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Abstract

Background/Objective: Visfatin, also known as nicotiamide phosphoribosyltransferase or pre-B cell colony enhancing
factor, is a pro-inflammatory cytokine whose serum level is increased in sepsis and cancer as well as in obesity. Here we
report a pro-inflammatory role of visfatin in the brain, to mediate sickness responses including anorexia, hyperthermia and
hypoactivity.

Methodology: Rats were intracerebroventricularly (ICV) injected with visfatin, and changes in food intake, body weight, body
temperature and locomotor activity were monitored. Real-time PCR was applied to determine the expressions of pro-
inflammatory cytokines, proopiomelanocortin (POMC) and prostaglandin-synthesizing enzymes in their brain. To determine
the roles of cyclooxygenase (COX) and melanocortin in the visfatin action, rats were ICV-injected with visfatin with or without
SHU9119, a melanocortin receptor antagonist, or indomethacin, a COX inhibitor, and their sickness behaviors were evaluated.

Principal Findings: Administration of visfatin decreased food intake, body weight and locomotor activity and increased
body temperature. Visfatin evoked significant increases in the levels of pro-inflammatory cytokines, prostaglandin-
synthesizing enzymes and POMC, an anorexigenic neuropeptide. Indomethacin attenuated the effects of visfatin on
hyperthermia and hypoactivity, but not anorexia. Further, SHU9119 blocked visfatin-induced anorexia but did not affect
hyperthermia or hypoactivity.

Conclusions: Visfatin induced sickness responses via regulation of COX and the melanocortin pathway in the brain.
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Introduction

Sickness responses such as anorexia and changes in energy

metabolism are closely related to inflammatory diseases [1,2].

Inflammation-associated anorexia refers to reduced food intake

during acute and chronic inflammatory states in both human and

animals. It is well known that laboratory animals reduce their food

intake in response to administration of pro-inflammatory cytokines

or agents that stimulate cytokine release such as lipopolysaccharide

(LPS) [3,4,5].

Inflammation affects the central nervous system and results in

the manifestation of sickness symptoms [6]. Inflammation in the

brain elicits a state of profound negative energy balance that is an

adaptive response to infection [1] and induces sickness responses

such as fever, anorexia, weakness and hypoactivity [2]. A number

of inflammatory stimuli activate hypothalamic pro-inflammatory

cytokines, including tumor necrosis factor-a (TNF- a), interleukin

1-b (IL1-b) and IL-6, which is involved in anorexia and febrile

responses. Conversely, inhibition of cytokine production or action

attenuates these inflammation-induced sickness responses [7,8].

Recent studies have suggested that synthesis and release of pro-

inflammatory cytokines in response to pathophysiological process-

es induce anorexia and increase metabolic rate by acting upon the

brain region responsible for energy homeostasis [9,10].

Visfatin has been recently identified as a peptide predominantly

expressed in and secreted from visceral fat in both humans and

mice [11,12]. This protein is also known as an enzyme for the

biosynthesis of NAD+, which influences a variety of metabolic and

stress responses [13]. Although recent studies have emphasized its

role as an adipose hormone that mediates pro-inflammatory

actions in various metabolic diseases like obesity, type 2 diabetes

and cardiovascular disease [13], visfatin was originally identified as

a pre-B cell colony enhancing factor (PBEF) and is thought to play

roles in immune response and inflammation [14,15,16,17]. Thus,

there is some evidence to suggest that visfatin activates pro-

inflammatory cytokines in human monocytes [18]. Additionally,

serum visfatin concentration is increased in patients with sepsis,

chronic kidney disease and cancer [19,20,21], which indicates that
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visfatin plays a pro-inflammatory role in peripheral tissues.

However, little is known about its function in the brain.

Accordingly, the aim of the present study is to identify the roles

of visfatin in energy metabolism and in sickness responses in the

brain. We assessed changes in food intake, body temperature and

locomotor activity after intracerebroventricular (ICV) administra-

tion of visfatin and identified the molecular mechanisms of these

physiological responses.

Results

Effects of visfatin on food intake and body weight
In order to assess the central role of visfatin in energy

homeostasis, rats were injected with recombinant rat visfatin into

the lateral ventricle. Administration of visfatin significantly

decreased cumulative food intake measured at 4-h intervals for

24 h after injection of visfatin (Fig. 1A). Significant differences

were observed between the visfatin- and vehicle-injected groups

beginning 8 h after visfatin injection. To confirm the effect of

visfatin on feeding behavior, visfatin was ICV-injected into

animals that had fasted for 24 h, in whom a strong appetite was

induced. Visfatin significantly decreased food intake 4 and 24 h

after re-feeding in food-deprived animals (Fig. 1B). To determine if

the anorectic effect of visfatin affects body weight, rats was

weighed immediately prior to visfatin injection and 24 h after the

injection. Control animals showed an average of 4.4 g of weight

gain during the first day, while visfatin-injected rats lost an average

of 7.3 g (Fig. 1C). Interestingly, weight loss in visfatin-injected rats

was significantly greater than that of the pair-fed group that was

given the same amount of food. This suggests that central

administration of visfatin may have affected energy expenditure as

well as food intake.

Visfatin-induced hyperthermia and hypoactivity
We evaluated body temperature and locomotor activity in rats

injected with visfatin. As shown in Fig. 2A, locomotor activity in

visfatin-treated rats during the dark period was significantly lower

than that of vehicle-treated rats. Vehicle-treated control rats

showed circadian changes in body temperature: low during the

light period and high during the dark period. Rats administered

visfatin 2 h before the dark period showed an increase in body

temperature beginning 2 h after injection and peaking 8 h after

injection (Fig. 2B). This increase in body temperature continued

until the start of the light period.

Visfatin stimulates hypothalamic factors involved in
inflammatory responses

To determine whether visfatin is involved in hypothalamic

inflammation, we assessed its effect on the expressions of pro-

inflammatory cytokines and prostaglandin-synthesizing enzymes

in the rat hypothalamus. ICV administration of visfatin increased

the expressions of TNF-a and IL1-b in the hypothalamus (Figs. 3A

and B). Moreover, there were significant increases in cyclooxy-

genase 2 (COX2), a rate-limiting enzyme that converts arachi-

donic acid into prostaglandins, and microsomal prostaglandin E

synthase-1 (mPGES1), a specific catalyzing enzyme for the final

step of prostaglandin E2 (PGE2) biosysthesis (Figs. 3C and D).

These results suggest that visfatin may be involved in an

inflammatory response in the brain by activating the syntheses

of inflammatory mediators.

COX inhibitor blocks visfatin-induced hyperthermia and
hypoactivity, but not anorexia

Because we found that visfatin stimulated the expressions of

COX2 and mPGES1 genes in the hypothalamus, we hypothesized

that visfatin might exert its effect on sickness behaviors by

regulating the syntheses of prostaglandins. To investigate this

possibility, rats were intraperitoneally (IP) injected with indometh-

acin, a COX inhibitor, 30 min prior to the injection of visfatin,

and their sickness responses were observed. Indomethacin

completely abolished visfatin-induced hyperthermia during the

observation period (Fig. 4A), and visfatin-induced hypoactivity

(Fig. 4B) and weight loss (Fig. 4C) were partially blocked by the

same treatment. However, indomethacin did not affect visfatin-

induced decrease of food intake (Fig. 4D). These results suggest

that visfatin affects body temperature and locomotor activity via

prostaglandin activities. Additionally, its effect on food intake may

be mediated by a different pathway.

Effect of visfatin on a-melanocyte stimulating hormone
(a –MSH) synthesis

To investigate whether visfatin exerts an anorexic effect by

regulating the hypothalamic melanocortin pathway that is well-

Figure 1. Effects of ICV administration of visfatin on food intake and body weight. Food intake and body weight were measured in rats
that had received an ICV injection of visfatin. (A) Cumulative food intake was measured for one day at 4 h intervals after an ICV injection of visfatin.
Control animals received a 0.9% saline solution. (B) Effect of visfatin on food intake in rats showing strong appetites induced by food deprivation for
one day. (C) Effect of visfatin on body weight changes one day after ICV injection. Data are represented as mean 6 SEM (n = 10). *P,0.05, **P,0.01
and ***P,0.001 vs. control rats; ###P,0.001 vs. visfatin-injected rats.
doi:10.1371/journal.pone.0015981.g001
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known for controlling appetite, hypothalamic expressions of a-

MSH and proopiomelanocortin (POMC) were determined in rats

injected with visfatin using immunohistochemistry (IHC) and real-

time PCR, respectively. Food deprivation for one day significantly

decreased a-MSH protein (Fig. 5A) and POMC mRNA (Fig. 5B)

levels in the hypothalamic arcuate nucleus (ARC), in agreement

with prior findings [22]. Interestingly, visfatin completely reversed

the effect of fasting and the subsequent decreases in a-MSH

protein and POMC mRNA levels. In fact, visfatin increased the

expressions of both peptides compared to those of untreated

control rats (Figs. 5A and B). However, indomethacin did not

affect vsifatin-induced enhanced POMC expression (Fig. 5C).

These results suggest that the anorexic effects of visfatin may be

caused by its effect on the syntheses of POMC and a-MSH and

not via prostaglandins.

Effect of a melanocortin receptor antagonist on visfatin-
induced anorexia

It has been well established that a-MSH decreases food intake

by acting through melanocortin receptors 3 and 4 (MC3/4R) [23].

Accordingly, we examined whether the anorectic effect of visfatin

is mediated by MC3/4R using rats ICV-injected with SHU9119,

an MC3/4R antagonist. When SHU9119 was pre-administered to

rats 30 min prior to the visfatin injection, it completely blocked the

anorectic effect of visfatin (Fig. 6A), indicating that visfatin-

induced anorexia is mediated by MC3/4R. Next, we examined

the effects of SHU9119 on visfatin-induced hypoactivity and

hyperthermia in the same group of rats. ICV administration of

SHU9119 did not change the effect of visfatin on locomotor

activity (Fig. 6B) or body temperature during the 24-h observation

period (Fig. 6C). However, it further increased body temperature

from the visfatin-increased level during the initial 8 h following

injection of SHU9119 (Fig. 6C). The areas under the curves of the

two groups (visfatin and visfatin + SHU9119) significantly differed

during this period (P,0.001).

Discussion

Since the discovery of visfatin expression in visceral fat, several

studies have reported correlations between serum visfatin

concentration and expression with obesity, but the relationship

Figure 2. Effects of visfatin on locomotor activity and body temperature. Locomotor activity and body temperature were measured for
24 h after ICV administration of visfatin. (A) ICV injection of visfatin resulted in decreased locomotor activity during the dark period, but there was no
change in activity during the light period. (B) Body temperature began to increase 2 h after ICV injection of visfatin and remained high until about
20 h after injection. Mean temperature after the injection time (at 0 h) was significantly different between groups. Data are represented as mean 6
SEM (n = 10). ***P,0.001 vs. control rats injected with 0.9% saline solution.
doi:10.1371/journal.pone.0015981.g002

Figure 3. Visfatin-induced increases in hypothalamic mRNA
levels of pro-inflammatory cytokines and prostaglandin-syn-
thesizing enzymes. RNA was extracted from rat hypothalami 6 h after
ICV injection of visfatin. mRNA expressions encoding TNF-a, IL-1b, COX2
and mPGES-1 were determined using real-time PCR. Visfatin signifi-
cantly stimulated the expressions of TNF-a (A), IL-1b (B), COX2 (C) and
mPGES-1 (D) mRNA in the hypothalamus. Data are represented as mean
6 SEM (n = 6). **P,0.01 and ***P,0.001 vs. control rats injected with
0.9% saline solution.
doi:10.1371/journal.pone.0015981.g003
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between obesity and plasma visfatin has not been well established.

Some studies have reported higher plasma visfatin levels in obese

individuals [11,24], whereas other studies have reported opposing

findings [12,25].

The present study evaluated the effects of visfatin on food intake

and body weight to clarify the relationship between visfatin and

obesity. We found that ICV-injected visfatin decreased food intake

and body weight. Moreover, we observed that this peptide induced

a much greater decrease in body weight compared to that of a

matched, pair-fed group, suggesting that one of the main roles of

visfatin is in the processes of energy consumption. Surprisingly,

ICV-visfatin injections decreased the locomotor activities of rats.

We also found that visfatin dramatically increased body temper-

ature. Collectively, these results suggest that visfatin is involved in

a sickness response in the brain, as increased body temperature

and decreased locomotor activity are representative indicators of

an inflammatory sickness response.

We also found that pro-inflammatory cytokines (TNF-a and

IL1-b) and PGE2-synthesizing enzymes (COX2 and mPGES1)

were profoundly stimulated by visfatin. Recent studies have

suggested that visfatin may have a role in the regulation of

peripheral inflammatory responses [16,17]. Serum visfatin

concentration is also increased in patients with inflammatory

diseases like chronic kidney disease, sepsis and cancer

[19,20,21]. Additionally, visfatin activates other pro-inflamma-

tory cytokines as well, including IL-6, IL-1b and TNF-a in

human monocytes [18]. A key mediator for inflammatory

process, PGE2 plays an important role in the development of

sickness behaviors observed during inflammatory states [5]. In

the brain, PGE2 is produced by a variety of inflammatory

signals such as endotoxins or cytokines and is one of the critical

inducers of sickness responses [26]. Previous research has also

found that COX2 is involved in an inflammatory response.

Selective pharmacological or genetic blockade of COX2

effectively attenuates the sickness response to systemic inflam-

mation induced by LPS, a cell wall component of gram-negative

bacteria [5,27]. Collectively, these results strongly suggest that

visfatin may be involved in inflammatory sickness responses by

regulating the productions of hypothalamic pro-inflammatory

cytokines and prostaglandins.

Figure 4. Effect of COX inhibitor on visfatin-induced sickness behaviors. To determine the involvement of prostaglandins on visfatin-
induced sickness behaviors, rats were IP-injected with indomethacin (Indo) 30 min prior to injection with visfatin. Parameters such as body
temperature, locomotor activity and food intake were observed for one day after injection of visfatin. Indomethacin completely blocked the visfatin-
induced increase in body temperature (A) and partially attenuated the effects of visfatin on locomotor activity (B) and body weight (C). However,
indomethacin did not affect the visfatin-induced decrease in food intake (D). Data are represented as mean 6 SEM (n = 6). **P,0.01 and ***P,0.001
vs. control rats injected with 0.9% saline solution; #P,0.05 and ###P,0.001 vs. visfatin-injected rats.
doi:10.1371/journal.pone.0015981.g004
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To identify pathways of visfatin action in the control of

sickness responses, we examined the effect of indomethacin, a

COX inhibitor, on sickness behaviors in response to visfatin.

Indomethacin completely abolished visfatin-induced hyperther-

mia and partially reversed visfatin-induced hypoactivity but did

not affect visfatin-induced anorexia. This result is unexpected

because COX inhibitors are known to reverse decreased food

intake induced by inflammatory conditions [27]. In this study,

we found that visfatin increased the synthesis of a-MSH, an

anorectic neuropeptide in normal and fast-induced hyperphagic

conditions. It may be that visfatin-induced anorexia is due in

part to effects of the central melanocortin pathway, which plays

an important role in the mediation of anorexia and cachexia

[10]. Indeed, we found that blocking melanocortin receptors

with SHU9119, a MC3/4R antagonist, attenuated the anorectic

effect of visfatin. Thus, the melanocortin pathway is a likely

mediator of visfatin effects on feeding behavior. Additionally, we

found that administration of SHU9119 did not block visfatin-

induced hyperthermia or hypoactivity, but that it rather exerted

an immediate additional increase in body temperature. Inter-

estingly, this immediate increased body temperature by

SHU9119 well coincides with a previous study showing that

central administration of SHU9119 exacerbated LPS-induced

fever during the period 0–8 h after injection of LPS, but not

during subsequent intervals, while it did not affect LPS-induced

hypoactivity [28]. Thus, evidence suggests that the hypothalamic

melanocortin pathway is not a critical mediator for visfatin-

induced hyperthermia and hypoactivity. Our results are also in

line with those of previous studies that have found that ICV

injection of low doses of a-MSH inhibits hyperthermia that is

induced by endotoxins or cytokines [28]. Collectively, such

results suggest that visfatin acts on food intake via the

melanocortin pathway, and it acts on hyperthermia and

hypoactivity mainly via COX.

In summary, our results indicate that visfatin is a regulator of

behavioral responses to sickness and acts as a classic inflammatory

signal to activate responses to acute inflammation. To our

knowledge, our study is one of the first to differentiate two

pathways of action for visfatin-induced anorexia, hypothermia,

and hypoactivity.

Materials and Methods

Animals
Two-month-old male Sprague-Dawley rats (Daehan Animal

Breeding Company, Chungwon, Korea) were used, and animal

experiments were conducted in accordance with the regulations of

the University of Ulsan and the National Institutes of Health

Guide for the Care and Use of Laboratory Animals. The

Institutional Review Board of University of Ulsan approved the

experimental procedures (permission number UOU-2008-07).

Rats were housed in a room with a conditioned photoperiod

(12 h light/12 h dark, lights on from 0600-1800) and a regulated

temperature (23–25uC) and were allowed ad libitum access to tap

water and rat chow pellets.

Micropunch dissection
Rats were sacrificed via decapitation, and their brains were

rapidly removed and frozen in 2-methylbutane on dry ice for

5 min. Brains were sectioned (500-mm thickness) in a cryostat at

-15uC and were mounted onto glass slides. Using anatomical

landmarks from the rat brain atlas, the ARC was identified and

Figure 5. Effect of ICV administration of visfatin on a-MSH synthesis in the ARC. To determine the effect of visfatin on a-MSH synthesis,
visfatin was ICV-injected into the lateral ventricles of rats deprived of food for one day. Ninety minutes after the injection, the rats were sacrificed and
their brains were fixed via transcardiac perfusion for IHC or were sliced for excising the ARC using a micropunch. Expressions of a-MSH (A) and POMC
(B) were determined through IHC and real-time PCR, respectively. To determine the effects of prostaglandins on visfatin-induced changes in POMC
expression, indomethacin (Indo) was IP-injected 30 min prior to injection of visfatin, and its effect was determined using real-time PCR (C). 3V = third
ventricle. Data (in B and C) are represented as mean 6 SEM (n = 6). *P,0.05 and **P,0.01 vs. control rats injected with 0.9% saline solution;
###P,0.001 vs. fasting. Scale bar = 50 mm.
doi:10.1371/journal.pone.0015981.g005
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punched out under a stereomicroscope using a micro-punching set

(Stoelting, Wood Dale, IL). Micro-punched ARC fragments were

stored in microcentrifuge tubes at -80uC.

Real-time PCR
Total RNA was isolated from the total hypothalamus and

micro-punched ARC using Trizol reagent (Sigma-Aldrich). The

samples were reverse-transcribed and amplified using real-time

PCR with the following primer sets: POMC sense primer, 59-GCT

AGG TAA CAA ACG AAT GG-39; antisense primer, 59-GCA

TTT TCT GTG CTT TCT CT-39; TNF-a sense primer, 59-

AAA GCA TGA TCC GAG ATG TG-39; antisense primer, 59-

AGC AGG AAT GAG AAG AGG CT-39; IL-1b sense primer,

59- CAT CTT TGA AGA AGA GCC CG-39; antisense primer,

59- GGG ATT TTG TCG TTG CTT GT-39; COX2 sense

primer, 59-ACC AGA GCA GAG AGA TGA AA-39; antisense

primer, 59-GAG AGA CTG AAT TGA GGC AG-39; mPGES1

sense primer, 59-CTG CTG GTC ATC AAG ATG TAC G-39;

antisense primer, 59-CCC AGG TAG GCC ACG GTG TGT-39;

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sense prim-

er, 59-TGT GAA CGG ATT TGG CCG TA-39; and antisense

primer, 59-ACT TGC CGT GGG TAG AGT CA-39. Real-time

PCR was carried out in capillaries of the DNA Engine Opticon

Continuous Fluorescence Detection System (MJ Research Inc.,

Waltham, MA) for approximately 40 cycles as follows: at 94uC for

30 sec, 56uC for 30 sec and 72uC for 35 sec.

Immunohistochemistry (IHC)
Rats were anesthetized with tribromoethanol (250 mg/kg B.W.,

Sigma-Aldrich) and transcardially perfused with 100 ml ice-cold

0.1M phosphate buffer (PB, pH 7.4), followed by 100 ml 4%

paraformaldehyde. Brains were dissected and post-fixed overnight

in the same fixative containing 30% sucrose. Slide-mounted

sections were prepared with a cryostat. We followed the IHC

protocol described previously [29], using a primary antibody for a-

MSH (1:10000; Millipore, Billerica, MA), and secondary antibody

for sheep IgG (1:500; Vector, Burlingame, CA). Immunoreactive

signals were visualized using the Tyramide Signal Amplification

System (NEN Life Science, Boston, MA), and images were

obtained using fluorescence microscopy.

Figure 6. Effects of melanocortin receptors 3/4 antagonist on visfatin-induced sickness behaviors. Two-month-old male rats were ICV-
injected with visfatin or vehicle 30 min after ICV injection of SHU9119 and were allowed access to food immediately after the final treatment. (A)
Change in food intake was measured 24 h after the injections of SHU9119 and visfatin. (B, C) Changes in locomotor activity (B) and body temperature
(C) were monitored in rats IP-implanted with telemetry-transmitters. In C, time 0 indicates visfatin injection. Data are represented as mean 6 SEM
(n = 6). **P,0.01 and ***P,0.001 vs. control rats injected with 0.9% saline solution; ##P,0.01 vs. visfatin-injected rats.
doi:10.1371/journal.pone.0015981.g006
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Stereotaxic surgery for intracerebroventricular cannulae
Rats were anesthetized via an IP injection of tribromoethanol

(250 mg/kg B.W., Sigma-Aldrich) and were placed in a stereotaxic

apparatus (Stoelting, Wood Dale, IL). A polyethylene cannula (o.d.

1.05 mm, i.d. 0.35 mm) was implanted into the lateral ventricle

(coordinates: AP = 1.0 mm caudal to the bregma; V = 3.6 mm

from the dura mater; L = 0.16 mm from the mid-line) and secured

to the skull with dental cement. The rats were immediately sutured

and placed in individual cages. After one week of recovery, test

materials were injected through the cannula.

ICV administration of visfatin
To determine whether visfatin regulates sickness responses in

the brain, rats were ICV-injected with recombinant rat visfatin

(2 mg, Adipogene, Seoul, Korea). Rats were sacrificed 90 min or

6 h after visfatin injection. The hypothalamus was dissected and

the RNA was isolated.

Treatment of COX inhibitor and MC3/4R antagonist
To determine whether MC3/4R and COX pathways mediate

sickness behaviors induced by the ICV administration of visfatin,

we pre-injected SHU9119 (an MC3/4R antagonist; Phoenix

Pharmaceuticals, Burlingame, CA) and indomethacin (a COX

inhibitor; Sigma-Aldrich) 30 min prior to visfatin injection.

Immediately after injection, rats were allowed ad libitum access to

food, and their cumulative food intake was measured 24 h after

the injection. To test the effects of SHU9119 and indomethacin on

visfatin-induced hyperthermia and hypoactivity, body temperature

and locomotor activity were measured using telemetry transmitters

implanted into the rats following the procedures described above.

Measurement of body temperature and locomotor
activity

Abdominal temperature and locomotor activity were measured

in male Sprague-Dawley rats using biotelemetry transmitters

(Mini-Mitter, Bend, OR) implanted into the abdominal cavity one

week prior to the experiment. Prior to surgery, rats were

anesthetized with tribromoethanol (250 mg/kg B.W., Sigma-

Aldrich). The output (frequency in Hz) was monitored by a

receiver (model RA 1000; Mini-Mitter) placed under each cage. A

data acquisition system (Vital View; Mini-Mitter) was used for

automatic control of data collection and analysis. Body temper-

ature was recorded at 10-min intervals. Changes in locomotor

activity were detected as changes in the position of the implanted

transmitter over the receiver board, which resulted in a change in

the signal strength and was recorded as a pulse of activity. Activity

pulses were counted every 10 min and were summed after 12 h as

a cumulative measure of daytime or nighttime activity. Locomotor

activity scores are expressed as activity counts per 12 h.

Statistics
All results are expressed as mean 6 standard error of measure

(SEM; n is given in the figure legends). For cumulative food intake,

statistical analyses were performed using repeated measures

ANOVA with Bonferroni post-hoc analyses. Student’s t-test was

used for comparison of two groups.

Acknowledgments

We thank Dr. Ki-Up Lee (Department of Internal Medicine, Asan Medical

Center, University of Ulsan) for reading and commenting on the

manuscript.

Author Contributions

Conceived and designed the experiments: JGK BJL YIK. Performed the

experiments: BSP SHJ JGK. Analyzed the data: JGK BJL ISN JWP.

Contributed reagents/materials/analysis tools: JJP. Wrote the paper: JGK

BJL.

References

1. Kluger MJ (1991) Fever: role of pyrogens and cryogens. Physiol Rev 71: 93–127.

2. Skinner GW, Mitchell D, Harden LM (2009) Avoidance of physical activity is a

sensitive indicator of illness. Physiol Behav 96: 421–427.

3. Reyes TM, Sawchenko PE (2002) Involvement of the arcuate nucleus of the
hypothalamus in interleukin-1-induced anorexia. J Neurosci 22: 5091–5099.

4. Harden LM, du Plessis I, Poole S, Laburn HP (2008) Interleukin (IL)-6 and IL-1
beta act synergistically within the brain to induce sickness behavior and fever in

rats. Brain Behav Immun 22: 838–849.

5. Pecchi E, Dallaporta M, Jean A, Thirion S, Troadec JD (2009) Prostaglandins

and sickness behavior: old story, new insights. Physiol Behav 97: 279–292.

6. Elmquist JK, Scammell TE, Saper CB (1997) Mechanisms of CNS response to

systemic immune challenge: the febrile response. Trends Neurosci 20: 565–570.

7. Konsman JP, Parnet P, Dantzer R (2002) Cytokine-induced sickness behaviour:
mechanisms and implications. Trends Neurosci 25: 154–159.

8. Thaler JP, Choi SJ, Schwartz MW, Wisse BE (2010) Hypothalamic
inflammation and energy homeostasis: resolving the paradox. Front Neuroen-

docrinol 31: 79–84.

9. Andreasson A, Arborelius L, Erlanson-Albertsson C, Lekander M (2007) A

putative role for cytokines in the impaired appetite in depression. Brain Behav

Immun 21: 147–152.

10. Laviano A, Inui A, Marks DL, Meguid MM, Pichard C, et al. (2008) Neural

control of the anorexia-cachexia syndrome. Am J Physiol Endocrinol Metab
295: E1000–1008.

11. Berndt J, Kloting N, Kralisch S, Kovacs P, Fasshauer M, et al. (2005) Plasma
visfatin concentrations and fat depot-specific mRNA expression in humans.

Diabetes 54: 2911–2916.

12. Mercader J, Granados N, Caimari A, Oliver P, Bonet ML, et al. (2008) Retinol-
binding protein 4 and nicotinamide phosphoribosyltransferase/visfatin in rat

obesity models. Horm Metab Res 40: 467–472.

13. Imai S (2009) Nicotinamide phosphoribosyltransferase (Nampt): a link between

NAD biology, metabolism, and diseases. Curr Pharm Des 15: 20–28.

14. Samal B, Sun Y, Stearns G, Xie C, Suggs S, et al. (1994) Cloning and

characterization of the cDNA encoding a novel human pre-B-cell colony-

enhancing factor. Mol Cell Biol 14: 1431–1437.

15. Luk T, Malam Z, Marshall JC (2008) Pre-B cell colony-enhancing factor

(PBEF)/visfatin: a novel mediator of innate immunity. J Leukoc Biol 83:
804–816.

16. Oki K, Yamane K, Kamei N, Nojima H, Kohno N (2007) Circulating visfatin

level is correlated with inflammation, but not with insulin resistance. Clin

Endocrinol (Oxf) 67: 796–800.

17. Moschen AR, Gerner RR, Tilg H (2010) Pre-B cell colony enhancing factor/
NAMPT/visfatin in inflammation and obesity-related disorders. Curr Pharm

Des 16: 1913–1920.

18. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, et al. (2007) Visfatin,

an adipocytokine with proinflammatory and immunomodulating properties.
J Immunol 178: 1748–1758.

19. Jia SH, Li Y, Parodo J, Kapus A, Fan L, et al. (2004) Pre-B cell colony-

enhancing factor inhibits neutrophil apoptosis in experimental inflammation and
clinical sepsis. J Clin Invest 113: 1318–1327.

20. Carrero JJ, Witasp A, Stenvinkel P, Qureshi AR, Heimburger O, et al. (2010)

Visfatin is increased in chronic kidney disease patients with poor appetite and

correlates negatively with fasting serum amino acids and triglyceride levels.
Nephrol Dial Transplant 25: 901–906.

21. Nakajima TE, Yamada Y, Hamano T, Furuta K, Gotoda T, et al. (2009)

Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers

of gastric cancer. J Gastroenterol 44: 685–690.

22. Sainsbury A, Zhang L (2010) Role of the arcuate nucleus of the hypothalamus in
regulation of body weight during energy deficit. Mol Cell Endocrinol 316:

109–119.

23. Shimizu H, Inoue K, Mori M (2007) The leptin-dependent and -independent
melanocortin signaling system: regulation of feeding and energy expenditure.

J Endocrinol 193: 1–9.

24. Sun G, Bishop J, Khalili S, Vasdev S, Gill V, et al. (2007) Serum visfatin

concentrations are positively correlated with serum triacylglycerols and down-
regulated by overfeeding in healthy young men. Am J Clin Nutr 85: 399–404.

25. Pagano C, Pilon C, Olivieri M, Mason P, Fabris R, et al. (2006) Reduced plasma

visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin

resistance in humans. J Clin Endocrinol Metab 91: 3165–3170.

Visfatin and Sickness Behaviors

PLoS ONE | www.plosone.org 7 January 2011 | Volume 6 | Issue 1 | e15981



26. Rorato R, Menezes AM, Giusti-Paiva A, de Castro M, Antunes-Rodrigues J,

et al. (2009) Prostaglandin mediates endotoxaemia-induced hypophagia by
activation of pro-opiomelanocortin and corticotrophin-releasing factor neurons

in rats. Exp Physiol 94: 371–379.

27. Johnson PM, Vogt SK, Burney MW, Muglia LJ (2002) COX-2 inhibition
attenuates anorexia during systemic inflammation without impairing cytokine

production. Am J Physiol Endocrinol Metab 282: E650–656.

28. Huang QH, Hruby VJ, Tatro JB (1999) Role of central melanocortins in

endotoxin-induced anorexia. Am J Physiol 276: R864–871.

29. Kim JG, Nam-Goong IS, Yun CH, Jeong JK, Kim ES, et al. (2006) TTF-1, a

homeodomain-containing transcription factor, regulates feeding behavior in the

rat hypothalamus. Biochem Biophys Res Commun 349: 969–975.

Visfatin and Sickness Behaviors

PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | e15981


