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Abstract

Background: In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the
alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon
are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus
subtilis.

Methodology/Principal Findings: By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes
to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799
and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of
sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was
largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799
enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown.
Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes.
Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner,
red light had no effect there.

Conclusions/Significance: Our data established that visible, in particular blue light is an important environmental signal
with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural
environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity,
depending on the light conditions prevailing in the respective habitat.
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Introduction

Listeriae are gram-positive, non-sporulating rod-shaped bacteria.

The genus comprises eight species, L. monocytogenes and L. ivanovii

are pathogenic for humans and/or animals, L. seeligeri is considered

as nonvirulent, L. innocua, L. welshimeri, L. grayi, L. marthii and L.

rocourtiae are harmless saprophytes. Natural habitats of Listeriae are

decaying plant material in soil and also the intestine of healthy

animals and man [1,2]. From there the bacteria gain access to

sewage and water and may also contaminate food processing

environments. Uptake of contaminated feed or food leads to the

transmission of Listeria to mammalian hosts, including man [3,4].

Listeriosis, a systemic disease caused in humans by L.

monocytogenes, is rare but has a high mortality in severe

manifestations, e.g. sepsis and meningoencephalitis. It mainly

occurs in risk groups, such as children, pregnant, elderly and

immunocompromised persons [5,6]. The bacterium has also been

implicated in a number of gastroenteritis cases [7]. L. monocytogenes

is widely studied as model organism for facultative intracellular

bacterial pathogens. It turned out that pathogenic Listeriae contain

a chromosomal cluster of genes (Vcl) which are essential for

virulence. The products of these virulence genes are involved in

the escape of Listeria from the phagosome of the host cell, in actin-

based intracellular movement of the bacteria and in their

spreading to neighbouring cells [5,8,9]. The virulence gene cluster

shows some features of a genomic island and therefore has been

termed LIPI-1, for Listeria pathogenicity island 1 [10,11]. A

steadily growing number of other factors which are involved in the

infection process has been identified, among them the internalins

which trigger the bacterial uptake into non-phagocytic cells [12].

All virulence genes within LIPI-1 are under the transcriptional

control of the Crp-like regulator PrfA [13,14,15].

The events during the transition of pathogenic Listeriae from the

saprophytic lifestyle in the environment to that of an intracellular

pathogen have been reviewed recently [16,17].

L. monocytogenes is very robust, growing between pH 5–9, from

1–45uC and at salt concentrations up to 12% [5]. Listerial mecha-

nisms counteracting environmental stress, e.g. high osmolarity,
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acid and bile, have been studied with respect to the survival in the

environment and during the colonization of the intestinal tract

[18–22]. The alternative stress sigma-factor B (SigB) of the RNA-

polymerase holoenzyme was first discovered in the model

organism for low G+C Firmicutes, Bacillus subtilis [23]. It is one of

the key components in the general stress response of this group of

microorganisms and controls the transcription of a large regulon of

stress-related genes [24]. This also holds true for L. monocytogenes

[19,25,26,27,28], in addition to SigB the stress gene regulators

CtsR [29] and HrcA [30] play an important role. SigB of L.

monocytogenes is also acting on the transcription of prfA and hence of

PrfA-dependent genes, thus interconnecting stress response and

virulence gene expression [31,32,33,34,35]. The activation of SigB

by stress is a very complex process which has extensively been

studied in B. subtilis, reviewed in [24]. There it involves, among

other factors, the modulator protein RsbR [36]. B. subtilis RsbR

and its paralogues [37], together with RsbS and RsbT, form a

dynamic supramolecular complex, termed stressosome, which is

supposed to integrate different environmental stress signals, such

as high osmolarity, low pH etc. [38,39,40,41,42,43,44,45].

Although the constituents of this complex are well characterized,

it is not yet really clear which of the RsbR paralogues perceives

which kind of environmental signal, with one notable exception. It

has been shown recently that YvtA of B. subtilis activates SigB

upon illumination with blue light [46,47,48]. Initially YtvA has

been described as a positive regulator of SigB and as a RsbR

paralogue with biochemical properties different from other RsbR

proteins, i.e. not being phosphorylated by the RsbT kinase in vitro,

showing a yellow color upon purification and bearing a N-terminal

PAS domain [37]. Subsequent analyses identified YtvA as a

member of the newly discovered and growing family of

phototropin-related blue-light receptors in prokaryotes [49]. All

these proteins carry a N-terminal LOV domain and a variety of C-

terminal signalling domains [50]. LOV domains, found in blue-

light receptors, oxygen-sensors and voltage-gated potassium

channel proteins, are a subfamily of the PAS superfamily.

Photoactive LOV domains non-covalently bind FMN (flavin

mononucleotide), upon illumination with blue light a covalent

photoadduct of a single molecule of FMN to a conserved cysteine

in the LOV domain is formed and a photocycle is initiated which

ultimately leads to a signal transduction process [51]. In YtvA the

LOV domain is linked to a C-terminal STAS domain, the latter is

characteristic for sulphate transporters and anti-sigma-factor

antagonists [52] and is present in all RsbR paralogues and in

RsbS of B. subtilis [37,41]. The photochemistry and structure of

YtvA has been studied in great detail [53,54,55,56,57] as well as its

possible mechanism of action in SigB activation [58]. In these

studies it has firmly been established that YtvA is a true flavin-

based photoreceptor. Recently it has been described that the SigB-

mediated general stress response of B. subtilis is also activated by

red light, however, a receptor has not unambiguously been

identified [59]. It has been noted early that proteins with the

particular domain architecture of B. subtilis YtvA, i.e. N-terminal

LOV linked to C-terminal STAS, are only found in other Bacilli

and in Listeria [50,51], however, nothing was known so far about

the function of Lmo0799, the presumptive homologue of YtvA in

the pathogen L. monocytogenes. Since a long time light-induced

physiological responses and signalling processes are well known for

photosynthetic microorganisms, but reports on such phenomena

in non-phototrophic bacteria were rather rare, this has changed in

the last decade [49,50,60,61,62,63,64], in particular since an

exponentially growing number of fully sequenced bacterial

genomes became available [65,66,67]. However, still very little is

known about light effects on bacterial pathogenesis [68]. It has

been shown that light influences the virulence of the plant

pathogen Agrobacterium tumefaciens [69]. In the plant pathogen

Pseudomonas syringae a blue light inducible two-component system

has been characterized [70], it is not known if this system has a

role in pathogenicity. With respect to bacteria pathogenic for

mammalians it has been reported that infection of macrophages by

Brucella abortus was stimulated by blue light, this effect was

dependent on a photoreceptor which combines a LOV domain

with a histidine-kinase signalling domain [71]. Here we demon-

strate for the first time that the Lmo0799 protein of L. monocytogenes

EGD-e is indeed a functional homologue of the photoreceptor

YtvA from B. subtilis. We show that it is involved in the blue-light

driven transcriptional activation of SigB-regulated genes in L.

monocytogenes and that blue-light activation of Lmo0799 impaired

the swimming motility of the bacteria. Among the light-induced

genes were also those for the internalins A and B, resulting in an

increase of bacterial invasiveness for enterocyte-like Caco-2 cells.

Furthermore, we could demonstrate that blue light had a

Lmo0799-independent effect on the transcription of stress- and

virulence-related genes of L. monocytogenes and that transcription of

these genes was also influenced by red light, the underlying

mechanisms remain unknown. Light induction of SigB-dependent

genes was completely abolished in a sigma B deletion mutant.

Results

Lmo0799 of Listeria monocytogenes EGD-e is highly similar to YtvA

from Bacillus subtilis, homologues are present in all sequenced L.

monocytogenes isolates and in other Listeria species.

During a recent investigation into the thiol:disulfide redox

metabolism of Listeria monocytogenes EGD-e we observed that,

together with the genes for thioredoxin A (trxA) and thioredoxin

reductase (trxB), the transcription of lmo0799 was highly up

regulated when the bacteria were selectively depleted for the

biological thiol glutathione (GSH) by a deletion in the glutathione

synthetase gene gshF. Treatment of L. monocytogenes with diamide, an

oxidant for biological thiols (not only GSH but also thiol-containing

proteins), did not significantly induce lmo0799 (unpublished results).

The gene product of lmo0799 has originally [72] been annotated as a

hypothetical protein of 253 amino acids (http://genolist.pasteur.fr/

ListiList/), however, a closer look revealed a significant relatedness

to the blue-light photoreceptor YtvA of B. subtilis, this had already

been noted earlier by others [50,51]. Figure 1A shows that the two

amino acid sequences are highly similar over their total length, this

includes the cysteine (C62 in YtvA, C56 in Lmo0799) which is

required for formation of the FMN photoadduct. As already

mentioned in the introduction, YtvA of B. subtilis is a RsbR

paralogue. However, it lacks the conserved phosphorylatable

threonines found at positions 171 and 205 in RsbRA and at

corresponding positions in RsbRB-D [37,73]. In YtvA negatively

charged glutamates (E168 and E202) are present at positions

corresponding to T171/T205 of RsbRA. It has been suggested that

these negatively charged amino acids mimick the phosphorylated

state of threonine [47]. In Lmo0799 a histidine (H163) is found at

the position of YtvA-E168, followed by a negatively charged

aspartate (D164). The second glutamate, E202 in YtvA, is conserved

in Lmo0799 (E197). Other amino acids which have been identified

as being important for the function of YtvA, e.g. E105, Q123 and

the DLSG motif [57,58,74] are conserved in Lmo0799. The 3-D

structure of the LOV domain of YtvA from B. amyloliquefaciens has

recently been solved [75], using this structure as a template we

modeled the probable structure of Lmo0799-LOV at the SWISS-

MODEL workspace. Figure 1B shows that the modeled 3-D

structures of YtvA-LOV and Lmo0799-LOV are virtually identical,
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the coil connecting Hb and Ib of Lmo0799-LOV could not be

modeled unambiguously. Modeling of the surface of both proteins

showed that the crucial cysteines at the N-terminus of Ea are

located in a pocket but are accessible in both proteins. Figure 1C

depicts the transcriptional organization of the lmo0799/ytvA loci, as

deduced from the literature and from genome data. For lmo0799 it

has been shown by Toledo-Arana et al. [35] that a riboswitch

(LysRS), regulating the transcription of the lysine transporter

Lmo0798, is located downstream of lmo0799 in L. monocytogenes

EGD-e. In the above mentioned study it was shown that both in the

absence or presence of lysine in the medium, lmo0799 was

transcribed from a promoter immediately upstream of the gene,

this transcript extended into the riboswitch sequence. In addition, a

short transcript comprising the riboswitch only was also found. The

lysine transporter gene lmo0789 was only transcribed in the absence

of lysine. The graphical representation of the B. subtilis 168 genome

[76] which is available on a website at the Pasteur Institute Paris

(http://genolist.pasteur.fr/SubtiList) clearly indicated that ytvA is

transcribed monocistronically, its promoter has been mapped by

Gaidenko et al. [47].

When we performed a BLAST search, using Lmo0799 as the

query sequence, in 1299 bacterial genomes in the NCBI database,

our results confirmed previous report, based on a smaller number

of genomes [50,51], that proteins with the particular domain

architecture of YtvA/Lmo0799 can be found only in other Bacilli,

including the extremely halotolerant and alkaliphilic deep-sea

isolate Oceanobacillus iheyensis, and in Listeria. In this search and also

using the Genolist website at the Pasteur Institute Paris we found

identical or very similar proteins in all sequenced L. monocytogenes

isolates and Listeria species (alignments not shown). The similarity

values (identical/positive, in percent) were 99/99 for L. monocyto-

genes serovar 4b strains, 93/99 for L. innocua, 91/97 for L. welshimeri,

87/96 for L. ivanovii (searched at http://genolist.pasteur.fr/

LivaList), 85/95 for L. seeligeri and 64/80 for L. grayi. These values

are in agreement with the established phylogenetic tree of Listeria

which classifies L. monocytogenes and L. innocua as belonging to one

group, L. ivanovii and L. welshimeri to another and L. grayi as the

most distantly related one to all other Listeria species [11,77].

A deletion mutant for lmo0799 growths like wild type
By allel replacement a mutant (D0799) of L. monocytogenes EGD-e

was constructed in which the coding sequence for the amino acids

2–248 of the 253 amino acids long Lmo0799 protein was deleted

(Figure 1C). Such an in frame deletion should not influence the

expression of the riboswitch LysRS and of the lysine transporter

Lmo0798. When wildtype or the mutant D0799 were grown in

BHI at 37uC no difference in their multiplication was observed

(data not shown).

Blue and red light, in combination with salt stress, induce
the transcription of the SigB-dependent ctc gene and of
sigB

In the studies on YtvA of B. subtilis the ctc gene was used as a

reporter gene [46,47,48]. The promoter of this general stress gene

is the best studied SigB-dependent one in B. subtilis, a homologue

(lmo0211) is also present in the genome of L. monocytogenes EGD-e.

It has been shown that Ctc of L. monocytogenes is involved in

osmotolerance [78], in almost all studies on the SigB regulon of L.

monocytogenes the ctc gene appeared as being positively regulated by

SigB [32,79,80,81,82]. In the initial study on the blue-light

mediated effect of YtvA it was claimed that red light had no effect

on the transcription of ctc in B. subtilis [46]. However, our

preliminary experiments concerning effects of blue light on L.

monocytogenes yielded highly variable and sometimes conflicting

results when we used a red-light dark chamber lamp for the

handling of dark controls (not shown). Therefore we used low-

intensity, diffuse infrared (l= 850 nm) illumination for our dark

controls in all experiments reported here and night vision goggles

for observation during the manipulations. Our assumption that

red light might have an effect on transcription was later confirmed

for B. subtilis too [59]. For YtvA is has been demonstrated that the

blue-light effect was enhanced upon exposure of B. subtilis to salt

stress (0.3 M NaCl) [46,47,48], therefore we performed all our

transcription analyses after exposure of Listeria to all possible

combinations of light and salt stress. Figure 2A shows that blue

light alone moderately increased ctc transcription in the wild type

(1.5-fold), the effect of salt stress alone was not significant here as

well as in the D0799 receptor mutant, blue light alone had no

effect on the mutant. The combination of blue light and 0.3 M

NaCl resulted in a 3-fold increase for the wild type and 2.5-fold for

the mutant. The response profile for red light was different

(Figure 2B), light or salt stress alone resulting in no significant

increase for the wild type, red light plus 0.3 M NaCl yielding a

2.2-fold increase here. Surprisingly, red light alone resulted in a

2.5-fold increase in the D0799 mutant, red light plus salt gave a

3.5-fold increase, i.e. significantly higher than in the wild type.

Deletion of sigB (DsigB) decreased the transcription of ctc, under all

conditions, to about half of the level observed for the wild type

without light (Figures 2A and 2B). The transcription of sigB itself,

which is positively autoregulated [26,82] showed the same pattern

as ctc, except for the D0779 mutant with blue salt plus salt, where

no induction was seen (Figures 2C and 2D).

Other SigB-dependent genes respond to light in a
manner similar to ctc, PrfA-regulated virulence genes and
the thiol redox-related gene trxA behave differently

After having established the proper experimental conditions for

dark controls, we next investigated the behavior of four other genes

the transcription of which is commonly regarded as being SigB-

dependent in L. monocytogenes [32,79,80,81]. These were lmo2230

(arsC, enconding a protein with similarity to arsenate reductase),

lmo1433 (putative glutathione reductase), lmo2067 (bsh, bile salt

hydrolase) and lmo1425 (opuCD). The latter gene encodes one of the

two membrane-spanning proteins of a carnitine-ABC-transporter

involved in osmo- and bile-tolerance of L. monocytogenes [22].

Lmo1425 was chosen instead of lmo1428 (opuCA), the first gene in the

opuC operon, because in this way we could better monitor the

transcription of the entire operon. Figure 3 shows that the light- and

salt-dependent transcription profiles of all these genes were similar

to that observed for ctc. Induction by blue light was always strongest

Figure 1. Structure and genetic organization of Lmo0799 and YtvA. Detailed explanations in the text. (A) Amino acid sequence alignment of
Lmo0799 and YtvA, using ClustalW2 [106] (http://www.ebi.ac.uk/Tools/clustalw2/index.html). Asterisks below the sequence indicate identical, double
points very similar amino acids. The boundaries of the LOV and STAS domains are according to [56]. Amino acids which have been shown to be
particularly important for the function of YtvA are highlighted in yellow (C62/C56) or blue. (B) 3-D models of YtvA-LOV and Lmo0799-LOV, generated
with the SWISS-MODEL server (http://swissmodel.expasy.org/workspace/). Upper panel: Ribbon models, the designations of beta-sheets and alpha-
helices were from [56]. Lower panel: Surface models. (C) Genomic context and transcriptional organization of lmo0799 and ytvA. The data for lmo0799
were from [35], for ytvA from SubtiList (http://genolist.pasteur.fr/SubtiList) and from [47]. P: promoter, T: transcriptional terminator. The GenBank
accession nos. for the respective genome sequences are AL591824 (L.m.) and AL009126 (B.s.).
doi:10.1371/journal.pone.0016151.g001
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in combination with salt stress and was significantly reduced or

abolished when Lmo0977 was lacking (Figures 3A and 3C). In wild

type bacteria an induction by red light was again only observed in

combination with salt stress whereas in the D0799 mutant all four

genes were induced by red light also in the absence of salt stress

(Figures 3B and 3D). In contrast to ctc the deletion of sigB decreased

the transcription to almost zero under all conditions.

As figures 4A and 4B show the transcription profiles of prfA

(encoding the master regulator of virulence in L. monocytogenes) and

of the PrfA-regulated virulence gene plcA exhibited clear

differences to canonical SigB-regulated genes. PrfA transcription

was slightly induced by 0.3 M NaCl in wild type bacteria and in

the D0799 mutant without light and was further increased under

combined stress conditions (blue or red light plus salt). PrfA showed

neither a significant induction nor repression in the DsigB mutant,

the transcription of plcA was not significantly altered in all strains

and under all conditions tested.

The transcription of the thiol redox-related gene trxA (lmo1233,

thioredoxin A) was moderately induced by salt stress in the wild

type and the D0799 mutant, no further increase was caused by

blue or red light. For blue, but not for red light these effects were

less in the DsigB strain (Figure S1).

Blue light induces the transcription of the internalin A
and B genes and increases the invasiveness of L.
monocytogenes EGD-e for Caco-2 enterocytes

Since long it has been established by others that the invasion of

normally non-phagocytic eukaryotic host cells by L. monocytogenes

depends on the leucine-rich repeat proteins of the internalin

superfamily. Internalin A (InlA, Lmo0433) is required for the

invasion of enterocytes, the inlA gene is co-transcribed with the

downstream gene for internalin B (InlB, Lmo0434) which

recognizes other host cell receptors and cell types, reviewed in

[8,9,12] Figure 5A shows that the transcription of inlA and inlB was

significantly induced (3 and 4.5-fold, respectively) by blue light in

the case of the L. monocytogenes EGD-e wild type. When blue light was

combined with salt stress, inlA transcription was further increased to

5-fold, that of inlB to 6.5-fold. In the D0799 receptor mutant the

induction of both genes by light or light plus salt stress was only 2.5

and 3.5-fold, respectively. Deletion of sigB resulted in an almost

undetectable transcription under all conditions. L. monocytogenes

EGD-e wild type and its D0799 receptor mutant were grown at

37uC and in the dark until mid-log phase (OD600 = 0.9) with BHI as

medium, then one aliquot was exposed to blue light plus 0.3 M

NaCl for 10 min at 37uC, the other aliquot was also adjusted to

0.3 M NaCl but kept in the dark under otherwise identical

conditions. Semi-confluent Caco-2 enterocyte-like human cells

were infected (m.o.i. of 20) with the differently pretreated bacteria

for 2 hours (1 hour attachment time in the dark without antibiotic,

washing step, followed by one hour incubation with gentamicin).

The absolute infection rates (c.f.u./ml lysate) obtained in indepen-

dent experiments were rather variable, therefore the means and

standard deviations of the relative infection rates were used for

comparison, setting the values for the wild type without light as

hundred percent. As Figure 5B shows an exposure of the bacteria to

blue light and 0.3 M NaCl for 10 min resulted in a two-fold

increased infectivity of the wild type, when compared to the dark

control, whereas infectivity of the D0799 receptor mutant was not

significantly changed by blue light. It has repeatedly shown by

others that the invasiveness of a DsigB mutant is drastically reduced

[19,31,94], therefore this mutant was not tested here. Since the

effect of red light on inlA and inlB transcription basically was

identical to that of blue light (results not shown), no infection

experiments were performed with red light-exposed bacteria.

Blue, but not red light inhibits swimming motility of L.
monocytogenes EGD-e in a Lmo0799- and SigB-
dependent manner

Assays for swimming motility on semi-solid (0.3 percent agar)

BHI plates showed that L. monocytogenes EGD-e wild type and its

D0799 or DsigB mutants were non-motile at 37uC, with a colony

size of just 6 mm after 16 h incubation time (Figures 6A and 6B).

When incubated for 18 h at 27uC in the dark, all strains were

clearly motile, reaching colony diameters of about 12 mm

(Figures 6C and 6F). Upon constant illumination for 18 h with

blue light at an incubation temperature of 27uC, wild type bacteria

were almost as non-motile as at 37uC, with a colony diameter of

6 mm and a very faint halo surrounding the colonies (Figures 6D

and 6F). The inhibition of swimming motility by blue light was

completely relieved in the D0799 blue-light receptor and in the

DsigB mutant (Figures 6D and 6F), no inhibition was observed

after exposure to red light of the same intensity (Figures 6E and

6F).

Discussion

As has already been noticed by others some time ago, Listeria

monocytogenes, L. innocua [50,51] and other Listeria species [57]

contain a gene, lmo0799 in L. monocytogenes EGD-e, which encodes

a protein with high similarity to the well characterized blue-light

photoreceptor YtvA of B. subtilis. Figure 1A depicts the sequence

similarities between the two proteins, see also results. Our

modeling of the light-receiving domain Lmo0799-LOV, based

on the experimentally determined structure of YtvA-LOV [75],

revealed that Lmo0799-LOV most probably has the same three-

dimensional structure as LOV in the Bacillus protein (Figure 1B).

In order to test experimentally if Lmo0799 is a functional blue-

light receptor we constructed a strain (D0799) carrying an in-frame

deletion, this mutant was not impaired in growth in BHI. The

appropriate test conditions for light exposure experiments were

based on the following considerations. For the photocycle of B.

subtilis YtvA is has been shown that the time required for light

activation (conversion of the dark state YtvA447 into the red-shifted

intermediate YtvA660) and for photoadduct formation (YtvA390) is

very short, 20 nsec and 2 msec, respectively, whereas the dark

recovery is unusually slow, with a Taurec of 2600 sec (ca. 43 min)

[55]. We assumed that the kinetics of the postulated photocycle of

Lmo0799 would be in the same time range, allowing to monitor

effects after the inevitable interval (about 25 min) between

exposure to light and experimental measurements. Since our

preliminary experiments had indicated that even low-intensity red

light had an effect on gene transcription our dark controls were

Figure 2. Effect of blue and red light on ctc expression. Transcription analysis by qRT-PCR for wild type, D0799 and DsigB mutants. The strains
were grown at 37uC in BHI. Cells were harvested in mid-log phase (OD600 ,0.9) and exposed for 10 min to blue (455 nm) or red (625 nm) light as
described in material and methods. The results from the qRT-PCR analysis, obtained with a StepOnePlus Real-Time PCR system (Applied Biosystems
Inc.) were normalized using rpoB as an internal standard [103,104] and expressed as fold change with the values for wild type without light set as 1.0.
Calculations were performed with the StepOne Software v2.1 (Applied Biosystems Inc.). Means and standard deviations from three independent
biological samples and four technical replicates per sample.
doi:10.1371/journal.pone.0016151.g002
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handled without any visible light. Furthermore, all experiments

were done in parallel with blue (l= 455 nm) and red (l= 625 nm)

light.

Our qRT-PCR results showed that a 10 min exposure of L.

monocytogenes wild type to blue light and 0.3 M NaCl lead to a

three-fold induction of the transcription of ctc, the traditional sigB

Figure 3. Effect of blue and red light on expression of arsC, lmo1433, bsh and opuCD. Transcription analysis by qRT-PCR for wild type, D0799
and DsigB mutants. The strains were grown at 37uC in BHI. Cells were harvested in mid-log phase (OD600 ,0.9) and exposed for 10 min to blue
(455 nm) or red (625 nm) light as described in material and methods. The results from the qRT-PCR analysis, obtained with a StepOnePlus Real-Time
PCR system (Applied Biosystems Inc.) were normalized using rpoB as an internal standard [103,104] and expressed as fold change with the values for
wild type without light set as 1.0. Calculations were performed with the StepOne Software v2.1 (Applied Biosystems Inc.). Means and standard
deviations from three independent biological samples and four technical replicates per sample.
doi:10.1371/journal.pone.0016151.g003

Figure 4. Transcription profiles of virulence genes. Transcription analysis by qRT-PCR for wild type, D0799 and DsigB mutants. The strains were
grown at 37uC in BHI. Cells were harvested in mid-log phase (OD600 ,0.9) and exposed for 10 min to blue (455 nm) or red (625 nm) light as described
in material and methods. The results from the qRT-PCR analysis, obtained with a StepOnePlus Real-Time PCR system (Applied Biosystems Inc.) were
normalized using rpoB as an internal standard [103,104] and expressed as fold change with the values for wild type without light set as 1.0.
Calculations were performed with the StepOne Software v2.1 (Applied Biosystems Inc.). Means and standard deviations from three independent
biological samples and four technical replicates per sample.
doi:10.1371/journal.pone.0016151.g004
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reporter gene in B. subtilis. This effect was only slightly reduced in

the D0799 photoreceptor mutant and also the DsigB mutant still

showed a substantial transcription of ctc (Figure 2A). This shows

that in L. monocytogenes ctc is not strongly dependent on SigB, which

is in line with a previous report by others [79]. The transcription of

the autoregulated [26,82] sigB gene itself was only induced by the

combination of blue light and salt stress, this induction was

dependent on the presence of Lmo0799 (Figure 2C). The

transcription analysis of the four genes arsC, lmo1433, bsh and

opuCD, which are representative for the SigB regulon of L.

monocytogenes [32,79,80,81], showed another patten (Figure 3). For

blue light alone the induction was more than two-fold only for arsC

and opuCD, 0.3 M NaCl alone had almost no effect on all four

genes. The blue light plus salt effect was abolished in the D0799

deletion mutant in the case of lmo1433 and opuCD and significantly

lowered for arsC and bsh. This is in line with previous reports which

have demonstrated that arsC and bsh showed a very strong

induction upon activation of the SigB system, whereas lmo1433

and opuCD were only moderately induced [32,34,79,80,81].

Deletion of sigB completely abolished the transcription of all four

genes under all conditions (Figure 3). Together these results

showed that i) blue light or salt alone had a stimulatory effect on

those genes only which require a low level of active SigB, e.g. arsC

and opuCD, ii) full induction required both blue light and salt stress

and was dependent on Lmo0799, iii) the blue light and osmotic

effects were strictly dependent on SigB. Thus we have firmly

established that Lmo0799 is a genuine blue-light receptor and a

functional homologue of YtvA.

Furthermore, our results demonstrated that red light too

activated the transcription of SigB-regulated genes in L. monocy-

togenes. Such a red-light effect on SigB activity has recently also

been reported for B. subtilis and the results presented there showed

that the B. subtilis proteins RsbP/Q were required to transduce the

red-light signal to the SigB cascade, it has been proposed that

RsbP was the light-sensing protein [59]. In B. subtilis RsbP/Q are

part of the energy stress pathway of SigB activation which

Figure 5. Effect of blue light on inlA and inlB transcription and on infection rate. (A) Transcription analysis by qRT-PCR for wild type, D0799
and DsigB mutants. The strains were grown at 37uC in BHI. Cells were harvested in mid-log phase (OD600 ,0.9) and exposed for 10 min to blue light
(455 nm) as described in material and methods. The results from the qRT-PCR analysis, obtained with a StepOnePlus Real-Time PCR system (Applied
Biosystems Inc.) were normalized using rpoB as an internal standard [103,104] and expressed as fold change with the values for wild type without
light set as 1.0. Calculations were performed with the StepOne Software v2.1 (Applied Biosystems Inc.). Means and standard deviations from three
independent biological samples and four technical replicates per sample. (B) Caco-2 enterocyte-like cells were infected (m.o.i = 20) with wild type and
its isogenic Dlmo0799 mutant. Prior to infection the bacteria were either exposed for 10 min to blue light or kept in the dark, in both cases at 37uC
and with 0.3 M NaCl in the medium. For details see materials and methods. One hour after the addition of gentamicin the cells were lysed, CFU/ml
were determined and the relative infection rates were calculated. Means and standard deviations from four independent experiments. The values for
wild type without light were set as 100 percent, therefore no standard deviation is shown there.
doi:10.1371/journal.pone.0016151.g005
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responds to changes in the intracellular ATP level [24]. In L.

monocytogenes the perception and transduction of the red-light signal

must be different from the mechanism proposed for B. subtilis

because no homologues of RsbP/Q can be found in Listeria

[27,82]. The prototype of red-light photoceptors are the

phytochromes [83], also found in many prokaryotes [60,61,84]

The bacteriophytochromes all share a domain required for the

binding of a bilin chromophore [85]. However, proteins with a

phytochrome-like structure could not be detected in Listeria (and

Bacillus) genomes during expert bioinformatic analyses published

by others [67,85]. It should be noted, however, that acccording to

its genome annotation [72] (http://genolist.pasteur.fr/ListiList) L.

monocytogenes EGD-e contains all genes required for heme

biosynthesis and also for heme oxygenase (ctaA, lmo2058), required

for the conversion of heme into biliverdin, however, a bilin-

binding photoreceptor protein could not be identified. Although

bilins in their photo-excited singlet- or triplet state can react with

molecular oxygen giving rise to superoxides [86,87,88], we have

no evidence for the generation of substantial oxidative stress in L.

monocytogenes by red (or blue) light. As figure S1 shows neither blue

nor red light stimulated the transcription of the genes for

superoxide dismutase (sod, lmo1439), catalase (kat; lmo2785) or of

lmo0799 itself and although SigB is involved in oxidative stress

resistance of L. monocytogenes [89], such stress is not a typical

inducer of the SigB system. Therefore the mechanism of L.

monocytogenes SigB acticvation by red light remains unknown.

As has been mentioned in the introduction, in B. subtilis different

environmental stresses, ultimately evoking the activation of SigB,

are integrated by a dynamic supramolecular complex, the

stressosome [38,39,42,43,44,45]. For B. subtilis it has also firmly

been established that YtvA is part of its stressosome [47], this

raised the question if L. monoyctogenes could have a stressosome too.

Homologues of the B. subtilis stressosome constituents RsbS, RsbT,

RsbRA and for the downstream components RsbU, RsbV and

RsbW as well as for the feedback phosphatase RsbX have been

identified in L. monocytogenes and it has been shown that their

genomic and transcriptional organization is identical to that of B.

subtilis [27,82]. We identified Lmo0799 as a YtvA homologue and

hence as a RsbR paralogue in L. monocytogenes. A BLAST search in

the complete genome of L. monocytogenes EGD-e with the protein

sequences of B. subtilis RsbRA and the RsbRA paralogues RsbRB

(YkoB), RsbRC (YojH) and RsbRD (YqhA) as query confirmed

Lmo0889 as the RsbRA homologue. Some homology (about 25

percent identity/46 percent similarity) to RsbRB-D was only

found for Lmo0161. When RsbR (Lmo0889, 278 amino acids) of

L. monocytogenes itself was used as a query sequence, again homology

to Lmo0161 was found, but now also to Lmo1642 (267 amino

acids, 21/52 percent) and Lmo1842 (274 amino acids, 23/45

percent). These homologies extended over the whole length of all

three proteins, which also in size were very similar to RsbR

(Lmo0889). Domain analysis with SMART [90] and InterPro [91]

revealed that all three proteins had a C-terminal STAS domain,

Figure 6. Effect of incubation temperature and light on swimming motility. Semi-solid BHI agar (0.3%) plates were inoculated with 2 ml of
mid-log cultures (OD600 ,0.7) of wild type, Dlmo0799 and DsigB mutants. Incubation was for 18 h at temperatures and light conditions as indicated
in the figure. (B) shows the effect of blue light, the result for red light was identical, (F) shows the means and standard deviations of the colony
diameters from three independent experiments.
doi:10.1371/journal.pone.0016151.g006
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typical for the RsbR protein family, but a canonical Rsbr-N

domain could not be identified. In a comparative analysis of B.

subtilis RsbRB-D also only a C-terminal STAS domain could be

identified by SMART and InterPro (results not shown). Figure S2

shows the domain analyses for L. monocytogenes, together with a

sequence alignment of B. subtilis RsbRA-D. Future experiments

have to show if these proteins are functional RsbR paralogues.

Figure 7 shows a hypothetical and simplified, with respect to the

RsbR paralogues purely speculative model of the SigB activation

via blue light and Lmo0799.

Although the mechanism by which red light induces the SigB

regulon in L. monocytogenes is unknown, there is obviously some

crosstalk or interference with the Lmo0799-dependent blue-light

triggered mechanism. As shown in figures 2BD and 3BD red light

induced the transcription of SigB-dependent genes and of sigB in

the wild type only when additional salt stress was imposed whereas

in the absence of Lmo0799, i.e. in the D0799 mutant, red light

alone lead to a significant up regulation. This shows that Lmo0799

or the hypothetical Lmo0799-containing complex inhibited the

transduction of the red-light signal by an unknown mechanism. It

will be interesting to see if such an effect also occurs in B. subtilis

where the red-light signal obviously is transduced in a different

way.

Figure 4 shows that the transcription profile of the virulence

regulator prfA was very similar to that obtained for SigB-dependent

genes, whereas light or dark had no effect on the expression of the

PrfA-dependent gene plcA. PrfA can be transcribed as a bicistron

together with the upstream plcA gene and monocistronically from

two promoters directly upstream of prfA [14,15], one of which (P2)

is under SigB control [15,16,32]. Since no increase in plcA

transcription was seen here, salt and light caused an increase solely

in monocistronic prfA mRNA due to an activation of SigB, this is in

line with previous reports on the impact of SigB on prfA

[15,16,31,32,34]. However, elevated levels of prfA mRNA do not

always lead to a corresponding increase in the transcription of

PrfA-dependent virulence genes, e.g. plcA, rather this is also

determined by the amount and activity of the PrfA protein which

is subject to a very complicated and not completely understood

regulation. It has been shown that two S-adenosylmethionine

riboswitches control the translation of prfA mRNA [92]. Further-

more, there is evidence that an unknown cofactor regulates PrfA

activity [15,16], alternatively or in addition, the transport of sugars

via phosphotransferase systems has a negative effect on PrfA

activity, reviewed in [17]. So it seems that under the conditions

used in our experiments the increase in prfA transcription does not

translate into more and active PrfA protein.

The results were different for the internalins A and B. It has

previously been reported that transcription of inlA and inlB was

not only positively regulated by PrfA, but that it was also

diminished in mutants lacking SigB [32,33,34,79,81] and

Figure 7. Hypothetical and simplified model of SigB activation by blue light. (A) Hypothetical complex of Lmo0799, RsbR and its putative
paralogues (Lmo0161, Lmo1642, Lmo1842), RsbS and RsbT in the dark state. SigB is sequestered by the anti-sigma factor RsbW, which also keeps
RsbV inactive by phosphorylation. (B) complex after blue-light driven FMN-Lmo0799 photoadduct formation, activating the kinase function of RsbT,
which phophorylates RsbS and RsbR and is released from the complex, binds and activates RsbU. (C) dephosphorylation of RsbV-P by activated RsbU,
(D) dephosphorylated RsbV binds RsbW and active SigB is released. The feedback phosphatase RsbX is believed to limit the activation of the system.
Further explanations in the text. The graph does not intend to reflect the stoichiometry of the individual proteins, which presumably are present in
multiple copies, nor the true architecture of the hypothetical complex. Modified from the scheme proposed for B. subtilis YtvA [47].
doi:10.1371/journal.pone.0016151.g007
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increased when SigB was activated [93]. Furthermore, it has been

shown that invasion of Caco-2 enterocytes is largely dependent

on SigB [94]. Our results show (Figure 5A) that the transcription

profiles of inlA and inlB in the dark or after exposure to blue light

were identical to those observed by us for SigB-dependent genes.

Invasion experiments with Caco-2 enterocytes showed that two

hours after the addition of L. monocytogenes the number of

intracellular bacteria was twice as high after pretreatment of

the wild type with blue light and 0.3 M NaCl as without light or

for the D0799 blue-light receptor mutant (Figure 5B). Potential

differences in intracellular replication during this short time are

not supposed to have a significant effect on the results. Also for

the internalins A and B post-transcriptional control of the protein

levels has been reported [95,96], this could be a reason why the

slight transcriptional induction in the D0799 mutant did not

result in a corresponding invasiveness, however, experimental

data supporting this assumption are lacking. If this light-induced

invasiveness has a role in the natural infection process, preparing

the bacteria for a potential ingestion by a host organism, will be

difficult to test. It could be an accessory factor, contributing to the

postulated major effect of the intestinal environment on

invasiveness [22].

Light is one of the environmental factors which may influence

flagella-mediated movement of bacteria [63]. We observed

(Figure 6) a drastic reduction of swimming motility when L.

monocytogenes wild type was exposed to blue light at 27uC, this

inhibition was completely relieved in the D0799 blue-light receptor

and DsigB mutants. Most L. monocytogenes strains, including EGD-e,

are non-motile at temperatures around 37uC because at this

temperature the flagella- and motility gene cluster [72,97] is

repressed by a system comprising several factors [97,98]. There is

no evidence that blue-light activated Lmo0799 can directly

interfere with this regulatory system, however, it has previously

been described that the flagella- and motility cluster was

transcriptionally down regulated at 24uC in salt-stressed L.

monocytogenes and that a DsigB strain showed increased swarming.

From their data the authors concluded that SigB negatively

regulates motility in an indirect way [80], a negative regulation of

flagella- and motility-associated genes by SigB has also been

reported by others [34,79]. Here we could show that blue light

activated SigB in a Lmo0799-dependent manner and that

inhibition of motility by blue light was SigB-dependent. Therefore

the observed inhibition of swimming motility by blue light in the

wild type most presumably was also due to transcriptional

silencing of the flagella- and motility cluster via Lmo0799 and

SigB. An experiment-based explanation for the fact that red light

had no inhibitory effect here, although it also induced SigB-

dependent genes, is lacking. It could be that this effect was

transient and faded away during the 18 h duration of the swimm-

ing motility assay, whereas the Lmo0799-mediated activation by

blue light was persistent. A persistent SigB activation by blue light

has been mentioned for YtvA of B. subtilis (59). Alternatively, one

could assume that the inhibition of motility requires both SigB and

blue light-activated Lmo0799, the latter one missing under red

light illumination.

Intense blue and, to a lesser extent, red light can result in

oxidative damage to cells by the light-driven formation of reactive

oxygen intermediates [86,87,88]. Therefore the benefit of evolving

light sensing systems also in non-phototrophic bacteria seems

obvious, possibly enabling them to activate appropriate defense

systems at an early time point, i.e. already at low light intensity

before massive damage will occur [67]. However, in our

experiments we did not obtain evidence for the up regulation of

oxidative stress defense genes in L. monocytogenes by moderate

illumination. Furthermore, light would be a suitable signal for

upcoming osmotic stress, caused by water evaporation under sun

light. The illuminance we used in our experiments, i.e. 30

microeinsteins/m2/s of blue or red light, cannot exactly be

compared to day- or sunlight because natural light contains the

whole visible spectrum with varying proportions of the different

wavelengths and a maximum in the blue-green range [99]. The

experimental conditions used here correspond to approximately

the illuminance in the half-shade at noon on an overcast day or to

about 1/30 of full sunlight at mid-latitude [99]. Our results show

that visible light had an impact not only on osmotic stress defense

factors of L. monocytogenes but on other functions too, e.g.

invasiveness and swimming motility. Furthermore, it has previ-

ously been reported that the large SigB regulon of L. monocytogenes

also comprises genes for transport, metabolism and protein

synthesis [32,79,80,81]. Therefore one can assume that in natural

environments, depending on their exposure to light, all these

processes may undergo cyclic fluctuations. These will not be

genuinely circadian because prokaryotic endogenous clocks have

so far been found in cyanobacteria only [100], rather their

periodicity will be determined by day length and hence by season,

weather and geographical latitude. Furthermore, it has been

shown that the specific transcriptional regulation by SigB varies

among L. monocytogenes strains [81], therefore also the dimension of

light effects will vary accordingly.

Materials and Methods

General techniques
PCR amplifications, cloning procedures, isolation of chromo-

somal DNA, and DNA manipulations were carried out according

to standard procedures [101]. DNA sequencing was carried out by

Seqlab GmbH (Germany).

Bacterial strains, plasmid, and cell line
L. monocytogenes Sv1/2a EGD-e (ATCC BAA-679) was obtained

from T. Chakraborty (University of Giessen, Germany) whom we

also thank for the isogenic sigB-deletion mutant (DsigB) [79]. E. coli

strain TG1 and plasmid pG+host4 [102] were kindly provided by

E. Maguin (INRA Jouy en Josas, France). Human colon epithelial

cells (Caco-2 cells) were obtained from the American Type Culture

Collection (ATCC HTB-37) and were cultured at 37uC and 5%

CO2 in RPMI 1640 (Gibco, Germany) supplemented with 10%

heat-inactivated fetal calf serum (FCS) (Biochrom KG, Germany).

Media and growth conditions
L. monocytogenes was grown in brain heart infusion (BHI, Difco,

Germany) at 37uC. Cultivation of E. coli was carried out in Luria-

Bertani (LB, 10 g/l peptone, 5 g/l yeast extract, 10 g/l NaCl)

medium at 37uC. For transformation experiments media were

supplemented with erythromycin to final concentrations of

300 mg/ml for E. coli or 10 mg/ml for L. monocytogenes. For growth

tests of L. monocytogenes 300 ml of an overnight culture in BHI were

diluted into 10 ml prewarmed BHI and shaken at 190 rpm and

37uC. The optical density of the cultures was recorded every hour

with a photometer (Ultrospec, Amersham Biosciences, Germany)

at 600 nm in 1 cm cuvettes.

Mutant construction
For construction of the in frame deletion mutant (Dlmo0799)

PCR-amplified fragments of ,300 bp from the 59 and 39 region of

lmo0799 were cloned into the temperature-sensitive integration

vector pG+host4 and transformed into E. coli TG1 [102]. L.

monocytogenes EGD-e was transformed with the plasmid construct
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and plasmid integrants were selected at the non-permissive

temperature of 42uC on erythromycin-containing BHI agar. To

obtain the deletion, the mutant strains were subcultured twice for

24 h in BHI without antibiotic at 30uC. At this temperature the

plasmid origin of replication is fully active which favors plasmid

excision [102]. Serial dilutions of the subcultures were plated on

BHI without antibiotic and erythromycin-sensitive clones were

identified by replica-plating on erythromycin-containing medium.

Plasmid loss and deletion was confirmed by PCR and DNA

sequencing (data not shown). Oligonucleotides used for mutant

construction are listed in table S1.

RNA isolation and preparation of samples for infection
For transcription analysis and infection experiments L. monocy-

togenes was precultured in BHI at 37uC under aerobic conditions

without light, i.e. all culture vessels were wrapped in two layers of

aluminium foil. For dark controls, all manipulations were carried

out under low-intensity, diffuse infrared illumination (Osram Opto

SFH4730 LED, 3 W, l= 850 nm), using Dipol D2MVSL night

vision goggles (Gross, Germany) for observation. Overnight

precultures were diluted into fresh medium and grown in the

dark at 37uC to an OD600 ,0.9. For salt stress experiments 3.0 M

sterile NaCl was added to the respective cultures to a final

concentration of 0.3 M. Cultures were split into two 250 ml cell

culture bottles, one wrapped twice in aluminium foil, the other

exposed to blue (light-emitting diode, peak wavelength

l= 455 nm, Luxeon Star LXHL-MRRD, 1 W) or red (peak

wavelength l= 625 nm, Luxeon LXHL-MD1D, 1 W) light with

an illuminance of 30 microeinstein/m2/s for 10 min, both samples

were kept at 37uC. Samples for infection were washed twice with

1xPBS in the dark and stored in 1xPBS/20% glycerol (v/v) as

1 ml aliquots at 280uC in a light-tight container. Samples for

RNA isolation (10 ml) were centrifuged in the dark for 10 min at

4uC and cell pellets were frozen in liquid nitrogen. RNA was

prepared using the Seqlab RNA Mini Kit (Seqlab, Germany).

Residual DNA was removed by Turbo DNAse treatment (Applied

Biosystems/Ambion, USA). All RNA isolations were repeated at

least three times.

Real-time qRT-PCR
Real-time quantitative reverse transcriptase PCR (qRT-PCR)

was performed on total RNA isolated. The absence of DNA from

RNA samples was verified by PCR prior to reverse transcription,

using rpoB -specific primers. 5 mg of total RNA was reverse

transcribed with random hexamers and SuperScript IITM Reverse

Transcriptase (Invitrogen, USA) according to the manufacturer’s

instruction. qRT – PCRs were performed in a total volume of 25 ml

using PerfeCTaTM SYBRH Green FastMixTM ROX (Quanta

Biosciences, USA) and an Applied Biosystems StepOneTM Plus

cycler. The housekeeping gene rpoB served as an internal standard

[103,104]. All transcription analyses were done on at least three

independent biological samples and with four technical replicates

each. The primers used are listed in Table S1.

Motility assays
Swimming motility of the wild type, of the Dlmo0799 and of the

DsigB mutant strain was tested on semi-solid BHI agar (0.3%)

plates, inoculated with 2 ml of mid-log bacterial cultures (OD600

,0.7) grown in BHI at 37uC. Plates were sealed and incubated for

18 h at the indicated temperature in the complete dark or under

exposure to blue (l= 455 nm) or red (l= 625 nm) light,

respectively, at an illuminance of 30 microeinstein/m2/s. Motility

was quantified as the diameter of the swimming colony.

Infection assays with Caco-2 enterocytes
Infection assays were performed in triplicate using 24-well tissue

culture plates (Greiner Bio, Germany), seeded with 36105 Caco-2

cells per well and then incubated at 37uC and with 5% CO2. After

24 hours the wells were checked for a semi-confluent monolayer,

the cells were washed with 1xPBS containing Ca/Mg and infected

using low-intensity, diffuse infrared illumination (LED,

l= 850 nm) and Dipol D2MVSL night vision goggles (Gross,

Germany) for observation. RPMI 1640 as medium and an m.o.i.

of 20 for L. monocytogenes EGD-e wild type or its Dlmo0799 mutant

were used, the bacteria had been preincubated at 37uC with 0.3 M

NaCl either in the dark or under exposure to blue light

(l= 455 nm) for 10 min at an illuminance of 30 microeinstein/

m2/s. The plates were wrapped in two layers of aluminium foil

and incubated for 1 h at 37uC in a 5% CO2 atmosphere. After 1 h

the infection medium was replaced by RPMI with 100 mg ml21

gentamicin and incubation was continued for another hour. The

experimental steps after the addition of gentamicin were carried

out at ambient light. At the end of the infection period cells were

washed twice with 16 PBS and lysed with distilled water for

30 min on ice. Serial dilutions of the bacteria-containing lysate

were plated in triplicate on BHI plates which were incubated for

24 h at 37uC. Colonies were counted and absolute (CFU/ml) and

relative (percent) infection rates were calculated. All infection

experiments were repeated at least three times.

Sequence data acquisition, bioinformatics and data
analysis

Protein sequences were obtained from the sequenced genomes

of L. monocytogenes EGD-e [72] and B. subtilis 168 [76], respectively,

using the Genolist website at the Pasteur Institute Paris (http://

genolist.pasteur.fr/ListiList; http://genolist.pasteur.fr/SubtiList).

Homology searches, using BLAST [105], were performed on

these websites, for L. ivanovii at http://genolist.pasteur.fr/LivaList

and for other listerial and bacterial genomes at NCBI (http://

www.ncbi.nlm.nih.gov/sutils/genom_table.cgi). Sequence align-

ments were done with ClustalW2 [106] at the European

Bioinformatics Institute (EBI, UK) facility (http://www.ebi.ac.

uk/Tools/clustalw2/index.html), using the default settings. For

3-D modelling of proteins the SWISS-MODEL server (http://

swissmodel.expasy.org/workspace/) at the Swiss Institute of

Bioinformatics (SIB) was used in the automated mode [107,108].

Protein domain analysis was performed with SMART6 [90] at

http://smart.embl-heidelberg.de and also using InterPro [91] at

http://www.ebi.ac.uk/interpro/. For the analysis of the results

from qRT-PCR experiments the Applied Biosystems’ StepOneTM

Software was used.

Supporting Information

Table S1 Oligonucleotide primers used in this study.

(PDF)

Figure S1 Effect of blue and red light on trxA, lmo0799, kat and

sod expression. (A, B) Transcription analysis by qRT-PCR of trxA

for wild type, D0799 and DsigB mutants. (C, D) Transcription

analysis by qRT-PCR of lmo0799, kat and sod for wild type. The

strains were grown at 37uC in BHI. Cells were harvested in mid-

log phase (OD600 ,0.9) and exposed for 10 min to blue (455 nm)

or red (625 nm) light as described in material and methods. The

results from the qRT-PCR analysis, obtained with a StepOnePlus

Real-Time PCR system (Applied Biosystems Inc.) were normal-

ized using rpoB as an internal standard [103,104] and expressed as

fold change with the values for wild type without light set as 1.0.
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Calculations were performed with the StepOne Software v2.1

(Applied Biosystems Inc.). Means and standard deviations from

three independent biological samples and four technical replicates

per sample.

(PDF)

Figure S2 Domain analysis and alignment of RsbR paralogues.

(A) Graphical representation of domains identified by SMART

(http://smart.embl-heidelberg.de) [92] in RsbR (Lmo0889),

Lmo0161, Lmo1642, Lmo1842, Lmo0799 and RsbS (Lmo0890)

of L. monocytogenes EGD-e. The protein sequences were obtained

from the ListiList website (http://genolist.pasteur.fr/ListiList).

The LOV domain is not implemented in SMART, therefore this

domain of Lmo0799 is depicted as PAS-PAC (Per-Arnt-Sim signal

sensor domain/PAS-associated domain). LOV domains are a

subfamily of the PAS superfamily [51]. (B) Amino acid alignment

of RsbRA-D of B. subtilis, RsbR and putative paralogues of L.

monocytogenes EGD-e, using ClustalW2 [106]. The prefix Bs denotes

proteins from B. subtilis, Lm from L. monocytogenes. Asterisks below

the sequence indicate identical, double points very similar amino

acids. The C-terminal STAS domain is indicated, the crucial

threonines (T171/T205 in B.s. RsbRA, T175/T209 in L.m. RsbR)

are highlighted in yellow, negatively charged amino acids

(aspartate D, glutamate E) in the putative RsbR paralogues in

blue. Further explanation in the text. The B. subtilis protein sequences

were from SubtiList (http://genolist.pasteur.fr/SubtiList), the L.

monoytogenes sequences from ListiList (http://genolist.pasteur.fr/

ListiList). The GenBank accession nos. for the respective

genome sequences are AL591824 (L.m.) and AL009126 (B.s.).

(PDF)
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56. Möglich A, Moffat K (2007) Structural basis for light-dependent signaling in

the dimeric LOV domain of the photosensor YtvA. J Mol Biol 373: 112–126.

57. Tang Y, Cao Z, Livoti E, Krauss U, Jaeger K-E, et al. (2010) Interdomain

signalling in the blue-light sensing and GTP-binding protein YtvA: a

mutagenesis study uncovering the importance of specific protein sites.
Photochem Photobiol Sci 9: 47–56.
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