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Abstract

Recent statistical analyses suggest that sequencing of pooled samples provides a cost effective approach to determine
genome-wide population genetic parameters. Here we introduce PoPoolation, a toolbox specifically designed for the
population genetic analysis of sequence data from pooled individuals. PoPoolation calculates estimates of hWatterson, hp, and
Tajima’s D that account for the bias introduced by pooling and sequencing errors, as well as divergence between species.
Results of genome-wide analyses can be graphically displayed in a sliding window plot. PoPoolation is written in Perl and R
and it builds on commonly used data formats. Its source code can be downloaded from http://code.google.com/p/
popoolation/. Furthermore, we evaluate the influence of mapping algorithms, sequencing errors, and read coverage on the
accuracy of population genetic parameter estimates from pooled data.
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Introduction

The recent advances in sequencing technology have changed

our experimental approaches to biological questions. It has

become possible to move from small scale, gene centric studies

to genome-wide analyses and remain within the budget of

individual research grants. Even population genetic analyses have

become within the reach of moderate research budgets by

sequencing pools of individuals [e.g.: 1,2]

The new sequencing technologies have also changed the time

allocation within a research project as well as the training

required. Classic population studies typically involved a consider-

able wet-lab component for data collection. The new sequencing

technologies reduce wet-lab work to DNA extraction and library

construction. The analysis of the massive amounts of data

generated in the course of a single experiment not only requires

more time, but also new skills.

The challenges of Next Generation Sequencing data, namely a

hitherto unprecedented number of extremely short sequence reads

containing more sequencing errors than previous sequencing

technologies, have lead to the development of many new software

tools over the past few years. For many applications, such as SNP

(single nucleotide polymorphism) discovery [e.g.: 3,4,5], RNA-Seq

[e.g.: 6,7], ChIP-Seq [e.g.: 8,9], and de novo assembly [e.g.:

10,11], users can choose among a variety of software tools either in

the public domain or from commercial software suppliers. For

population genetic analyses, software tools are targeted at the

analysis of individual genome sequencing projects [e.g.: 12]. To

our knowledge no software packages are publicly available for

population genetic analysis of pooled sequence data.

Here, we introduce PoPoolation, a software suite specifically

tailored for the analysis of pooled samples for population genetic

inference. Furthermore, we carefully evaluate how peculiarities of

the Next Generation Sequencing data (such as sequencing errors,

mapping to a reference genome and read coverage) affect

population genetic inferences.

Results

The analysis of short sequence reads from pooled DNA samples

requires several steps, as indicated in Figure 1. The first step in

processing the data is trimming of the reads. Table 1 shows how

trimming parameters influence the average length and quality of the

reads used for mapping. While only few reads are lost with a quality

threshold of 10 or 20, almost 70% are lost when a quality of 30 is used.

We found that a threshold of 20 with a minimum length of 40–50 bp

reliably generates high quality data. After trimming the reads for low

quality bases, reads are mapped against a reference genome with the

Burrows-Wheeler Alignment Tool (bwa [15]). Using SAMtools [15]

the aligned reads are converted into a pileup file. This pileup file is

used by PoPoolation to perform population genetic analyses.

Validation
Figure 2 shows the polymorphism and divergence pattern along

the 3R chromosome of D. melanogaster. Our analysis captures

important features of variability in D. melanogaster: regions close to
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the centromere and telomere (located at the left and right ends of

figure 2, respectively) show the well-described drop in variability.

Another striking feature apparent in Figure 2 is the ragged

pattern of polymorphism, which shows 2-fold differences in

variation between some regions in close physical proximity. To

validate that this pattern reflects heterogeneity in sequence

variation rather than problems with our pooling approach, we

compared the polymorphism pattern on 3R obtained from a

Portuguese D. melanogaster population to the polymorphism data

generated by Sanger re-sequencing of a D. melanogaster population

from The Netherlands [21]. Using the targeted regions option of

PoPoolation (see below) we found a high correlation between our

variability estimates and the ones published by Hutter et al. (2007)

for the Dutch population (hWatterson r= 0.78, p-value,2.2610216

Figure 1. Outline of a population genetic analysis from pooled sequence data. Sequencer figure from http://www.illumina.com/.
doi:10.1371/journal.pone.0015925.g001

Table 1. Trimming statistics of 146106 reads.

No trimming 0* 10 20 30

% reads passing trimming 100 99.73 91.93 88.92 33.49

Sum read length [Mbp] 1081.22 1077.42 960.57 912.08 298.65

Average read length 76.00 75.94 73.45 72.10 62.68

Average quality 27.50 27.56 29.51 29.90 32.23

0*: trimming includes removal of ‘N’-characters at the end of reads.
doi:10.1371/journal.pone.0015925.t001

Analysis of Pooled Next Generation Sequencing Data
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and hp r= 0.82, p-value,2.2610216; Table S1). Nevertheless, we

also noted that the average variability in the Portuguese

population was higher than for the Dutch population (hWatterson:

0.0084 vs. 0.0065, Wilcoxon sum rank test p-value: 2.118*1026; hp:

0.0075 vs. 0.0063, Wilcoxon sum rank test p-value: 0.004567).

Three important sources of error could affect the population

genetic analysis of pooled samples: sequencing errors, problems

with mapping the reads to the reference and insufficient sequence

coverage. In the following, we evaluate all three factors.

Sequencing errors
The typical error rate of unprocessed reads from an Illumina

sequencer is about 1%. As sequencing errors inevitably affect the

polymorphism estimates and Tajima’s D, it is highly desirable to

reduce the sequencing error. It has been proposed to condition on

a minor allele count larger than one, resulting in a truncated allele

frequency spectrum [22]. We performed computer simulations to

evaluate whether this correction is sufficient. We simulated 400

chromosomes (100 kb each) with the ms software [20]. The

simulated chromosomes were re-coded into DNA sequence data

by using a D. melanogaster chromosome as template. Finally, we

generated random reads from these chromosomes with a

sequencing error of 0.1–1%. These reads were then fed into the

analysis pipeline of PoPoolation and the variability estimators were

calculated. Our simulations show that with low error rates of 0.1–

0.2% a minor allele count of two is well suited for a coverage up to

100, while for higher coverage a minor allele count of three is

needed. Nevertheless, for an error rate of 1%, even a minor allele

count of three is insufficient.

Alternatively, it is possible to reduce the sequencing error by

incorporating adequate quality control measures such that even

low frequency alleles could be reliably detected and quantified

[23,24]. We evaluated whether simple quality measures could lead

to a sufficient reduction in the error rates of Illumina reads to

make their use in pooling experiments feasible. We determined the

influence of trimming on the error rate of 74 bp (base pairs)

Illumina sequence reads using the PhiX control lane of a GAIIx

with sequencing chemistry v 3. The error rate of unprocessed

reads was about 1%. After trimming the PhiX reads with a quality

cutoff of 20 the error rate was reduced by an order of magnitude to

0.15%. Further reductions in error rate were achieved by

conditioning on a minimum sequence quality of every SNP

(e.g.: 0.07% for a sequence quality of 20). Hence, simple quality

control measures that do not discard a large fraction of the

sequence reads (Table 1) are sufficient to reduce the sequencing

error to an extent that reliable population genetic analyses of

pooled samples are possible with a minor allele count of two or

three.

In our computer simulations we assumed that all sequencing

errors are independent. If sequencing errors are biased, the same

error may be generated more frequently than assumed, leading to

an inflated variability estimate. As this effect is difficult to simulate

without knowing the exact bias, we decided to obtain an empirical

error rate of pooled samples after using the quality control

measures mentioned above: trimmed reads, sequencing quality,

and minor allele count. We determined the efficiency of these

measures by inferring the error rate (fraction of bases carrying at

least one incorrectly identified SNP) in a pooling setting with

different coverage. Please note that the definition of the error rate

differs from the one used above to quantify the influence of

trimming. Figure 3 shows that without quality filtering and with a

minor allele count of one, a very low read coverage results in an

extremely high error rate. Introducing a minor allele count cutoff

has a profound effect on the error rate. By conditioning on a

minimum of two counts the error rate is reduced by at least one

order of magnitude. Filtering for quality further reduces the error

rate by a factor of about five. For coverage between 100 and 200 it

is advised to increase the minor allele count to three. An even

higher coverage needs a further minor allele count increase. These

analyses demonstrate that after accounting for sequence quality

and choosing an adequate minor allele count, the effective number

of sequencing errors is low enough to allow for reliable

polymorphism analysis in sequence pools.

Mapping errors
Mapping of sequence reads from pooled data is a challenging

task. The population pool may contain alleles with a different

number of substitutions relative to the reference genome. Hence, if

the mapping parameters are too stringent some of the reads may

not be mapped. Contrary to the sequencing of a single genome,

these unmapped reads may remain unnoticed, in particular if the

highly diverged reads occur at a low frequency. Overly liberal

mapping parameters, on the other hand, increase the chance that

a read is incorrectly mapped. Given the central importance of

Figure 2. Graphical output of polymorphism and divergence estimates using PoPoolation. Sliding window analysis of hp of a Portuguese
D. melanogaster population on chromosome 3R (black line). The red line shows divergence (dxy) between D. melanogaster and D. simulans using the
same window size and step size as for hp. Note that dxy is scaled by 1/10. Both lines are based on non-overlapping windows of 50 kb.
doi:10.1371/journal.pone.0015925.g002

Analysis of Pooled Next Generation Sequencing Data
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mapping, we evaluated different mapping strategies and show that

most of them introduce a systematic bias and subsequently are not

well-suited for a population genetic analysis.

While it is possible to test alignments with simulated reads, this

strategy is restricted by the assumption that the simulations

capture the pattern of variability observed in real sequences. The

simulations may, for example, assume that polymorphisms are

evenly distributed over the sequence and thereby ignore the fact

that different parts of the genome have variable selective

constraints. Hence, we did not rely on simulated reads to evaluate

mapping parameters. Rather, we took advantage of paired-end

reads from real pooling data and evaluated two aspects of

mapping: 1) biased allele frequency estimates due to sequence

divergence between reference and mapped reads and 2) mapping

quality, i.e. incorrectly or unmapped reads.

Allele frequency bias: In comparison to mapping with global

alignment, the frequency of the reference allele was on average 3%

higher when a local alignment was used. The bias towards the

reference allele with local alignments has been described before [25]

and results from soft masking (i.e.: ignoring) the end of the read if a

mismatch between reference and read is observed. Global

alignments, however, aim to map the entire read. While this

reduces the bias compared to local alignment mapping, some bias

remains as highly diverged reads may not map at all. Hence, we also

evaluated a mapping strategy which takes advantage of paired-end

sequencing: the two reads of a pair are mapped individually using

global alignment without a seed, and if only one of the two reads is

mapped, the other one is aligned by local alignment. We will refer to

this strategy as PE-SW-remap throughout the manuscript. Two

thirds of the reads showed no difference and about 20% displayed a

strong bias against the reference allele, suggesting a high frequency

of highly diverged alleles. Figure 4 provides such an example where

PE-SW-remap allows mapping of several reads carrying multiple

non-reference alleles.

Mapping accuracy can be assessed via the number of correctly

mapped paired-end reads. Improper spacing between the paired-

end reads, mapping to two different chromosomes, mapping in the

wrong direction and unmapped mates are indications of problems

with mapping. As expected, the worst result was obtained when

reads were mapped without allowing for gaps (Table 2). We also

noted that the use of a seed for mapping resulted in fewer mapped

reads and more broken pairs. Allowing for a higher sequence

divergence improved the mapping (i.e.: fewer broken pairs). PE-

SW-remap obtained the best mapping results using a global

alignment without seeds. Figure 4 gives an example on how

PE-SW-remap could improve the alignment.

Figure 3. Sequencing errors in relation to coverage, minor allele count, and sequence quality. PhiX sequences (74 bp) generated with an
Illumina GAIIx sequencer were analyzed for sequencing error rate (number of mutated bases after quality filtering). The gray bar indicates the
presence of a polymorphic site in the PhiX sequence, which results in a minimum sequencing error rate.
doi:10.1371/journal.pone.0015925.g003
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Stochastic errors
The accuracy of allele frequency estimates by sequencing of

pooled individuals is highly dependent on the sequence coverage.

If sequence coverage is low, it is better to obtain population

estimators in a larger window to avoid incorrect estimates caused

by stochastic error. PoPoolation provides the option to measure

hWatterson, hp and Tajima’s D in a sliding window analysis with a

variable window size. To avoid an arbitrary window size choice

and provide some analytical guidelines, we determined the joint

effect of window size and coverage on the accuracy of hp. As

expected, low coverage and small window sizes had a higher

uncertainty (Figure 5). Nevertheless, 40-fold coverage in a 1 kb

window produced highly reliable estimates, which suggests that

this level of coverage is sufficient for a comparison of polymor-

phism among genes. Analyses requiring a reliable estimate for

every SNP (which corresponds to SNP heterozygosity) require a

much higher coverage. Even with 90-fold coverage, which was the

highest level considered by us, we noted a considerable error.

Discussion

Previous analyses showed that sequencing pooled DNA samples

is a cost-effective approach to obtain genome-wide polymorphism

data [22]. Here, we introduced PoPoolation, a software tool

allowing a genome-wide polymorphism analysis using Next

Generation Sequence reads. PoPoolation provides several options

to retrieve polymorphism data for specific genomic regions of

interest and allows this data to be displayed in FlyBase and the

UCSC Genome Browser, thus linking polymorphism data with

functional information.

Our analysis of the 3R chromosome arm showed that the inferred

distribution of polymorphism along the chromosome closely fits that

inferred by sequencing short PCR products distributed along the

chromosome in a small number of flies (#12) from The Netherlands

[21]. Shallow sequencing of several individuals from a North

American and an African population with 454 reads also resulted in

a high correlation of the polymorphism estimates in comparisons

with Dutch or Zimbabwean populations [26]. Interestingly, the 454

data showed less polymorphism than the data from Hutter et al.

(2007), while the pooling data in our study were more polymorphic

than the corresponding loci from the Dutch population. Further-

more, hWatterson was higher than hp in our data set. Interestingly,

increasing the minor allele count up to five did not change the

overall pattern, the Portuguese population remained more variable

than the Dutch population and hWatterson was still higher than hp
(data not shown). These results clearly demonstrate that the strong

fluctuations in variability along the chromosome reflect a biological

feature that is conserved across populations, rather than an artifact

of pooling. As the Portuguese population has not been studied

before, it is possible that its higher variability reflects a true

biological property of this population, but we cannot exclude the

possibility that it is an artifact of the mapping. Furthermore, our

data also shows how the pattern of variation in the 3R chromosome

decreases towards the centromere and telomere. As the divergence

between D. melanogaster and D. simulans does not follow this pattern,

the drop in variability cannot be explained by mutation rate

variation, but is attributed to selection [27,28].

As a high sequencing error rate as well as erroneous mapping of

reads could have inflated the variability estimate, we very carefully

evaluated the sequencing error rate and mapping accuracy. Our

results indicate that very simple quality control measures, such as

trimming of reads and conditioning on a moderate sequence quality

of 20 reduces the sequencing error by more than one order of

magnitude to about 0.01%. The computer simulations indicated

that for this sequencing error rate it is sufficient to condition on a

minor allele count of two or three to obtain population genetic

summary statistics that are close to the expectation. While all these

results suggest that the variability estimators obtained in our pooling

study have been correctly inferred, we cannot rule out that some

Figure 4. Improvement of the alignment for diverged regions using the PE-SW remap algorithm. IGV screenshot of the mapping of
pooled sequence reads in a highly divergent region of D. melanogaster. The upper panel shows an alignment of the PE reads without the PE-SW
remap and the lower panel shows the same region with the PE-SW remap.
doi:10.1371/journal.pone.0015925.g004

Table 2. Comparison of mapping strategies.

seed No No No No Yes No

Max. # gap openings 0 0 1 2 1 2

Max. # mismatches 5 4 5 5 5 5

PE-SW-remap No No No No No Yes

Mapped 94.83 93.78 97.79 97.59 96.45 99.25

Proper pair 89.66 87.81 95.10 94.75 92.57 98.28

Mate not mapped 4.30 5.16 1.71 1.90 2.94 0.24

Mate mapped to wrong
chromosome

0.53 0.50 0.59 0.58 0.57 0.46

306106 paired-end reads were used for mapping. Long insertions and deletions
with 12 bp were allowed for mapping strategies including gaps. If seeding was
used, the seed length was 32 bp.
doi:10.1371/journal.pone.0015925.t002
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sequencing and mapping errors affected our estimates. Neverthe-

less, the high correlation in variability estimates between sequencing

of pooled individuals and Sanger sequencing indicates that the

analysis of pooled samples correctly recovers heterogeneity in

variability patterns across the genome. Hence, we anticipate that the

analysis of pooled samples will become highly popular for the

comparison of polymorphism patterns along the genome and

between populations. Furthermore, experimental evolution studies

will greatly benefit from sequencing pooled DNA samples to identify

the spread of beneficial mutations in an outcrossing population.

With PoPoolation we have provided a tool that allows users with

limited bioinformatic skills to take advantage of Next Generation

Sequencing of pooled DNA samples and to obtain genome-wide

polymorphism patterns. We expect in the near future to also

incorporate other statistics of interest for population genomics, like

the McDonal-Kreitman test [29], the HKA test [30] and tests for

synonymous vs. non-synonymous polymorphisms.

Materials and Methods

Fly samples
113 isofemale lines of D. melanogaster were collected 2008 in

Northern Portugal (Povoa de Varzim). The isofemale lines were

kept in the laboratory for five generations and five females from

every line were combined into a pool of flies for sequencing.

Sequencing
Female flies were homogenized and DNA was extracted with the

Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany).

We used the Genomic DNA Sample Preparation Kit (Illumina, San

Diego, CA) to generate paired-end libraries. Five mg DNA were

sheared with a nebulizer, and after end repair, A-tailing and ligation

of paired-end adapters the library was size-selected on an agarose

gel (300 bp) and amplified using 10 PCR cycles.

Cluster amplification was performed using a Paired-End Cluster

Generation Kit v2. Sequences were generated with the Illumina

Sequencing Kits v3 on a Genome Analyzer IIx.

Image analysis was performed with the Firecrest, Bustard and

Gerald modules of the Illumina pipeline v. 1.4.

Mapping of reads
For all analyses presented in this manuscript we used bwa [13] to

map reads against the D. melanogaster (version 5.18) reference genome.

Nevertheless, it is important to note that PoPoolation is based on the

widely used SAM format allowing for the use of alternative mapping

software provided that this software generates a SAM file.

Trimming statistics and error rates
Sequencing errors are not evenly distributed along sequence

reads [14]. The error rate increases with the position in the read.

Additionally, the first base often has an elevated error rate. To

Figure 5. The influence of coverage and window size on the accuracy of the estimated hp. The accuracy was measured as the mean
standardized difference between hp estimated for a given window size and its expectation.
doi:10.1371/journal.pone.0015925.g005
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account for this pattern of sequencing errors, we implemented a

modified Mott algorithm from Phred (http://www.phrap.org/

phredphrap/phred.html). This algorithm identifies the highest

scoring substring of every read given a quality threshold and trims

the read from either side until only bases of this substring are kept.

In addition, the user can specify a minimum number of bases for

each read to be kept in the data set.

We used one lane of PhiX reads (146106) with a length of 74 bp

and an error rate of 1.03% as estimated by the Illumina pipeline

1.4.0. The reads were trimmed with the script trim-fastq.pl using

different quality thresholds (0, 10, 20, 30) and a minimum length

of 50. The trimming statistic was generated using a custom Perl

script. To calculate the error rates, reads that were trimmed with a

quality threshold of 20 were mapped to the PhiX genome, filtered

for a mapping quality of 20 and converted into a pileup file. The

error rate for a given quality threshold was calculated as the

number of mismatches meeting the quality requirement divided by

all bases meeting the quality requirement.

Comparison of mapping algorithms
Several strategies can be pursued to map reads. The most simple

and fastest strategy specifies a sequence string (seed) that needs to be

mapped against the reference with a specified maximum number of

mismatches. The mapped seed is then extended, either using local

or global alignment. Local alignment does not attempt to match the

full read. This inevitably leads to the omission of SNPs, particularly

at the ends of the read, causing a bias towards the character state in

the reference genome. The global mapping strategy avoids this bias,

but requires an a priori specification of the maximum number of

inserted/deleted bases and an upper bound for the number of

substitutions in the read. The limitation of this approach is that the

success of the mapping depends on the correct specification of these

mapping parameters. Irrespective of whether local or global

alignments are used, the seed restricts the divergence of the read

to the reference genome. Hence, an alternative mapping strategy

avoids the use of seeds at the expense of computational speed. The

third mapping option takes advantage of paired-end reads. Both

reads are initially mapped separately, and if one read of the pair

cannot be mapped it is aligned using a local alignment procedure

(Smith-Waterman). Throughout the manuscript, we refer to this

mapping strategy as PE-SW-remap.

A single lane of D. melanogaster paired-end data was used

(SRA023610.1). 366106 74 bp reads were trimmed with the script

trim-fastq.pl using a quality threshold of 20 and a minimum length

of 40. A total of 15098991 (84%) paired-end reads met the

requirements. These reads were mapped to the D. melanogaster

genome (version 5.18) using ‘bwa aln’ [13] with the following

parameters: seeding of the reads (-l), the allowed error rate (-n), the

number of gap openings (-o), and the Smith-Waterman alignment of

the unmapped mate with ‘bwa sampe’. If not mentioned otherwise

the gap length was set to 12 (-e and -d). The maximum allowed

distance between reads was set to 500 bp. We used single reads to

evaluate the bias towards the reference allele with local and global

alignments, as bwa does not support local alignment of paired reads.

The choice of the exact mapping parameters is highly dependent on

the polymorphism pattern and levels in the target organism. Hence,

we focused on the comparison of different strategies (algorithms) to

map short reads, as these results could be generalized.

Estimating the number of false positive SNPs using PhiX
We used one lane of PhiX reads (146106) with a length of 74 bp

and an error rate of 1.03% as estimated by the Illumina Pipeline

1.4.0. The reads were trimmed with the script trim-fastq.pl using a

quality threshold of 20 and a minimum length of 40. All trimmed

reads were mapped to the reference genome of PhiX using ‘bwa

aln’ [13] with the parameters ‘-o 2 -e 12 -n 0.01 -l 100 -d 12’. We

did not attempt to match pairs, thus this analysis rests effectively

on single reads. The mapping results were filtered for a mapping

quality of 20 and converted into a fastq file. We randomly sampled

reads from the resulting fastq file to obtain PhiX coverages of 10,

50, 100, 250, 500 and 1000 with different quality thresholds of 0,

10, 20 and 30. The randomly sampled reads were again mapped

to the PhiX reference using ‘bwa aln’ [13] with the parameters ‘-o

2 -e 12 -n 0.01 -l 100 -d 12’. The mapping results were converted

to pileup files with SAMtools [15]. SNPs were called from the

pileup files with a custom script using different minor allele counts

of 1, 2, 3 and different quality thresholds of 0, 10, 20 and 30.

Features implemented in PoPoolation
The widely used population genetics parameters hWatterson and

hp were designed for sequencing of individuals. We have

implemented unbiased estimates for pooled samples with poolsize

n and coverage C :

hpb,pool
~

hpb

cn

PC{b

m~b

hp mð Þ
Pn{1

r~1

P XC~mjYn~rð ÞP Yn~rð Þ
and

hWb,pool
~

hWb
cC

cn

PC{b

m~b

Pn{1

r~1

P XC~mjYn~rð ÞP Yn~rð Þ
,

where hpb
and hWb

are modified versions of the classical hp and

hWatterson that are only evaluated on SNPs with minimum allele

count of b.

Furthermore, cn~
Pn{1

k~1

1
k
, P XC~mjYn~rð Þ is the probability of

having allele frequency m among the reads given an allele

frequency r in the pool and P Yn~rð Þ is the probability that an

allele has frequency r in the pool.

These two parameter estimators account for the truncated allele

frequency spectrum (see below) and re-sequencing of the same

chromosomes, as described in [14].

Tajima’s D is a classic summary statistic characterizing

deviations from the null model of a constant size population

without selection [16]. PoPoolation uses a modified Tajima’s D

that accounts for the truncated allele frequency spectrum (see

below) used for pooled data:

Db,pool~
db,poolffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var db,pool

� �q

with

db,pool~hpb,pool
{hWb,pool

and

Var db,pool

� �
~E db,pool

� �
2

� �
~hcn

PC{b

m~b

db,pool mð Þ
� �2 Pn{1

r~1

P XC~m Ynjð

~rÞP Yn~rð Þ, where h is estimated by hpb,pool
in the same window

in which Db,pool is calculated. Hereby we assume that all individuals

contribute roughly equal amounts of DNA to the pool.

To facilitate the interpretation of genome-wide polymorphism

data, PoPoolation also calculates sequence divergence for closely

related species pairs. For this purpose complete genomes are

Analysis of Pooled Next Generation Sequencing Data
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aligned with the MAUVE alignment software [17] and sequence

divergence is calculated.

hWb,pool
, hpb,pool

, Db,pool and divergence are calculated for a

specified DNA fragment of interest or for all aligned fragments of

the genome. To analyze heterogeneity between different chromo-

somal regions, a sliding window analysis is used. PoPoolation

allows the user to specify the window size as well as step size.

PoPoolation generates a simple graphical overview of the

polymorphism pattern along a chromosome (Figure 2). Further-

more, PoPoolation also produces a file in the wiggle format (http://

genome.ucsc.edu/goldenPath/help/wiggle.html) that can be loaded

by the Integrative Genomics Viewer (http://www.broadinstitute.

org/igv/). Alternatively, the wiggle file can be uploaded on the

UCSC Genome Browser [18] allowing the user to link population

genetic analyses with the relevant genome annotation and other

functional features. Because FlyBase [19] does not accept wiggle

files, PoPoolation generates a special output file that enables the

polymorphism pattern to be linked with FlyBase.

While the sequencing of pooled samples generates genome-wide

polymorphism patterns, researchers are often only interested in one

or a few genomic regions. PoPoolation provides the option to

restrict the analysis to regions specified in a gene transfer format

(GTF) input file (http://genome.ucsc.edu/FAQ/FAQformat.html).

Apart from polymorphism and divergence data, PoPoolation also

supplies a table of polymorphic sites for the specified region.

Alternatively, researchers may be interested in excluding specific

regions from the analysis. Repetitive sequences, for example, are

notoriously difficult to handle with Next Generation Sequencing

reads. Hence, it is possible to use a gtf file to mask genomic regions

containing repetitive sequences. Similarly, genomic regions with

known structural variants can be also excluded.

Sensitivity of hp to window size and coverage
From a data set consisting of 2126106 reads generated from the

Portuguese population that were mapped to the D. melanogaster

genome (version 5.18) with ‘bwa aln’ and the parameters ‘-o 2 -e

12 -n 0.01 -l 100 -d 12’, we extracted 406106 reads mapping to

chromosome 3R (corresponding to ,100-fold coverage). All reads

with a minimum mapping quality of at least 20 were used as single

read data and converted into a fastq file. From this fastq file, we

randomly sampled reads to obtain a total coverage of 5, 10, 20, 30,

40, 50, 60, 70, 80 and 90 of chromosome 3R using a custom Perl

script. The randomly sampled reads were mapped to chromosome

3R of D. melanogaster with ‘bwa aln’ and the parameters ‘-o 2 -e 12 -

n 0.01 -l 100 -d 12’. Using a custom Perl script and the full data

set, we identified 2000 SNPs (minor allele count = 4; minimum

coverage = 8; minimum base quality = 20) on chromsome 3R,

which are separated by at least 10,500 bp. Furthermore, we

required that at least 90% of the 10,000 base pairs downstream of

the SNP have a minimum coverage of 8 in the full data set. These

high confidence SNPs were used to calculate hp for windows

starting with the SNP. We calculated the difference in hp of the full

data set to the respective values obtained using the reduced data

set (for example coverage: 5, 10, 20 etc.) and standardized this

difference by hp from the full data set. Note that this

standardization accounts for the bias generated by conditioning

each window to start with a SNP. The average over 2000 windows

is reported in Figure 5. For SNPs other than the high confidence

SNPs we required the following criteria: minor allele count .1, a

minimum coverage of 4 and a minimum base quality of 20.

Simulated reads
We used ms [20] to generate five datasets assuming a h of

561023, which matches D. melanogaster data (ms 400 1 -seed 1 17

666 -t 500 -r 2500 100000). hWatterson, hp, and Tajima’s D were

determined with the sample_stats software included in the ms

package [20]. The output of ms was converted to DNA sequences

using ms2dna (http://guanine.evolbio.mpg.de/cgi-bin/mlRho/

mlRho.cgi.pl) with the 3R chromosome of D. melanogaster (position

10,000,0000 to 10,100,000) as template sequence. Short sequence

reads were generated with Sequencer (http://guanine.evolbio.mpg.

de/sequencer/) with assumed error rates 0.1%, 0.2% and 1%, and

targeted coverage 506, 1006and 2506. The simulated reads were

mapped with bwa (-o 2 -e 12 -n 0.01 -l 100 -d 12) and processed with

PoPoolation. We measured the relative difference between the

estimates obtained from PoPoolation (o) and the expected (e) results

calculated with sample_stats from the ms package [20] using the

original ms output. For each set of parameter combinations, we

repeated this procedure five times (n). The averages of the relative

differences (
1

n

X abs o{eð Þ
e

) are reported in Table 3 (hp) and the

Table S2 (hWatterson and Tajima’s D).

Supporting Information

Table S1 Comparison of variability estimates for
genomic fragments sequenced by traditional Sanger or
by sequencing of pooled samples.
(XLS)

Table S2 Effect of coverage and sequencing error rates
on Watterson’s h and Tajima’s D. Sequences were submitted

to the short read archive [SRA023610.1].

(DOC)
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Table 3. Effect of coverage and sequencing error rates on hp.

Cov 50 Cov 100 Cov 250

minor allele count 1 Error Rate 1% 3.93 3.94 3.94

Error Rate 0.2% 0.82 0.83 0.83

Error Rate 0.1% 0.41 0.42 0.42

minor allele count 2 Error Rate 1% 0.72 1.36 2.82

Error Rate 0.2% 0.04 0.08 0.17

Error Rate 0.1% 0.02 0.03 0.06

minor allele count 3 Error Rate 1% 0.093 0.25 1.12

Error Rate 0.2% 0.01 0.02 0.03

Error Rate 0.1% 0.01 0.01 0.02

Average relative mean absolute deviation between the observed and expected
value of hp. Expectations were obtained from ms (sample_stats) and compared
to the observed value calculated with PoPoolation for three different coverage
values and three different sequencing error rates. The observed hp was
calculated assuming three different values of the minimum frequency of the
alternative allele in the sequenced pool. Cov: Coverage.
doi:10.1371/journal.pone.0015925.t003
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