the patches of staining were

limited to the apical region of the acinus and excluded the basal

cells (Figure 5B,B’, D–F).

D1 receptor reporter assays
A receptor assay, in which the reporter detects downstream

calcium mobilization in chinese hamster ovary (CHO) cells upon

activation of the D1 receptor, showed robust responses to various

doses of DA and a low-level response to norepinephrine. More than

20-fold–higher activity of DA (EC50 = 248 nM) was found compared

to that of norepinephrine (EC50 = 5.87 mM) (Figure 6A,B). Octopa-

mine and pilocarpine did not produce any detectable response up to

10 mM. A 15-min preincubation with a high concentration (30 mM)

of butaclamol, a dopamine receptor antagonist, completely abolished

the DA-mediated response (at 3.3 mM) in the calcium reporter assay,

while preincubation with 1.5 mM, 5 mM, or 10 mM butaclamol did

not show significant effects on the response to treatment with

dopamine (Figure 6C,D). Transfection with only the reporter

aequorin construct did not result in any response to DA or

norepinephrine.

Another reporter system monitoring the cAMP production in

human embryonic kidney (HEK) cells indicated that the D1

receptor is also coupled to the pathway for cAMP production, a

presumed adenyl cyclase–mediated pathway. DA showed the

highest activity while norepinephrine was also active on the D1

Dopamine and the D1 Dopamine Receptor in Tick
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receptor (EC50 = 138 pM and 6.4 nM, respectively) (Figure 6E,F).

As seen in the calcium reporter assay, octopamine and pilocarpine

did not show any activity up to the concentration of 10 mM. In

addition to the strong activities of DA and norepinephrine on the

receptor, serotonin (10 mM) induced low levels of cAMP elevation

(,20% compared to the response to 10 mM forskolin, an activator

of adenyl cyclase), and tyramine and metaergoid (10 mM) induced

moderate responses (50–70% of the response to 10 mM forskolin,

Figure S1). Transfection with only the reporter Glo-sensor showed

a low response (cAMP elevation) to DA and norepinephrine at

10 mM (8% and 18% of the response to 10 mM forskolin,

respectively), indicating the presence of endogenous receptor(s)

in the HEK cells activating the reporter system, though the

response was small enough that it did not mask the D1 receptor

response to DA in this study.

Discussion

The dopamine mediated tick salivary secretion has been

widely used as an experimental tool to study tick salivary

secretion and relatively well characterized for the physiology

(reviewed in [7,14]). This is the first molecular and functional

characterization of a dopamine receptor in ticks. Our study

reveals a novel paracrine DA system controlling the tick SG

activity at the early blood feeding phase. Investigation of the

spatial and temporal dynamics of DA production and its

receptors in the tick SG provides insights into our understand-

ing of the molecular mechanisms underlying the control of

the SG.

DA in the basal cells of salivary gland acini at the early
feeding phase

The presence of DA in the I. scapularis SG, which we

demonstrated by immunohistochemistry, has also been previously

shown in South African bont tick Amblyoma hebraeum by chemical

analyses of the SG using chromatography followed by electro-

chemical detection and using a radioenzymatic assay with

catechol-O-methyl transferase [11,16]. In the same study [16],

immunohistochemical staining of tyrosine hydroxylase, the

enzyme responsible for the biosynthesis of DA, revealed

‘‘spindle-shaped bodies’’ in the acini II and III. Based on our

confocal microscopy, the spindle-shaped bodies are similar to what

we observed in the early phase of DA immunoreactivity,

particularly in the region surrounding the subset of large vesicles

(Figure 2A, C’) which were considered as nuclei previously [16].

These observations suggest that DA production is compartmen-

talized into a subcellular domain in the cytoplasm near a subset of

vesicles, which permits localized transport of the DA into the

secretory vesicles.

Temporal patterns of DA immunoreactivity, indicating that the

production of DA occurs only at the time between 12 and 40 h

post-attachment, do not agree with an earlier study done in A.

hebraeum. In that study, large quantities of DA were found in the

SG of the partially fed female tick, which is likely after more than 2

days of feeding based on the weight of the ticks specified in the

publication [11,16]. A remaining question is whether the

discrepancy is caused by the differences in the species or in the

experimental approaches. Interestingly, a recent electron micros-

copy study [17] described low-electron-density granules in a-cells

Figure 2. Dopamine immunoreactivities in the salivary glands of female ticks during various feeding phases. (A) A region of salivary
glands with clustered acini II (labeled 2) and III (labeled 3) at 12–16 h after attachment. (B to F) Acini II at 0–52 h after attachment to the host and (B’
to F’) acini III at the same feeding 4ases. Note that positive staining (green marked with arrowheads) was detected in both acini II and III in the
vesicles and their surrounding regions, but only at 12–40 h post-attachment. The blue color shows nuclei stained with DAPI. The images are
composites of multiple confocal layers of thicknesses of 20 mm (A) or 2–5 mm (B to F’). Scale bars equal 10 mm.
doi:10.1371/journal.pone.0016158.g002

Figure 1. Phylogeny and the amino acid sequences of the tick D1 receptor. (A) Phylogenetic relationship of dopamine receptors including
three tick dopamine receptors. The tree was constructed using a neighbor-joining method. Numbers at the nodes are for the percent support using
500 bootstrap replicates. (B) Alignment of conceptual translations for D1 receptor–related sequences. The letters with gray background are similar,
letters in the black background are identical amino acids in the sequence alignment using 50% majority rules. Conserved seven-transmembrane
segments predicted by TMHMM Server v.2.0 (http://www.cbs.dtu.dk/services/TMHMM/) of Ixodes D1 receptor are marked with a solid line (red) above
the alignment. GenBank Accession numbers are: Drosophila melanogaster D1, NM_057659.3; D. melanogaster D1-like, NM_170420.2; D. melanogaster
D2, NM_001014758.2; Homo sapiens D1, NM_000794.3; H. sapiens D2, NM_000795.3; H. sapiens D3, NM_033663.3; H. sapiens D4, NM_000797.3; H.
sapiens D5, NM_000798.4; D. melanogaster muscarinic acetylcholine receptor, NM_079120.2; Tribolium castaneum XM_966449; I. scapularis D1,
XM_002409243.1; I.scapularis D1-like, XM_002399612.1; and I. scapularis D2, XM_002416405.1. The I. scapularis sequence was extended to the 59 end
based on our data.
doi:10.1371/journal.pone.0016158.g001
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of acini II released for the first 2 days of feeding and large,

electron-translucent granules in d-cells of acini III luminally

released in the first day after attachment. The basal locations of

the a- and d-cells in acini II and III with large granules (vesicles) of

a size of 4–6 mm and ,2 mm, respectively [17], and the temporal

dynamics match the dopamine immunoreactive vesicles we

describe in this study. Therefore, we conclude that DA synthesis

and vesicle-mediated luminal secretion in the basal cells of acini II

and III occur at the early feeding phase. Furthermore, inconsistent

DA immunoreactivity, for which ,50% individuals were positive

in the 12 to 40 hr feeding, suggests that the DA production and

secretion occurs in a short period of time and tightly controlled.

It is also noteworthy that the neuropeptidergic axonal

projections terminate adjacent to the basal cells of acini II and

III (Figure 5E, F), while there was no detectable dopamine

immunoreactive neuronal projections to the SG in this study. We

previously described two neuropeptides, SIFamide and myoinhi-

bitory peptides, co-localized in a pair of large protocerebral cells

(PcSG) and in the nervous projections reaching to the acini II and

III of the salivary glands [12,13]. The anatomy of the nervous

projection of the PcSG containing those neuropeptides suggests a

possible role in neuropeptidergic control of dopamine cells located

in the basal part of acini II and III (Figure 5E,F).

D1 receptors at the luminal surface of the SG
Dopamine acts through membrane-associated G protein–

coupled receptors. At least three different genes encoding the

DA receptors exist in the genome of I. scapularis: D1, D1-like, and

D2 receptors. The tick D1 receptor characterized in this study

showed the classical characteristics of D1-family receptors in its

heterologous expression. Ligand-activated elevation of cAMP,

presumably through the Gas subunit and adenyl cyclase, occurred

at a low concentration of DA. The lowest effective concentration

was 30 fM. However, the concentration–response curve had a very

shallow slope, which results in the curve spanning more than a

five-log scale and implies that the reporter system was not a simple

result of a one-on-one biochemical interaction between ligand and

receptor. It is possible to have complex receptor conformations

and coupling efficiencies to the reporter in the heterologous

expression system, though it is clear that the tick D1 receptor

responded to DA with a high sensitivity. In addition, the receptor

also presumably acted through a presumed Gaq -coupled

pathway, which induced intracellular calcium mobilization in

the heterologous expression system. Relatively higher concentra-

tions of DA were required for the calcium response compared to

those required for elevation of cAMP.

Earlier studies in the SG response to DA have shown that the

DA action occurs both through the activation of adenyl cyclase

[10] and through calcium mobilization (both intra- and extra-

cellular calcium) [18]. Subsequently, a model for DA-induced

signal transduction in the tick SG was proposed [14], in which DA

activates two independent signaling pathways: cAMP-dependent

signal transduction leading to fluid secretions, and a calcium–

dependent signaling pathway activating prostaglandin E2 produc-

tion and eventually leading to secretions of other protein

components in the salivary secretions. The DA action on the

salivary secretion was blocked by a general DA receptor

antagonists butaclamol [19]. The tick D1 receptor acting through

both cAMP and calcium elevation and its inhibition by butaclamol

described in this study are similar to the model proposed for the

DA receptor in the tick SG, although a cautious interpretation of

the results from the heterologous expression system is needed.

Previous studies of DA actions on the SG have focused on the

middle feeding phases, while the SG in the phases before feeding

or after the completion of feeding did not show the salivary

secretion upon bath treatment of DA on the isolated SG [8]. The

D1 receptor investigated in this study probably does not mediate

the DA-activated salivary secretion in the middle feeding phases,

based on phase-specific expression patterns shown by immunore-

activity. We propose that the D1 receptor which is expressed in the

SG at the early feeding phase is the major receptor mediating the

luminally secreted DA from the basally located cells of acini II and

III.

Other possible functions of luminally released DA and the D1

receptor can be predicted based on our observation. We propose

that the luminally released DA could be secreted into the host as a

Figure 4. The levels of mRNA and protein of the D1 receptor in
salivary glands. Quantitative RT-PCR showing the transcript levels of
the D1 (upper panel) and the percent positive responses in the D1
immunohistochemistry (lower panel) are presented for females salivary
glands fed for 6 days. The quantitative RT-PCR shows the averages and
standard deviations of three biological replications.
doi:10.1371/journal.pone.0016158.g004

Figure 3. Expression patterns of the D1 receptor. (A) Quantitative RT-PCR showing the transcript levels of D1 in different tissues of females fed
for 6 days (left panel) and temporal changes after the onset of feeding in synganglia (right panel). The averages and standard deviations of three
biological replicates are shown. Asterisks (*) are for p,0.05 in ANOVA-Tukey’s post hoc means comparison test. More details are discussed in
Materials and Methods. S, synganglia; SG, salivary glands; Car, carcass. Schematic diagrams showing D1 receptor neurons in the synganglia of unfed
female (B) and after repletion (G). Blue boxes with dotted lines show immunohistochemistry in the right panel: (C) dorsal protocerebral region,
(D) pedal region, (E) opistosomal neurons on the dorsal side, (F) periganglionic sheath surface of the dorsal-pedal region showing the axon terminals
arborization, (H) vetral protocerebral, pedal and opistosomal region and (I) pedal and opistosomal region containing rich axonal arborization.
Arrowheads in F indicate axonal arborization on the periganglionic sheath surface. The first two letters refer to the position of each D1 positive
neuron in a specific lobe of the synganglion protocerebral (Pc), pedal 1–4 (Pd1–4), opisthosomal (Os), and the letters that follow refer to the
anatomical location of the neuron: dorsal (D), ventral (V), anterior (A), medial (M) or lateral (L), and periganglionic sheath (PgS). The numbers in
subscripts after the last letter refer to number of neuron pairs. Scale bars in B to D and G to I equal 50 mm and in E and F equal 10 mm.
doi:10.1371/journal.pone.0016158.g003
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salivary component for vasodilation of the feeding site. DA may

also have direct effects on pathogenic organisms. In Borrelia

burgdorferi, an induction of the expression of outer surface protein A

in response to the host catecholamines is known to facilitate the

colonization in the tick midgut [20]. Furthermore, previous studies

and our preliminary work indicating the presence of multiple

dopamine receptors in the SG, suggest multiple functions of DA in

the control of the SG through different types of receptors. We also

found changes in the D1 receptor staining patterns in the

synganglion, including its increased accumulation in the axonal

projections that arborize in the synganglion at the end of the

feeding phase (Figure 3G,I). These results imply that dopamine

has dynamic roles in the neuronal system over the tick feeding

phases. This study characterizing the source of DA and D1

receptor in the SG of tick strongly supports the paracrine function

of DA in the SG and lays a foundation for understanding the

functions of DA in tick physiology during host attachment.

Functional dissection of the DA signaling pathways in control of

the SG through multiple receptors requires combinatory exper-

imental approaches using pharmacology and RNA interference

(RNAi). Unfortunately, our extensive efforts on the RNAi of the

D1 receptor have not been successful in sufficient suppression of

the transcript, which was confirmed by qRT-PCR and immuno-

histochemistry. Expanded work on other dopamine receptors and

development of physiological assays on the SG will help to

decipher the DA actions on the tick SG.

Materials and Methods

Experimental animals and chemicals
Unfed adult ticks, I. scapularis, were obtained from the tick-

rearing facility at Oklahoma State University. A colony of I.

scapularis was kept in polypropylene vials (962.5 cm) with the

openings covered by cotton plugs. Each vial contained approxi-

mately 30 individuals of both females and males and a small piece

of filter paper (461 cm). These vials were kept in a dark, humid

chamber at 4uC. Ticks were fed on experimental New Zealand

White rabbits (Myrtle’s Rabbitry, TN). Rabbits were cared for in

accordance with the guidelines approved by the Institutional

Animal Care and Use Protocol (IACUC approval no. 2721) of

Kansas State University. Chemicals used in this study were:

dopamine hydrochloride (Sigma), DL-octopamine hydrochloride

(Fluka), pilocarpine nitrate salt (Sigma), (6) –norepinephrine (+)-

bitartrate salt (Sigma), 98% forskolin (Fluka) from Coleus forskohlii,

serotonin hydrochloride (Sigma), tyramine hydrochloride (Sigma),

and methylergonovine maleate salt (Sigma).

Figure 5. Immunohistochemistry for D1 receptor in the salivary glands. (A) Whole acinus II of unfed female shown as a 27 mm-thick
composite image or (A’) a selected thin optical layer for a 10 mm thick demonstrating the apical location of the D1 receptor immunoreactivities. (B)
Whole acinus III of an unfed female shown as a composite image of 34 mm thickness or (B’) a selected thin optical layer for a 5 mm thick
demonstrating the apical location of the D1 receptor immunoreactivities. (C) Acini II and (D) III of a female at the 5th day post-attachment. Ten-
micrometer-thick confocal composite images overlaid with the differential interference contrast images are shown. Schematic diagram showing the
D1 (green), dopamine (blue), and neuropeptidergic innervation (red) [13] in acini II and acini III of the 12–16 hour fed female (E) and 5th day post-
attachment in a female (F). Arrowheads indicate the scattered patches of D1 receptor reaction on the luminal side of the acini. Doted lines in A’, B’, C,
and D indicate the boundary of an acinus. Blue in A to B’ is nuclei stained with DAPI. Scale bars are equally for 10 mm.
doi:10.1371/journal.pone.0016158.g005
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Gene cloning and sequence analysis
Gene predictions for the dopamine receptor were based on the

results of blast searches in VectorBase (www.vectorbase.org). Initial

search results for the matches of highly conserved regions were used

for further analyses of the database and for designing primers to use

in polymerase chain reaction (PCR). PCR products were cloned

into the pGEM-T-easy vector (Promega, Madison, WI) and

sequenced. The primers used for amplification of the D1 gene

were as follows: forward, 59-GAAAGTCGGATGTGTTGCTC-

CA-39, and reverse, 59-AGTACACTCGCTGCTATATGGC-39.

Transmembrane segments were predicted by using TMHMM

Server v.2.0 (http://www.cbs.dtu.dk/services/TMHMM/). Phylo-

genetic analyses of putative I. scapularis dopamine receptors and

related GPCRs were based on sequence alignments using

CLUSTAL W2 [21]. Sequences were trimmed to contain

conserved transmembrane segments one to seven. The tree was

constructed with MEGA4 [22] using the neighbor-joining method

with 500 bootstrap replicates.

Figure 6. Reporter assays for D1 receptor showing DA-activated calcium mobilization and cAMP elevation. (A) Luminescent reporter
calcium assay showing typical responses to varying doses (5 nM to 10 mM) of DA. (B) Dose–response curves of the CHO cells transfected with the D1
and aequorin constructs and treated with DA and norepinephrine. Antagonistic effect of butaclamol on the D1 receptor. (C) Luminescent responses
to DA (3.3 mM) in the CHO cells expressing D1 receptor and aequorin. The cells were pretreated with 5 or 30 mM butaclamol (red and black lines,
respectively) for 15 minutes. (D) Percent responses to DA (3.3 mM) when the cells were pretreated with different concentrations of butaclamol. Note
that only 30 mM butaclamol was effective in blocking the DA action on the D1 receptor. (E) Luminescent reporter cAMP assay (GloSensor) showing
typical responses to varying doses (0.1 pM to 1 mM) of DA. (B) Dose–response curves of the HEK cells transfected with the D1 and GloSensor
constructs for DA and norepinephrine. Bars indicate standard errors for a minimum of four replicated plates.
doi:10.1371/journal.pone.0016158.g006
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Quantitative real-time reverse transcriptase PCR (qRT-
PCR)

RNA for qRT-PCR was extracted from dissected SGs and

synganglia. The seven different samples represented tick feeding

phases were unfed ticks and ticks collected daily for 6 days of

attachment. The organs from eight individuals were pooled for

each biological replication. All data presented are for three

biological replications unless specified otherwise in the figure

captions.

Total RNA was extracted by Trizol reagent (Invitrogen) and

treated with Turbo DNase (Ambion) or RNeasy Plus Micro Kit

(Qiagen) with incorporated on-column DNase treatment to obtain

DNA-free RNA. Reverse transcription using Superscript III

(Invitrogen) with polyT primer was followed by real-time PCR

using SYBR premix Ex Taq (Takara Bio). Primers targeting the

278-bp amplicon were DopR1-F: TGCCTGGCCATCTA-

CACGGATC and DopR1-R: TTGGTCATCCAGCGGCCG-

TAGC. The I. scapularis ribosomal protein S4 (GenBank Accession

No. DQ066214), which was determined to be the most suitable for

the stabilities among different tissues and feeding stages in our

preliminary study (data not shown), was used as the reference

gene. The 174-bp product was amplified with the following

primers: RPS4-F: AGGCCAAGTACAAGCTGTGC and RPS4-

R: CGAACTTGATGTAGTCGTCG. mRNA level was quanti-

fied using the DDCt method, corrected by the amplification

efficiency of each target gene, and expressed as a fold difference

[23]. Data were analyzed by one-way analysis of variance and

Tukey’s post hoc means comparison in Origin v.7 (OriginLab).

Immunohistochemistry
Ticks were dissected in ice-cold phosphate-buffered saline (PBS:

137 mM NaCl, 1.45 mM NaH2PO4, 20.5 mM Na2HPO4,

pH 7.2). The synganglia and the salivary glands were cleaned of

remaining blood and fixed in Bouin’s solution (37% formaldehyde

and saturated solution of picric acid 1:3) or a mixture of 4%

paraformaldehyde and 2% glutaraldehyde at room temperature

for 2 hours or 4uC overnight, respectively. The fixed samples were

washed in PBS containing 1% Triton X-100 (PBST). The tissues

were then preadsorbed with 5% normal goat serum (Sigma) in

PBST for 10 minutes and subsequently incubated with anti-

dopamine (ab888, Abcam) and anti-D1 (see below) antibodies

(1:300 each) for 2 days. The preadsorption step was omitted for

dopamine immunohistochemistry. After three washes with PBST,

the tissues were incubated overnight in goat anti–chicken or anti–

rabbit IgG antibody conjugated with Alexa Fluor 488 (Molecular

Probes). The tissues were washed in PBST and mounted in

glycerol containing 300 nM 49,69-diamino-2-phenylindole (2 mg

ml21; Sigma). Images were captured on a confocal microscope

(Zeiss 510 Meta). Schematic drawings were made in Adobe

Photoshop 7.0 or Canvas 8.0. Data presented are only for multiply

repeated staining patterns, and they are specified in the figure

captions.

Antibody against the D1 dopamine receptor was raised in a

chicken (Genescript, New Jersey). An antigenic peptide was

designed for the region predicted to have high surface probability

and antigenicity and low probability of post-translational modifi-

cation. The carboxy-terminal 20 amino acid residues, CEVDTR-

VEISVKSVGEISAI, were chemically synthesized and conjugated

to keyhole limpet hemocyanin. The final bleed was used for

affinity purification. Nomenclature of neurons followed that used

for the hard tick R. appendiculatus and for I. scapularis, as previously

published [12,13]. The first two letters refer to the position of each

D1-positive neuron in a specific lobe of the synganglion:

protocerebral (Pc), pedal 1–4 (Pd1–4), or opistosomal (Os); and

the letters that follow refer to the anatomical location of the

neuron: dorsal (D), ventral (V), anterior (A), medial (M), or lateral

(L). The immunohistochemistry with pre-immune serum for anti-

D1 receptor showed no specific staining pattern in the pre-feeding

stage, demonstrating the antibody specificity (Figure S2). The blast

search of the I. scapularis genome using the antigenic peptide

sequence as query did not find any significant matches except to

the D1 receptor gene.

Receptor reporter assays
The full-length open reading frame (ORF) of the D1 receptor

was inserted into the plasmid pcDNA3.1(+) (Invitrogen). For

calcium mobilization assays, transient expression of the D1

receptor was assessed using the reporter aequorin (cytoplasmic

aequorin, [24]) in CHO cells. Luminescence assays were

performed in opaque 96-well microplates (Corning) using an

Orion microplate luminometer (Berthold Detection Systems).

Various doses of ligands in 50 mL were plated in each well. The

changes in luminescence were monitored for 20 s immediately

after injection of cells into the well (,15,000 cells in 50 mL). The

luminescent response was integrated over time and normalized to

the largest positive control response in each plate (10 mm DA for

the D1 receptor) after background subtractions. The effect of the

antagonist butaclamol was measured after a pre-incubation of the

cells for 15 min at room temperature with different concentrations

of butaclamol. Subsequently, the cells were treated with 3.3 mM

dopamine, the dose inducing the maximum response, and the 20-s

luminescent response was measured.

For cAMP response assays, we used the non-lytic GloSensor

cyclic AMP assay kit (Promega) for monitoring intracellular cAMP

in live cells. Co-transfections of the plasmid containing D1

receptor and the plasmid with GloSensor were performed in

HEK cells, Invitrogen). Cell suspensions were pre-equilibrated

with 1% GloSensor substrate (Promega) before the test. The same

luminometer described above was used to detect the luciferase

activity. Ligands being tested were plated in each well of the 96-

well plate. Following the injection of cells (,105 in 50 mL) into a

well, the changes in luminescence were monitored in ,1-min

intervals for 25 min. Relative luminescence at 15 min after the

incubation with various doses of ligands was normalized by the

largest positive control response in each plate (300 nM DA for the

D1 receptor) after background subtractions. Each plate contained

at least two replica wells for a dose of a ligand in all plate assays.

Cells were grown in Ham’s DMEM-F12 medium supplemented

with 10% FBS, 100 U/ml penicillin, 100 mg/ml streptomycin,

and 2.5 mg/ml fungizone. Transfections of reporter and receptor

constructs were performed using FuGene HD (Roche) according

to the manufacturer’s protocol at a ratio of DNA to FuGene of 3:2.

The responses mediated by endogenous receptors from the CHO

and HEK cell lines were determined by mock transfection with

only the reporter construct. All ligands were dissolved in distilled

water except forskolin in dimethyl sulphoxide (DMSO) (Sigma) for

the stock solutions. Further dilutions were made in the working

solution: Ham’s DMEM-F12 media supplemented with 0.1%

bovine serum albumin (BSA) (Millipore) for calcium assay or CO2-

independent media (Invitrogen) for cAMP assay.

Supporting Information

Figure S1 Agonistic activities of different compounds on
the D1 receptor in the reporter assay measuring the
induced elevation of cAMP. Data are percent luminescent

values normalized by the response to 10 mM forskolin.

(PDF)

Dopamine and the D1 Dopamine Receptor in Tick

PLoS ONE | www.plosone.org 9 January 2011 | Volume 6 | Issue 1 | e16158



Figure S2 Pre-immune negative controls for D1 recep-
tor. (A) acinus II and (B) acinus III of unfed female. Scale bar

10 mm. Doted lines indicate the boundary of an acinus.

(PDF)
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