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Abstract

LRR-kinases constitute the largest subfamily of receptor-like kinases in plants and regulate a wide variety of processes
related to development and defense. Through a reiterative process of sequence analysis and re-annotation, we identified
309 LRR-kinase genes in the rice genome (Nipponbare). Among them, 127 genes in the Rice Annotation Project Database
and 85 in Refseq of NCBI were amended (in addition, 62 LRR-kinase genes were not annotated in Refseq). The complete set
of LRR-kinases was characterized. These LRR-kinases were classified into five groups according to phylogenetic analysis, and
the genes in groups 1, 2, 3 and 4 usually have fewer introns than those in group 5. The introns in the LRR domain, which are
highly conserved in regards to their positions and configurations, split the first Leu or other amino residues at this position
of the ‘xxLxLxx’ motif with phase 2 and usually separate one or more LRR repeats exactly. Tandemly repeated LRR motifs
have evolved from exon duplication, mutation and exon shuffling. The extensive distribution and diversity of the LRR-kinase
genes have been mainly generated by tandem duplication and mutation after whole genome duplication. Positive selection
has made a limited contribution to the sequence diversity after duplication, but positively selected sites located in the LRR
domain are thought to involve in the protein-protein interaction.
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Introduction

Plant receptor-like kinases (RLKs) are transmembrane proteins

with putative amino-terminal extracellular domains and carboxyl-

terminal intracellular protein kinase domains [1]. The RLK family

is a superfamily in plants with at least 610 members in Arabidopsis

and about 1132 members in rice [2]. The phylogenetic-based

analysis of the Arabidopsis RLKs provided 44 subfamilies [1]. On

the basis of the extracellular domains, at least 21 different domains

were found [3], and the leucine-rich repeat (LRR) domain was the

largest subfamily, with 239 members in Arabidopsis [1].

The LRR is a widespread structural motif of 20–30 amino acids

with conserved leucines, which build the domain by tandem

repeat. The LRR domain forms curved solenoid structures that

are particularly suitable for protein-protein interactions [4]. Based

on the conserved sequence, the LRR motifs are classified into

seven subfamilies, of which just one is plant-specific [4]. The

nonconserved residues contribute to the specific interaction with

other proteins [5]. The LRR domain in the majority of known

LRR-kinases (with extracellular LRR domains and intracellular

protein kinase; LK) do not possess any introns, but those in

ERECTA, SERK and SYMRK/NORK are interrupted by

introns at the first Leu of the ‘xxLxLxx’ motif [6,7,8]. The protein

kinase (PK) domain consists of approximately 250–300 amino acid

residues and is divided into 12 conserved subdomains (I–XII). It

folds into a similar 3-dimensional catalytic core structure with a 2-

lobed structure. The N-terminal lobe is smaller and includes

subdomains I–IV, and the C terminal lobe is larger and includes

subdomain VIA-XI [9].

PK imparts phosphotransfer according to a common mecha-

nism. The smaller lobe is primarily involved in anchoring and

orienting the nucleotide and the larger lobe is largely responsible

for binding the peptide substrate and initiating phosphotransfer

[9]. Many PKs can be strongly activated by the phosphorylation of

the activation loop, and dephosphorylation can block the substrate

access to the active site. Kinases that are regulated through this

mechanism are commonly referred to as RD kinases and contain

an Arg(R) in the subdomain VI preceding the catalytic loop.

Conversely, a smaller number of kinases can be grouped into a

class referred to as non-RD kinases that lack the conserved R in

subdomain VI [10,11]. The signal of pathogen recognition

mediated by RLKs is usually through a non-RD kinase [12].

According to their biological functions, plant RLK family

members can be classified into two broad categories [1]: the first

category controls plant growth and development, while the second

category is involved in plant–microbe interactions and defense

responses [1]. As the biggest subfamily of RLKs, LKs can be also

grouped into two categories. The first category includes CLA-

VATA1 [13], BRI1 [14], HAESA [15], etc., which play important

roles in development and hormone perception; the second

category comprises XA21, XA26, FLS2, EFR, etc. XA21 and

XA26 confer resistance to Xanthomonas oryzae pv. Oryzae [16,17],

and FLS2 and EFR perceive the flagellin and EF-Tu of bacteria,

respectively [18,19]. It is noteworthy that some LKs have dual

functions due to the cross-talk between disease and developmental

pathways or due to the recognition of multiple ligands by a signal

receptor [20]. For instance, BAK1 shows functions in plant

developmental regulation, but recent data indicate that it also has
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a role in the initiation of innate immunity by positively regulating

pathogen-associated molecular pattern signaling as a co-receptor

[21,22]. Similarly, ERECTA is involved in ovule development and

resistance to bacterial wilt [8,23].

Although the RLK families in Arabidopsis and rice were

previously analyzed [1,2], they were mainly analyzed by

automatized algorithms of annotations. The results provided

wrong annotations that should be revisited for an accurate

description of the characteristics of the RLK genes or proteins

in Arabidopsis and rice. In this study, we propose to identify the

complete set of LK genes in the Nipponbare rice genome and re-

annotated each of them using non automatized methods. A total of

309 LK genes identified in rice are supervised as well as their gene

and protein structures are analyzed. The structure of some known

LKs was analyzed and summarized previously [3,5], but the

characteristics of the whole set of LKs have not been reported yet.

Results

Manual re-annotation of the predicted LK genes in the
rice genome

All of the LK genes obtained from the NCBI database and Rice

Annotation Project Database (RAP-DB) were determined by the

presence of LRR and PK domains with confidence (default E

value). A total of 309 non-redundant LK genes, including

pseudogenes, were revealed. The gene coding and protein

sequences are shown in Table S1.

The initial sequence comparisons indicated that many LK

sequences had been partially misannotated during the automated

annotation process. Therefore, a complete, manual re-annotation

and analysis of the LK gene family was undertaken to rectify the

wrong or inaccurate predictions. The LK genes from the

Reference Sequence (RefSeq) database (http://www.ncbi.nih.

gov/RefSeq/) and RAP-DB were also obtained for the analysis,

and the accession numbers of the loci in RAP-DB were used to

name each gene in the study.

When our annotation results were compared with those in

Refseq and RAP-DB (Table 1), a total of 129 and 147 errors

(including no annotation genes) were found in the two databases,

respectively. In RefSeq, 62 LK genes were not found; 41 LK genes

were truncated or had missed exons; and 64 gene annotations

were wrong (Table 1 and S2). In contrast, almost all the LK genes

in RAP-DB were discovered and predicted with the exception of

two genes on chromosome 11, which were named Os11g0173450

and Os11g0173550 based on the gene nomenclature [24].

Compared with our results, 59 LK gene-coding regions predicted

in RAP-DB contained introns; 39 genes were truncated or had

missed exons; and 31 genes had one or more other errors in their

annotations (Table 1 and S2).

In order to comparatively analyze the RLK family in Arabidopsis

and Rice, Shiu et al. provided an annotation for all the RLK genes

in 93-11 [2]. Among them, 384 LK genes in such study were used

for comparison with our annotations. Because the orthologs

between Indica and Japonica rice exhibit more similarity than do

paralogs [25], most of the orthologs between 93-11 and

Nipponbare should have similar gene structure and sequence.

The comparison showed that this group contained 114 truncated

or exon-missing genes, 17 genes with introns in the predicted

coding sequence and 24 gene annotations with more than one

error. We also found 11 protein kinase genes, 13 LRR genes and

some genes encoding proteins with unknown domains in this

subfamily.

LK gene structure and Intron/Exon configurations
We analyzed the gene structure, intron positions and phases of

309 LK genes in Nipponbare. Forty-nine kinds of gene structures

were found, but more than half of the LKs had simple gene

structures with only one or two exons (Fig. 1). Seventy-five genes

had more than 10 exons, and the most complex genes had 27

exons (Fig. 1). Os11g0569701 was the most common gene

structure (141 genes), consisting of 2 exons and an intron, which

inserted the GAA or GAG codon between G-A in the PK domain.

One hundred forty-one genes had this kind of gene structure.

Os01g0917500 was the second most common structure (35 genes),

presenting only 1 exon (Fig. 1).

The genes with complex structures usually consisted of some

short exons in the LRR region, and most of them were interrupted

by a phase-2 intron containing 72 nucleotides that only encoded 1

LRR repeat. Other exons in the LRR region encoded one or two

LRR repeats (162, 144, 81, 78, 75, 69, 66, 45 and 39 nucleotides),

except for the smallest exons at the end of the domain (45 and 39

nucleotides) (Fig. 2). These introns usually split the codon at the

first Leu position in the known motif of ‘xxLxLxx’. The gene

structures of all LKs in the LRR region were conserved. However,

the position of the intron in the PK domain was poorly conserved.

There were at least 26 positions that were interrupted by an intron

in the PK domain; only two positions in the motif IV (P5) and VIII

(P7) (date not shown) were split by introns more frequently.

Conserved regions in the other regions of LKs were not found.

Phylogenetic analysis of the rice LK proteins
The LK family in rice consists of many subfamilies [2]. To

further elucidate the relationship among the LK proteins, the PK

domains of LKs were used to generate a multiple alignment and a

neighbor-joining (NJ) phylogenetic tree with Cluster X and

MEGA4, respectively. From the values obtained in the bootstrap

analysis, it was apparent that most of the deep nodes of the tree

have low statistical significance. In order to obtain a statistically

supported phylogenetic tree, two other alignment programs,

MultAlin and DIALIGN2, were used to generate NJ phylogenetic

trees, but the results were similar to those obtained with ClustalX

and also showed low statistical values at the deep nodes (data not

shown). The alternative methods of phylogenetic tree construction,

minimum evolution and maximum likelihood, were tested, but the

support for the minimum evolution tree was not sufficient (data

Table 1. Numbers of rice LK genes with annotation errors.

Annotation errors In RAP-DB In Refseq of NCBI

Including introns 59 13

Missed exons inside the gene 10 11

Missed exons inside the gene with
other errors

8 4

gene fusion 1

Incorrect intron/exon splice
boundaries or numbers of exons

7 5

Truncated gene or wrong terminal
exon or premature stop codon

29 41

Truncated gene with other errors 4 3

Wrong start 2 5

Wrong start and other errors 7 4

No annotation 2 62

Total 129 147

doi:10.1371/journal.pone.0016079.t001
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not shown). However, we found the topology of the maximum

likelihood (ML) trees based on DIALIGN alignment was a better

fit with the gene structures, and more LK genes with similar

structures were grouped together. The analysis classified the LK

proteins into 5 groups. Each group was further classified into many

subgroups (Fig. 3, S1). Figure S1B also shows an NJ phylogenetic

tree generated with MultAlin to compare with the ML tree.

It is difficult to infer evolutionary relationships between the

different groups and subgroups of LKs because the internal nodes

were not well-supported, but group 1 is an exception. Group 1 was

the largest group and contained 99 LK proteins, including the

orthologs of Xa21 and Xa26 families, and all of them (with the

exception of Os06g0667000, which had only 1 exon) had 2 exons

(Fig. 1). Group 1 was stable and remained intact in all the trees

studied, and all the nodes—even deep nodes—usually showed

high bootstrap values. This finding implies that evolutionary

relationships between the different subgroups in group 1 were

clear (Fig. S1). Group 2 contained 51 LKs, and most of these had

the same gene structure as those in group 1 with the exception of

Os08g0148300, which split the GTA codon between G-T. In

addition, there were 3 LKs with 1 exon; one LK (a fusion protein)

with four exons; one LK with 10 exons; and 3 LKs in subgroup 2–

3 with complex gene structures with 23, 26 and 27 exons,

respectively (Fig. 1). Group 3 had 32 members, and most of them

had only 1 exon. Four members in this group had 2 exons, but the

intron split site was different from the members in group 1 (Fig. 1).

Group 4 included 41 members. Genes with 1, 2, 3, 12 and 14

exons were found in this group, and the gene structures with two

exons were novel compared with those of other groups (Fig. 1).

Group 5 consisted of 86 members, and most of these had novel

gene structures with more than 10 exons (Fig. 1). There were 35

types of gene structures in group 5 compared with 7 in group 4, 7

in group 2, 4 in group 3 and 2 in group 1 (Fig. 3).

To predict the function of LK genes, we analyzed the orthologs

or the most similar homologs of some known LK genes in rice

(Table S3). We found that most orthologs of resistance genes were

in group 1, which included Xa21, Xa26, FLS2 and EFR. Some

orthologs that participate in plant development and growth were

in groups 2, 3 and 4 with the exception of PEPR1, which is the

receptor for AtPep1 and can induce innate immunity in response

to pathogen attacks [26]. Two categories of LKs were found in

group 5 (Table S3). These findings suggest that LKs in different

groups show different functions: group 1 is usually involved in

plant-microbe interaction and defense response; group 3 and 4

relate to plant growth and development; and group 2 and 5 are

involved in both functions.

LK protein structure
LKs usually have an LRR domain, a trans-membrane (TM)

domain and a PK domain. The 309 re-annotated LK genes were

translated and subjected to protein domain and motif analyses.

The signal peptide, LRR, TM and PK domains were analyzed

individually. These analyses are described below and are arranged

from the N-terminus to C -terminus.

Signal peptide
Using SignalP to search for the possible signal peptides in the

LKs, we found that there were 84.8%, 96.5%, 90%, 95.4% and

90.8% LKs with a signal peptide in group 1, 2, 3, 4 and 5,

respectively. The typical structure of signal peptides usually has a

positively charged n-region, followed by a hydrophobic h-region

and a neutral but polar c-region, and the cleavage sites should

follow the (23, 21) rule, which states the residues at positions 23

and 21 (relative to the cleavage site) must be small and neutral for

cleavage to occur correctly [27]. Most of the signal peptides in LKs

had a n-region that was usually positively charged by Arg and Lys,

but about 27% (75 signal peptides) were not positively charged and

3.6% (10 signal peptides) were negatively charged. The amino acid

composition in signal peptides and at the 23 and 21 positions

were imbalanced and included more Leu, Ala and Val. Ninety-

four percent of signal peptides had a middle helix and a two-end or

one-end (N-end) coil structure, and 5.8% lacked or had a very

short middle helix structure. These results suggest that the middle

helix is conserved and important for LK proteins to pass through

the membrane.

We used MEME to look for motifs in the signal peptide and the

sequence before the LRR (including the leucine-rich repeat N-

terminal domain-LRRNT). Four motifs (S1, S2, S4 and S13)

existed in most LKs, and group 1, 2, 3 and 4 usually only had

these 4 motifs (Fig. S3). Motif S13 appeared in the most signal

peptides, but most sites in this motif were weakly conserved. Motif

S2 was the neighbor of the signal peptide, and the most conserved

amino acid was Leu in this motif (Table 2 and Fig. S2, S3A). The

next most common motif was Motif S4, in which Trp and Leu

were the most conserved. Two Cys in motif S1 were thought to be

involved in the formation of LK dimers [5]. Our results show that

the last Cys, Trp and Gly in this motif were more conserved than

the first Cys (Table 2 and Fig. S2). Motif S1 and S4 were replaced

by S7 and S11 in subgroup 5-2, respectively (Fig. S3A). Like S1,

S7 also contained two conserved Cys separated by 6 other amino

acids (Fig. S2). Subgroup 5-3 had more motifs than the other

subgroups, and most of these motifs were specific to subgroup 5-3

(Fig. S3). The distribution of motif patterns in each group were

Figure 1. Gene structure and Introns/Exons of LK-encoding genes in rice. Introns and exons were drawn to scale with the full encoding
regions of their respective gene. Filled boxes indicate the exon, and white boxes indicate the intron. Numbers under ‘‘# in NPB’’ indicate the number
of LKs with this structure in the Nipponbare genomic sequence. 0 = Intron phrase 0; 1 = Intron phrase 1 and 2 = Intron Phase 2. *The first exon of
Os01g0810533 is too small to be shown.
doi:10.1371/journal.pone.0016079.g001

Figure 2. The distribution of the different sizes of exons in the
LRR region.
doi:10.1371/journal.pone.0016079.g002
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shown in figure S3B, and the specific motif patterns usually

occurred in group 5.

LRR
About 26 LRR-related motifs were found in LKs (Table 3 and

fig. S2). The rice LRR motifs were similar to the typical plant

motif [4], but no motif was identical to this one (Table 3). The

most conserved amino acid residues in rice LRR motifs were Gln

at position 9, Gly at position 13 and Pro at position 16, but the Gly

at position 13 was less conserved in the typical plant LRR motif

[4] (Table 3). Based on the structure of all rice motifs, we

concluded that the basic LRR motif should be LxxLxLxxNx L/f

xGx I/l Pxx l/i Gx L/c xx.

Unlike other regions in the LKs, LRR motif patterns were

variable (Fig. S3A). Almost all proteins had different LRR motif

patterns, except some LKs in group 5-2 that had regular motif

patterns (Fig. S3A). Nevertheless, we could find some conserved

regions by carefully comparing the motif patterns among different

proteins, especially in the same group or sub-group. For example,

the LKs in group 1 had more LRR motifs, and motif L9 and L25

were usually located at the N-terminal region and L3 was located

at the C-terminus. The diversity of motif patterns in group 2 was

more than other groups, and almost no conserved parts were

found with the exception of motif L3 at the C-terminal region of

the LRR domain. The LKs in group 3 also had the L9/25 start

and L3 end patterns. Subgroup 3-2 was the largest one in group 3

and showed more regular repeat patterns than the other

subgroups. The LKs in group 4 had fewer LRRs than those in

groups 1, 2 and 3, and the motif patterns were less regular like

group 2. However, many LKs in this group had motif L3 at the

end of LRR domain. The LKs in group 5 had the least motifs of

all groups (Fig. S3A).

Figure 3. Phylogenetic trees of protein kinases of rice LKs. A ML
tree with the Jones-Taylor-Thornton amino acid change model was
generated with the protein kinase domain aligned with DIALIGN2. The
distance scale is under the figure, and branch lengths are proportional
to genetic distance. The LKs were classified into 5 groups, and group
and subgroup names are shown on the right. The accession numbers of
the LKs in the same subgroup that cannot be shown are replaced by
the name of the subgroup.
doi:10.1371/journal.pone.0016079.g003

Table 2. Major motifs in signal peptide and transmembrane
region within rice LKs.

Domain Motifs Sequence

Partial LRRNT S1 CxLxGVxC*

Partial LRRNT S2 D/exxALLxFKxxLxxp

Partial LRRNT S4 xxLxSWxxxxx

Signal peptide S13 lLLLLLlaxxxxxxx

T1 txxsfxGNxxLCGxx

T2 xxxv/s/I S/tYxd/e L/ixxATn/d n/g

T7 gxxrxF s/t xxELxxAT

TM domain T9 x v/i xx v/i xxxxxxlxlx

T16 xLhLpxCxxxs

*If the bits value (see fig. S2) of the amino acid at this position is smaller than
0.5, it is represented with x; 1. bits §0.5, with lowercase; 2. bits §1, with
capital letter; 3. bits §2, with bold capital; bits .3, with underlined capital
letter in bold.

doi:10.1371/journal.pone.0016079.t002
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Transmembrane
The TM domains were predicted with TMHMM. A total of

283 LKs had at least one TM, but there were 13 LKs with more

than one and 26 LKs in which any TM was not found. A single

LK cannot show more than one TMs because this would place the

LRR domain and protein kinase domain on the same side of the

membrane. Probability values and relative positions were then

used to select between predictions. Further analysis of the 26 LKs

with Phobius revealed the possible TM domain in the 20 LKs, but

TMHMM can also find the TMs if we lower the cutoff value.

Thus, these LKs should contain atypical TMs.

Like the composition of the signal peptide, the amino acid

composition of the TM domain was mainly Leu, Val, Ile and Ala .

The secondary structures of the domains were predicted with

HNN, and most of them showed coil and helix structures.

The motifs between the LRR and PK domains (including TM)

were revealed with MEME (Table 2, Fig S2). The motif patterns were

shown in Fig. S3. Motif T9 was located in the TM domain. The

motifs T3, T4, T5, T6, T10, T12, T13, T14, T16 and T17 were on

one side, and T2, T14, T7, T13 and T19 were on another side of the

TM. They had many charged amino acid residues. As shown in

figure S3B, the specific motif patterns to each group were revealed.

Protein kinase
The PK domain in the LKs was defined by a Pfam search.

About 20 motifs were found in the domain with MEME; these are

named P6, P10, P3, P15, P5, P4, P2, P9, P7/16, P1, P11/12/19,

P13, P8, P7/16, P14 and P19/20 from the N-terminus to the C-

terminus. The motifs P6, P10, P3, P4, P2, P9, P7/16, P1 and P8

correspond to subdomains I, II, III, V, VIB, VII, VIII, IX and XI,

respectively, according to their position in the PK domain and

their conserved amino acid residues (Table 4) [9]. Subdomains IV,

X and XII were poorly conserved, so motif P5 corresponds to

subdomain IV only according to its position. It is difficult to

determine the correspondence of subdomain X or XII.

In order to compare rice motifs with the subdomains of eukaryotic

PKs described by Hanks and Hunter [9], the conserved amino acid

residues in each motif or subdomain are shown in Table 4. Human

PKs were also analyzed with MEME [28] (Table 4). Most of the

conserved amino acid residues indicated by Hanks and Hunter [9]

were also invariant in rice LKs and human PKs. In addition, some

specific conserved residues to rice PKs were found, such as Val, Val in

motif P10; Phe and Leu in P3; Leu, Trp, Arg, Asp and His in P4; and

Gly, Thr and Tyr in P7 (Fig. S2 and Table 4).

The LKs were divided into 5 groups based on the PK domain

sequence. The results showed that motif P15 only occurred in group 1.

P11 motif usually occurred in group 1 meanwhile P12 motif occurred

in the others groups. However, subgroup 5-8 had a specific motif (P19).

Motif P16 was presented in subgroups 4-1, 5-8 and 5-9 (Fig. S3A).

Each group exhibited its specific motif patterns, and this provided

further evidence for the classification (Fig. S3B). All LKs in group 1 and

93.1% in group 4 belonged to non-RD kinases. RD kinases

represented 90%, 89% and 78.1% in groups 2, 3 and 5, respectively.

Physical distribution of the LK genes in the Nipponbare
genome and cluster formation

The physical distribution of the LK genes across the

Nipponbare genome was investigated and is shown in Figure S4.

The linked LK genes were grouped into a cluster when they were

close to each other on the chromosome and in the same subgroup

Table 4. Major motifs of protein kinase domain in predicted rice LKs.

Subdomain* Motifs Sequence Corresponding motif sequence in human PK***

IX P1 Ks/gDVY/fSF/yGV/iV/lLLEllTGK/RxPx** YxxxxDvWSxGV/ixLyE; xxDxWSxGxxx

VIB P2 xI/vv/iHR/cDI/l/vKs/pSNI/VLLD HxxxIi/vHRDL/iKPeNi/eL; xxxi/vHRDLk/aaxNiLl/v

III P3 xsFxxEc/vexL/isxv/iRHRNL/iVxL/ixG/txCxxxd EixiL/mxxLxHPNIV/ixL; HpNIvxl

V P4 LdW/lxxRlxxIAlG/DvvAxG/AxYLH xxQI/va/lxG/aL/mxYL

IV P5 LVYEY/fMpNGSLxxxLHxx l/iV/imEYxxgGdLxxxL/I; v/iYL/iVFEymxxDLxxxl

I P6 xxNlI/LGxGgfGxVYKG/axLxxG L/IGxGFGxV; L/IGxGxFGxV

VIII P7 xxxxxxxxGT/siGYiAPEYg/axx xtxxGTPxYmAPEVl

XI P8 lxxvlxl/v/iA/gLxGtxxxPxxRPxMxe axdL/fl/ixxl/mLxxdPxxRxt/s

VII P9 dmxA/ph/kV/is/a/gDFGLAR/KLx v/iKI/lxDFGLA/sr; KL/IxDFGla

II P10 xVAV/iKvLxxxx VAi/vK; xAiK

P11 DxmFxd/ggLsL/ir/hxyVxxAF/lP

P12 xLvxWV/axxxxxxxxx

P13 xev/iv/lDpxLxxx

P14 VVxkLxxIr/kxxyxxx

P15 xxGnD/eFKA

VIII P16 xxxxxxGYRAPEvxxxxk/rS/tx PL/vK/rWm/tAPEs/a; V/iVT/sR/lWYRa/sPEl/vLLGx

P17 VVaMLT/eGDve/lv/a

P18 VVxQLK/qEcLe/aLExxR

P19 SsrxxseqsxVrxAxxqLxDi

P20 xssxsGSt/sxxefsxqxExxP

*[9].
**If the bits value (see fig. S2) of the amino acid at this position is smaller than 0.5, it is represented with x; 1. bits §0.5, with lowercase; 2. bits §1, with capital letter;

3. bits §2, with bold capital; bits .3, with underlined capital letter in bold.
***The sequences of the human protein kinases come from Manning et al.(2002).
doi:10.1371/journal.pone.0016079.t004
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of the phylogenetic tree. According to this parameter, 139 LK

genes were grouped into 32 clusters, and the remaining 170 genes

represent single-gene loci (Table S4). The smallest clusters

consisted of only 2 genes, and the largest cluster had 14 tightly

linked genes on chromosome 11. The clusters were distributed

unevenly over the 12 chromosomes (Table S4). More than 75% of

genes on chromosome 11 and more than 50% of genes on

chromosomes 2, 5 and 6 were in the cluster. In contrast, no

clusters were located on chromosomes 3 and 7. The clusters were

also unevenly distributed among the five groups, and group 1

contained 14 clusters, including 75.7% of the genes of the group,

but group 4 had no clusters (Table S4).

A comparison of the physical positions of the genes and the

phylogenetic analysis revealed both local and distant duplications

of the LK genes. More similarity among each other in the same

cluster suggested that these genes had been derived from tandem

duplication. Highly similar clusters, such as the clusters on

chromosomes 4, 5 and 8 could derive from an ancestral gene

duplication and then tandem duplication separately (Fig. S1). This

is more probably than a direct whole-cluster duplication because

the genes into a cluster were more similar than between clusters

(Fig. S1). Some singleton genes exhibited high similarity with the

genes in the cluster, such as Os01g0228200, Os06g0272000,

Os07g0132000, Os10g0207100 in subgroup1-1 (Fig. S1 and S4).

These singleton genes could have experienced tandem duplication

after their ancestral duplications or could have been derived from

a member in the cluster through transpositional duplication.

The role of selection in the diversity of genes after
duplication

To reveal the selective pressures acting on the LK genes after

duplication, we analyzed subgroups 1-1, 1-3, 1-4, 1-5, 1-6, 2-10,

3-2, 4-1, 5-2, 5-3 and 5-10 with the CODEML program in the

PAML. These subgroups contained 195 members, including most

clusters. The comparison of M0 and M3 indicated that v was

variable among sites in all of the subgroups (Table 5). Positively

selected sites were found in subgroups 1-3, 1-4 and 1-5 but not in

subgroups 1-6, 2-10 and 5-10 by all three pairs of models.

Positively selected sites were also revealed in subgroups 1-1, 3-2, 4-

1, 5-2 and 5-3 by testing M7 and M8, M8a and M8, but they were

not found by M1a and M2a (Table 5). These results indicate that

the M7–M8 and M8a–M8 comparisons appear to be more robust

than the M1a–M2a comparisons for our data.

The distribution of v along different domains, and the v with

error bar and posterior value of the positive selection sites tested

with Bayes Empirical Bayes (BEB) analysis under Model 8 are

shown in figure S5 [29]. Most of the positively selected sites

occurred in the N-terminal, LRR and C-terminal regions and

rarely in the transmembrane and protein kinase regions. Some

positively selected sites were detected in the region between LRR

and the protein kinase domain, except for the TM domain. In

groups 1 and 3, the positively selected sites were concentrated in

the LRR domain, but in groups 4 and 5, only a few were in this

domain (Fig. S5). Most of the positively selected sites in the LRR

domains presented the xxLxLxx motif (Table 5).

The diversity of the LKs in each subgroup was detected by

calculating the percentage differences of amino acid sites in

deduced proteins (Fig. S6). Though differences in diversity were

found in different subgroups, they were not correlated with

positive selection. Some subgroups showed higher diversity

without obvious positive selection, such as subgroups 1-6, 2-10

and 5-10 (Fig. S6 and Table 5). Most of the codons in genes are

under purifying selection, and many, including some positively

selected sites (v close to 1), identified codons were under relaxed

purifying or neutral selection (Fig. S5 and Table 5). In addition,

Table 5. Likelihood ratio test of positive selection in family proteins.

Sub-
group n1

2Dl M3
vs. M0

2Dl M2a
vs. M1a

2Dl M8
vs. M7

2Dl M8
vs. M8a M8estimates3

Positively selected
sites (Posterior.0.90)4

Percent of
positively
selected sites in
xxLxLxx motif to
LRR domain

1-1 20 3587.8**2 0 185.4** 122.8** p1 = 0.069, v= 2.26 57, 69, 230, 279, 335, 339, 340, 363,
386, 411, 435, 440, 464, 484, 511,
513, 516, 537, 539, 541, 586, 636

37/38

1-3 19 5657.6** 413.4** 98.8** 53.6** p1 = 0.067, v= 1.68 189, 285, 310, 315, 335, 340, 414,
438, 509, 536,

34/38

1-4 10 1481.2** 280.4** 14.8** 8.2** p1 = 0.041, v= 1.71 Posteriors of the sites ,0.90 14/19

1-5 21 4145.8** 84.8** 59.4** 57.8** p1 = 0.069, v= 1.81 327, 346, 373, 447, 471, 496, 498,
526, 555, 575, 628, 1162, 1216, 1217

24/27

1-6 22 2440.8** 0.0 1.2 0.0 p1 = 0.037, v= 1.0 None

2-10 9 1127.4** 0.0 1.7 0.0 p1 = 0.037, v= 1.12 None

3-2 17 2503.2** 0.0 6.2* 4.6* p1 = 0.022, v= 1.56 Posteriors of the sites ,0.90 6/13

4-1 25 2634.6** 0.0 7.7* 4.8* p1 = 0.016, v= 2.36 344 none

5-2 22 2786.8** 0.0 120.0** 46** p1 = 0.080, v= 1.64 15, 28, 30, 32, 33, 34, 36, 165, 680,
1069, 1074, 1099, 1107, 1108, 1111

3/4

5-3 20 2846.4** 0.0 24.5** 22.4** p1 = 0.026, v= 2.51 352, 467, 452, 446 none

5-10 11 1279.0** 0.0 0.0 0.0 p1 = 0.00001, v= 1.0 None

1Number of sequences in the group.
2*: significant at 5% level, **: significant at 1% level.
3v is dN:dS estimated under M8; p1 is the inferred proportion of positively selected sites.
4Sites potentially under positive selection identified under model M8 are listed according to conserved sequence numbering respectively. Positively selected sites with
posterior probability .0.99 are underlined in bold, 0.95–0.99 in bold.

doi:10.1371/journal.pone.0016079.t005
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the number of positively selected sites was far less than that of the

polymorphic sites among the sequences (data not shown).

Comparing the positively selected sites among different

subgroups, we found that these sites were usually located in the

LRR domain in subgroups 1-1, 1-3, 1-4, 1-5 and 3-2, whose genes

had a simple gene structure without or with 1 intron. However, in

subgroups 4-1, 5-2 and 5-3, most of the positively selected sites

were outside the LRR domain. In subgroups 2-10 and 5-10, no

positively selected sites were detected. The members in subgroups

2-10, 5-2 and 5-3 had complex gene structures with more introns

in the LRR regions. Therefore, the split LRR domain may limit

the variation of the selection sites.

Discussion

Automated annotations of sequenced genomes using computer

programs can cause a high level of misannotation and misinter-

pretation. Previous study found that approximately one-third of

the automated annotations contained errors in the NBS-LRR–

encoding genes in Arabidopsis [30]. Our analysis revealed 41.4% of

the annotations had errors in 307 LK genes in the RAP-DB

database and 34.4% of the annotations in 247 LK genes had

errors in the Refseq of NCBI (2 and 62 LK genes were not

annotated in RAP-DB and Refseq, respectively). These results

confirmed that manual annotation is necessary to study the gene

structures and their evolutionary relationships, particularly when

large gene families are considered.

We have carefully characterized the complete set of 309 LK

genes in the Nipponbare genome. Based on gene structure and

protein kinase domain sequence divergence, we defined 5 groups;

this classification differed from Shiu et al.’s that divided the LKs

into 15 subgroups or groups according to phylogenetic results [2].

Their results were mainly derived from automated annotations.

We found that the LKs in groups 1 and 2 usually had simple gene

structures with 1 intron that split the conserved Glu of motif P7

(VIII) in the PK domain. Most LKs in group 3 had no intron, and

those in group 4 had 1 intron that was different from the LKs in

group 1 and 2 and split an unconserved amino acid in motif P5

(IV) of the PK domain. LKs in group 5 usually had many introns.

These results suggest that our classification could be more

accurate. The specific protein motif patterns in each group or

subgroup provide additional support for our classification (Fig. S3).

The gene structure analysis showed that the intron position in

the LRR domain was highly conserved and split the first Leu or

other amino residues at this position of the motif xxLxLxx with

phase 2. The intron usually separated one or more LRR repeats.

Motif analysis revealed that the alignment order of the LRR

repeats in different LKs was diversified (Fig. S3). The discovery of

the short exon encoding one LRR repeat suggested that the LRR

domain was produced from the duplication of the short exon and

that exon shuffling played a major role in the diversity of the

LRRs. We propose that an ancient LRR gene encoded one LRR

repeat, and its duplication produced more exon-containing LRR

genes; subsequent mutations and the exon shuffling produced gene

diversity. Some genes may have lost the intron between the LRR

repeats leading to novel genes (Fig. 4). There are at least four

major mechanisms to produce duplicate genes: (1) genome

duplication, (2) tandem gene duplication, (3) segmental duplication

and (4) transpositional duplication [31]. The rice genome was

created by a whole-genome duplication and subsequent ‘‘diploi-

dization’’ (loss) of many duplicated gene copies [32,33]. We found

that at least 15 pairs of LK genes were located on the retention

regions after genome duplication. The genes in the same cluster

showed more similarity to each other (Fig. S1), suggesting that the

genes in the cluster had been derived from tandem duplication

after the whole genome duplication. About 45% of the genes in

clusters seemed to indicate that tandem duplication played a major

role for the formation of the gene families.

Positive selection is likely the cause of accelerated amino acid

substitutions in some duplicate genes. Our results, however,

showed that the number of positively selected sites was generally

small, and most of sites were under stringent or relaxed purifying

selection (Table 5, Fig. S5). Positive selection could not be detected

in other duplicate gene groups. In addition, we could not find a

correlation between diversity and positive selection (Table 5 and

fig. S6), and there are many polymorphic sites in which positive

selection was not detected among the duplicated genes (data not

shown). Similar phenomena were also observed in Arabidopsis’s

NBS-LRR gene families [34]. These findings suggest that positive

selection was not a strong factor for the sequence diversification of

the duplicate genes and that most amino acid sites were under

neutral or near neutral selection. Though only a small number of

amino acids were affected by positive selection, these amino acids

were usually located on the xxLxLxx motif of the LRR in LKs

(Table 5) and NBS-LRRs [34], which is thought to directly

interact with its ligand and determine the protein specificity of the

binding [35]. Similar evidence was also discovered in other genes,

such as the UV opsin (duplicated UVRh2) of the butterfly

Heliconius erato, trypsin-like serine protease in mosquito, antigen

CD4 of T-cells in primates and multicystatin (SlCYS8) in tomato

[36,37,38,39]. The change of the positively selected sites in these

genes affects the proteins’ activity and function.

Many models for the emergence, maintenance and evolution of

gene copies have been proposed, but there is not a clear consensus

among them [40]. Selection plays different roles in different

models [40]. Positive selection was observed across the LRR

domains among some duplicated resistance genes (Table 5) [34].

However, only stringent or relaxed purifying selection was

detected in some other LK and NBS-LRR genes [34,41]. Dangl

and McDowell suggested that the NBS-LRR proteins can be

classified into two types [42]. Type I, which can directly interact

Figure 4. The Model for LRR domain evolution of LKs. Boxes
indicate exons, and lines indicate introns.
doi:10.1371/journal.pone.0016079.g004
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with the effector, are co-evolving directly and dynamically with an

effector(s) and are under positive selection, whereas type II genes,

which detect the host protein modified by effectors, are evolving in

a more conservative mode and are under purified selection

[42,43]. This difference between proteins implies that protein

function is the key factor that determines what kind of selection

will be applied to the gene.

Materials and Methods

Sequence retrieval
In order to find all of the LK genes in the rice genome (Oryza

sativa subsp. japonica cv Nipponbare), a BLAST search was used

repeatedly. Firstly, protein BLASTs with a default E value cutoff

against the rice Ref protein database were performed using a

Hidden Markov Model (HMM) profile of LRR and the protein

kinase domain as the query [44]. The common items between the

LRR and protein kinase results were collected. All of these

proteins were then clustered with ClustalX and divided into

several groups by phylogenetic analysis with MEGA4 [45], and

one or two proteins in each group or sub-group were picked as

queries to perform tBLASTn searches against the rice genome

sequence in order to find more LK genes. Then, all of the LK

genes obtained from Nipponbare were compared with the results

obtained from 93-11 [2]. Any LK gene in 93-11 for which an

ortholog was not found was used as a query to search the

Nipponbare genome again to reveal the undiscovered LK genes.

Finally, the presence of LRR and protein kinase domains was

verified by searching the Pfam HMMs with confidence (Default E

value) [44].

Re-annotation
All LK genes were re-annotated using the procedures detailed

below. First, the gene position in the BAC was determined

with Genescan (http://genes.mit.edu/GENSCAN.html) and/or

BLAST to identify the genomic sequence of the candidate gene.

Each LK was then used as a query to search the ESTs and the full-

length cDNA database to check if the annotation results were

similar to the cDNAs. When results didn’t match, annotations

were corrected following cDNA database information. However,

we found some full-length cDNAs that contained introns that

probably belong to genomic fragments (The possible reasons are

that there are some DNA contaminations or some mRNAs that

were not completely processed were reverse transcripted during

making the cDNA library). In such cases, we used BLASTx to

search for known proteins and identify the introns. We also used

this method to reveal the possible frame-shift sites and missing

region. Finally, for the LK genes without cDNA and ESTs

matches, the predictions were manually performed as described by

Meyer et al. [30].

Alignments and phylogenetic reconstruction
For the alignment of the PK domains, complete predicted

protein sequences for the LKs were trimmed according to the

HMM Pfamseq of the protein kinase (PF07714) (http://pfam.

janelia.org/family/PF07714#tabview=tab0). Sequences were

aligned using ClustalX [46], DIALIGN 2 [47] or MultAlin

[48] with default options. Phylogenetic analyses with Poisson

Model, including NJ, minimum evolution, and bootstrap

analyses with 1000 replicates, were performed using MEGA

4.0 [49]. Bootstrapping provided an estimate of the confidence

for each branch point. The ML tree was made with FastTree

program with Jones-Taylor-Thornton model of amino acid

evolution [50,51]. In order to calculate bootstrap value, Phylip’s

SEQBOOT (http://evolution.genetics.washington.edu/phylip/

doc/seqboot.html) was used to generate resampled alignments

with 500 replicates, and FastTree analyzed all of the resampled

alignments.

Protein structure analysis
The possible signal peptides in LKs were predicted with

SignalP (http://www.cbs.dtu.dk/services/SignalP/). SignalP pre-

dicted the cleavage sites of signal peptides based on a

combination of several artificial neural networks and hidden

Markov models [52]. When both methods didn’t get the same

result, subjective criteria of similarity with the typical structure

were used. Transmembrane domains were predicted with

TMHMM (http://www.cbs.dtu.dk/services/ TMHMM-2.0/)

and Phobius (http://phobius.binf.ku.dk/). Programs hmmpfam

and hmmsearch were used to determine the LRR domain in each

LK [53]. The motifs were discovered with MEME (http://meme.

sdsc.edu/meme4_4_0/cgi-bin/meme.cgi) and visualized with

Logo (http://weblogo.berkeley.edu/logo.cgi). The secondary

structures of the signal peptides and transmembrane domains

were predicted with HNN (http://npsa-pbil.ibcp.fr/cgi-bin/

npsa_automat.pl?page = npsa_nn.html).

Positive selection analysis
The selective pressures acting on the receptor region were

estimated by using the CODEML program in the PAML(4.2)

package [54]. The codon alignments based on an existing protein

multiple-sequence alignments for CODEML were created with

the PAL2NAL [55]. The heterogeneity in v among sites was tested

by comparing M0 and M3, and the positive selections were tested

with three pairs of models, i.e., M1a and M2a, M7 and M8, M8a

and M8, where M1a (nearly neutral) and M2a (positive selection)

were slight modifications of models M1 (neutral) and M2

(selection) in Nielsen and Yang [56]. M7 used 10 v categories to

describe v among the sites, all constrained to be ,1; M8 differed

from M7 only in that it estimated v for an extra class of sites (p10)

at which v could be .1, and M8a fixed this extra category at

v= 1. [29,56,57,58]. For details, refer to the reference [59] and

the user guide for PAML (http://abacus.gene.ucl.ac.uk/software/

paml.html).
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