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Abstract

The HIV-1 protein, Tat has been implicated in AIDS pathogenesis however, the amount of circulating Tat is believed to be
very low and its quantification has been difficult. We performed the quantification of Tat released from infected cells and
taken up by neurons using high performance capillary electrophoresis. This is the first report to successfully measure the
amount of Tat in neurons and places Tat as a key player involved in HIV-associated neurocognitive disorders.
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Introduction

HIV infection is pandemic with more than 30 million people

infected worldwide. In the USA following the onset of AIDS, 10–

15% patients per year develop HAND, a neurocognitive and motor

abnormality during the later stage of infection [1]. However, in

recent years, in vitro and ex vivo studies have attempted to characterize

the mechanisms that underlie the relationship between HIV

infection and HAND. Available data suggest that the mechanism(s)

leading to damage in the brain of AIDS patients might involve the

combined effects of more than one neurotoxic factor [2]. In

particular, evidence suggests that viral proteins (e.g., Tat) secreted

from HIV-1 infected cells [3] are among these factors. Although the

use of HAART reduces the frequency of HAND, this treatment

might be less efficient in brain tissues and therefore in the treatment

of HAND [4]. In fact, the quality of life of some HIV patients

continues to be diminished by residual, milder forms of neurocog-

nitive impairment. Tat is a viral transactivator of the HIV-1

promoter [5,6]. It binds the cyclin T1 component of the positive

transcription elongation factor b, recruits cyclin-dependent kinase 9

to elongating HIV transcripts and induces phosphorylation of the C-

terminal domain of RNA polymerase II by Cdk9 [7]. Tat is mainly

active in the nucleus and is secreted at high-levels in vitro [8]. Secreted

Tat can cause direct or indirect injury to neurons, thus Tat may

contribute to neurological impairments observed in HIV patients on

successful HAART regimens. The neurotoxicity of Tat involves

prolonged elevations in intracellular calcium [9] followed by an

increase in reactive oxygen species and activation of the apoptotic

pathway [10]. Tat also promotes activation of monocytes,

macrophages and astrocytes triggering the release of inflammatory

factors, which can lead to neuronal damage [11]. All attempts

leading to inhibit Tat-mediated neurodegeneration both in vitro and

in vivo have failed. It has been shown that at a concentration as low as

1 nanomolar and 2 to 20 femtomolar, HIV-1 Tat can significantly

induce apoptosis of PC12 or rat neuronal degeneration, respectively

[12]. In addition, Tat induces apoptosis in human neuroblastoma

cells [13], in human fetal neurons [14] and in embryonic rat

hippocampal neurons [12]. However, the exact amounts of Tat

released from HIV-infected cells or taken up by non-infected cells

remain unclear. With the introduction of proteomics and the

development of these techniques mainly high performance capillary

electrophoresis (HPCE) this measurement is now possible.

In this study, we used HPCE to determine the amount of Tat

taken up by neuronal cells that can lead to neuronal degeneration.

This information may be valuable for the development of

therapeutic agents that protect the CNS neurons from toxic viral

factors thus lessening the severity of HAND.

Methods

High performance capillary electrophoresis (HPCE)
HPCE allows for separation of molecules based on their sizes,

structure, charges and hydrophobic potential. For fluorescence

derivatization, 10 ml of recombinant Tat protein or biological

samples, 10 ml of phosphate buffer and 0.5 ml of 60 mM 4-Fluoro-

7-nitro-2, 1,3-benzoxadiazole (NBD-F) were used. The mixture was

heated at 55uC for 15 min in the dark. The Beckman P/ACE MDQ

capillary electrophoresis instrument (Fullerton, CA) equipped with a

laser-induced fluorescence detector was used for quantitative analysis

of Tat protein in biological samples. LIF detection was performed in

an uncoated fused silica CE column of 50 mm inner diameter and

60 cm in length with 50 cm from inlet to the detection window

(Polymicro Technologies, Phoenix, AZ). The injection was applied

hydro dynamically at a pressure of 0.4 p.s.i. for 8 seconds. The

separation voltage was 25 kV. Data were collected and processed

using the Beckman P/ACE 32 Karat software version 7.0.

Cell culture and transfection assays
Human microglia and neuroblastoma (SH-SY5Y) cell lines

[15,16] and primary human neurons (HN) [purchased from

PLoS ONE | www.plosone.org 1 January 2011 | Volume 6 | Issue 1 | e16148



ScienCell Research Laboratories (Carlsbad, CA)] were maintained

in DMEM +10% FBS. Confluent SH-SY5Y cells were re-plated at

1–56105 cells/ml and induced to differentiate by treatment with

10 mM retinoic acid (Sigma, St. Louis, MO) for 7 d with medium

changes every two days. For all of the experiments, cells were

serum starved for 6 h in the presence of 10 mM RA prior to

treatment with rTat or transfection after which complete fresh

media was added.

Cells were transfected with 0.1 mg of LTR-luc reporter plasmid

or treated with increasing amount of recombinant Tat protein

(rTat), co-transfected with 0.25 mg of Tat expression cDNA or

transduced with Ad-null or Ad-Tat [10]. The cells were also

transfected with 1.0 mg of CMV-b-galactosidase plasmid using

Nucleofector kit V (Amaxa). The amount of DNA used was

normalized with pcDNA3 vector plasmid. Cell extracts were

prepared 48 h after transfection and luciferase and b-gal

determined. All values were normalized against b-gal values

measured as previously described [16].

HIV-1 infection
The human U-937 monocytic cell line [17] was maintained in

RPMI +10% FBS, 100 units/ml penicillin, 50 mg/ml streptomy-

cin-G. Cells in log phase were infected with JR-FL strains of HIV-

1 as follows [18]. Fifty nanograms of p24-containing virus stock

were added to every 16106 cells. Cells were incubated with virus

stock in a small volume of serum free media for 2 h at 37uC. The

cells were then washed twice with PBS and fresh medium

containing 2% of FBS was added (500,000 cells/ml).

P24 ELISAs were performed for tissue culture supernatants as

described by the manufacturer (Coulter-Immunotech, Wesbrook,

ME). Each sample was assayed over a 10,000-fold range of

dilution, to ensure quantitation, was based on an OD value within

the linear range of the standards. Neuronal cells were treated

(infected) with supernatant prepared from HIV-1-infected cells

(concentration = 10 MOI) for 24 hr and processed as described in

the Results section.

Cell Extracts Preparation
SH-SY5Y cells were cultured under different conditions (6

rTat, or 6 supernatant prepared from HIV-infected or control

cells) after which cells were lysed in lysis buffer [10]. Protein lysates

were diluted to the appropriate/required volume and used for

HPCE assay.

Cell death assays
SH-SY5Y cells were mock-treated or treated with 1 pg/ml of

rTat for 24 hrs. The cells were then collected and incubated with

0.4% trypan blue dye (Invitrogen Life Technologies) for 4 min,

before washing with PBS and counting. Unstained (viable) and

stained (dead) cells were counted separately using hemacytometer.

In parallel, untreated or Tat-treated SH-SY5Y cells were also

plated, fixed and stained with mouse anti-microtubule-associated

protein-2 (MAP-2) or anti-Tubulin mAb (Cell Signal) followed by

Cy3-conjugated rabbit-anti-mouse secondary Ab (Abcam). Scion

Image software was used to quantify MAP-2 reactivity after Tat

treatment.

Neurites Outgrowth Analysi
SH-SY5Y cells (mock-treated or treated with 1 pg/ml of rTat)

were grown on chamber slides for 24 hrs, fixed in 4%

paraformaldehyde, washed and then stained for 3 min in a 4%

Trypan blue methanol/acetic acid/water solution. Anti-tubulin

antibody was also used. The cells were observed at different

magnifications through phase contrast microscopy (convolution).

The images acquired on different samples were analyzed to

quantify 3 different parameters: sample area covered by cells,

neurite extension to cell area ratio, and mean of single neurite

length. Single and total neurite analyses were done on areas of

0.30 mm2 in order to obtain a more accurate measure of neurite

length. The experiment was performed in triplicate.

Statistical analyses were assessed by 1-way ANOVA within

groups (same time of cell culture, same culture medium), followed

by a Tukey posttest using GraphPad Prism version 4.00 for

Windows, GraphPad Software (San Diego CA, USA) to evaluate

neurite lengths. Two-way ANOVA was used for comparisons

between groups, followed by a Bonferroni post-test. Differences

were considered statistically significant for p , 0.05.

2DE-based Differential Proteomics Technology
U-937 cells were infected with HIV-1 and the supernatant was

added to neuronal cells. Proteins from the Tat-detected peak were

collected and separated by 2DE gel via two IPG strips (pH of Tat

is 6.12) followed by Sypro-Ruby fluorescence staining. Next, In-

Gel Trypsin Digestion-Differentially expressed spots were excised

and destaining of the excised gel pieces was performed. The

detected spots were analyzed by MALDI-TOF. Matching the

calibrated peptide mass values within NCBInr protein databases

identified Tat protein.

Results and Discussion

Several reports demonstrated the presence of HIV-1 Tat

proteins in human neurons in vitro and in vivo [18] however, the

exact amount of Tat released from HIV-infected cells and subject

to neuronal uptake remained unclear. We have now addressed this

question using high performance capillary electrophoresis (HPCE).

First, we measured the amount of Tat released from the human

monocytic cell line, U937, infected with JR-FL strain of HIV-1

and taken up by the neuronal cell line, SH-SY5Y. Briefly, HIV-1

was added to 16106 U937 cells for 10 days [19]. On day 10 post-

infection, supernatant from the U937 cells was collected and

ultracentrifuged to remove virus, while leaving Tat and other

secreted viral proteins. Three ml (10 MOI) of this supernatant was

added to SH-SY5Y cells. After 24 h, supernatants and cell lysates

collected from HIV-1-infected U937 or non-infected SH-SY5Y,

respectively, were processed for detection of Tat by HPCE [20].

To first establish a standard curve for calibration, solutions

containing recombinant Tat protein (101aa) (rTat) (highly pure toxin-

free Tat purchased from Immuno Diagnostics, Inc.; Woburn, MA), were

prepared at concentrations ranging from 2 to 50 pg and

concentrate in 10 ml. As shown in Fig. 1A (blue), approximately

2 pg represent the assay’s detection limit for Tat. Next, the

amount of Tat was measured in the supernatant from infected

U937 cells (Fig. 1B, red) and was found to be approximately 2 fold

greater than the rTat at 2 pg in the standard curve (blue). To

determine the approximate concentration of Tat in U937 cells,

4 pg of rTat was added to the U937 infected supernatant (green).

Tat was also detected in neuronal extracts from neurons exposed

to supernatant from HIV infected U937 cells (Fig. 1B, panel C,

red). To calculate the amount of Tat in lysates, non-infected

extracts were spiked with 1 pg of rTat (Fig. 1C, green). The

amount of Tat detected in SH-SY5Y neuronal cells was about

2 pg/ml (Fig. 1C, red) as compared to spiked lysates (Fig. 1C,

green). As a negative control, proteins from non-infected SH-

SY5Y cells were used (Fig. 1C, black). Uptake of Tat was also

measured using SH-SY5Y cells exposed to 2 pg of rTat for 24 h

(Fig. 1C, blue) after which cell proteins were prepared. Tat

Measurement of HIV-1 Tat Protein in Neurons
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released from infected cells should be equal to 3 to 4 pg based on

the conclusion that at least 50% of the released Tat is taken up by

neuronal cells [8]. This conclusion correlates with the results

obtained and shown in panel B (red). Note that the rationale for

choosing SH-SY5Y cells is that they mirror pathways involved in

neurodegenerative process associated with HIVE [21]. It should

be added that difference in time observed in Fig. 1 is due to the

nature of samples analyzed, where in sample 1, rTat was the only

component to be analyzed while in other panels Tat was issued

from either the supernatant of infected cells or from cell extracts

after adding the infected/isolated supernatant. Thus, the presence

of other proteins delayed the release of Tat and the presence of

additional peaks (e.g. Fig. 1B). Note that analyses of the additional

peaks from Fig. 1B did not reveal the presence of Tat protein and

therefore these peaks do not represent dimers or multimers Tat.

Similar results were obtained when using primary human

culture of neurons. Briefly, cells untreated (control), rTat-treated

(2 pg/ml) or treated with supernatant prepared from HIV-infected

cells were processed and the amount of Tat in these cells was

measured. Data shown in Figure 2 confirmed results presented in

Figure 1 and show that Tat was detected in treated cells and not in

the control. Similar results were obtained when using the CSF

from an HIV-1 negative, and an HIV-1 positive patient (data not

shown).

In order to confirm the presence of Tat in the cells, primary

human neurons were treated with supernatant from HIV-infected

cells, using 2DE-based Differential Proteomics Technology. Tat

protein was identified by matching the calibrated peptide mass

values within NCBInr protein databases and a Tat peptide

sequence LEPWKHPGSQPK was identified by the MS/MS

spectrum, confirming the presence of Tat protein in extracts

prepared from uninfected primary human neurons treated with

supernatant from HIV-infected cells. To validate our data, we

performed a Western blot analysis using anti-Tat antibody,

however, we were unable to detect Tat protein due to its small

amount (data not shown, ref. 10).

Since we have detected Tat in neuronal extracts, we next

examined its functionality using transfection of the HIV-1 LTR

reporter plasmid by nucleofection. Nucleofector technology allows

gene expression to start immediately, independently of cell

division. Thus nucleofected cells can be analyzed after an extremely short

incubation time. Human microglia and neuronal cells were

transfected with 0.5 mg of the HIV-1 reporter plasmid LTR-luc.

1 mg of CMV-b-gal was also included. After 24 h, rTat was added

(1 mg, 1 ng, or 1 pg/ml) followed by luciferase assay. rTat up

regulates the HIV-1 promoter in both cell lines (Fig. 2B, compare

columns 2–4 to 1 and 6–8 to 5). The functionality of rTat was also

determined in the neuronal cell line SH-SY5Y stably transfected

and expressing LTR-luc-IRES-GFP, which contains 2 reporter

genes, luciferase and green fluorescent protein (GFP) separated by

an internal ribosome entry site (IRES). SH-SY5Y cells were

transfected with 0.5 mg of Tat expression plasmid (Fig. 2C, lane 2),

or infected with 1 MOI of Ad-null (lane 3) or Ad-Tat (lane 4). Cells

were also treated with 1 pg/ml of rTat (lane 5) or with supernatant

from U937 cells infected with the JR-FL strain of HIV-1 (lane 6).

Luciferase assay shows that Tat activates the HIV-1 promoter in

neuronal cells compared to mock (Fig. 2C, lane 1) or Ad-null (lane

3). Activation of LTR by Tat ranged from 2-fold with rTat (lane 5)

to 13 fold with supernatant from infected cells (lane 6). These data

demonstrate the functionality of rTat, i.e., 1 pg/ml of rTat protein

activates the HIV-1 promoter. Our results correlate with the

previous reports of Tat activation of the HIV-1 LTR in neuronal

cells [22].

Next, we examined whether Tat affects neurites retraction, we

treated SH-SY5Y cells with rTat (1 pg/ml) for 24 h in duplicate

where one set was used to determine neurites retraction while the

other set was used to determine impact of Tat on microtubules.

Using anti-tubulin and DAPI staining to detect the neurites and

the cellular nuclei, respectively, we observe that treatment of the

neurons with Tat resulted in neurites retraction relative to

untreated cells (Fig. 3A). These findings agree with previous

reports where 2 - 20 femtomoles of Tat protein were shown to be

neurotoxic [8,23]. Importantly, our studies show a higher

concentration of Tat in neurons derived from the supernatant of

infected cells.

To study the effects of Tat on SH-SY5Y neurites, we used time-

lapse microscopy. The response dynamics were evaluated by

measuring neurites retraction distance. This was compared with

the initial length of the extended neurite, which varied between 4

and 25 mm. Images of retracted neurites show that most of them

Figure 1. High performance capillary electrophoresis analysis of Tat protein. A. Electropherograms showing different concentrations of
rTat in order to examine the sensitivity of the assay. B, C. Representative electropherograms comparing the amount of Tat in supernatant from
infected cells or from lysates from uninfected neuronal SH-SY5Y cells to which the supernatant was added.
doi:10.1371/journal.pone.0016148.g001
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are characterized by a retraction bulb and a thin trailing remnant

(panel A, arrows). To determine the time course of neurites

retraction, we measured neurite length over 10 min after rTat

application. Between 1 and 2 min after exposure to 1 pg/ml of

rTat, neurites had retracted by 10.3% and 19.7%, respectively

[mean (SD)], p,0.01 compared with the untreated neurites that

showed almost no change in length. Neurites continued to retract

over time such that at 10 min post-Tat application neurites

retraction was almost 52.1%.

Alternatively, we sought to further examine the impact of Tat

treatment on microtubules using the second set of cells treated

with 1 pg/ml of rTat protein led to a marked reduction (75%) in

the Microtubule-associated protein 2 (MAP-2) reactivity (Fig. 3B),

compared with untreated cells (compare lanes 1 and 2). Note that

Figure 2. Measurement of Tat in primary human neurons (HN) and ability of rTat to activate HIV-1 gene expression. A. Representative
electropherograms comparing the amount of Tat in supernatant from infected cells (red) or from extracts from uninfected (black) HN cells to which
the supernatant was added. As a control, extracts were also prepared from rTat-treated cells (blue). B. Human microglia and SH-SY5Y cells were
transfected with 0.5 mg of LTR-Luc alone and treated with different concentrations of rTat. C. SH-SY5Y cells expressing the LTR-luc-IRES-GFP were
transfected with Tat expression plasmid, infected with Ad-null or Ad-Tat, or treated with rTat (1 pg/ml) or supernatant from infected cells. Cell
extracts were prepared 24 h (microglia) or 48 h (SH-SY5Y) after transfection and luciferase and b-gal determined. All values were normalized against
b-gal and represent mean of at least 3 experiments.
doi:10.1371/journal.pone.0016148.g002
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MAP-2 is a protein that belongs to the microtubule-associated

protein family and serve to stabilize microtubules (MT) growth

[24]. These results complement and confirm the data observed in

panel A with anti-tubulin regarding alteration of microtubules.

Finally, we investigated whether addition of Tat leads to cell death.

To that end, SH-SY5Y cells were treated with 1 pg/ml of rTat for

24 hrs after which the cells were stained with trypan blue and cell

death was assessed. Briefly, five cell areas were used (each contains

,100 cells) to count the number of dead cells. Interestingly, there was

approximately 4-fold increase in cell death as measured by trypan

blue exclusion in Tat-treated neurons when compared to untreated

cells (Fig. 3C, compare lanes 1 and 2) [25]. Results were significant

using statistical analysis as described in the Methods section.

In summary, neuronal degeneration remains a major problem

associated with HIV-1 infection of the CNS even with successful

HAART. In this regard, several factors, including the viral protein

Tat, are involved in the development of neuronal injury, however

the exact amount of circulating Tat protein remains unclear.

Despites the several attempts that aimed to measure the amount of

circulating Tat in cells, in human sera as well as in CSF [8,26,27],

the levels of circulating Tat protein remains unclear. Here using

capillary electrophoresis, we provided evidence to show for the

first time the presence and amount of viral protein Tat in neurons.

Taken together, our data showed that released Tat protein can be

taken up by neuronal cells and causes neuronal deregulation

through a pathway that remains to be identified. In this regard, we

recently demonstrated that Tat causes neuronal deregulation by

increasing the levels of secreted calcium, mitochondria deregula-

tion and axonal transport alteration (manuscript in preparation).

Further, our data presented in Figure 3 showed that Tat affects the

Figure 3. rTat cause dendritic retraction in SH-SY5Y. A. Phase contrast microscopy of SH-SY5Y cells either untreated or treated with rTat as
indicated. The cells were stained with DAPI (blue) and anti-tubulin (red) to mark the nucleus and the processes, respectively. B. Tat-induced neurites
retraction is time-dependent. Cell cultures were exposed to 1 pg/ml of rTat and assessed over 10 min. Values are expressed as percentage neurites
retraction. P,0.01 vs control (untreated) (ANOVA, followed by Bonferroni test). Values represent mean (SD), (n = 15). C. Quantification of MAP-2
immunoreactivity revealed marked reduction (75%) in rTat-treated SH-SY5Y cells. D. Effect of rTat-treatment on SH-SY5Y neuronal death as assessed
by trypan blue exclusion.
doi:10.1371/journal.pone.0016148.g003
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levels and eventually the function of MAP2, which in turn could

lead to alteration of axonal transport and communication (Fig. 3A

and B). Therefore, the new method developed in this study clearly

demonstrated the limitation of the previous techniques used to

measure Tat in neuronal cells. It will also help in determining the

amount of other viral proteins in infected cells. Further

identification and measurement of Tat in non-infected cells may

also help in estimating the amount of antibodies that should be

used to neutralize the effect of Tat, which could lead to the

development of more efficient therapy.
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