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Abstract

Impaired oocyte quality has been demonstrated in diabetic mice; however, the potential pathways by which maternal
diabetes exerts its effects on the oocyte are poorly understood. Cumulus cells are in direct contact with the oocyte via gap
junctions and provide essential nutrients to support oocyte development. In this study, we investigated the effects of
maternal diabetes on the mitochondrial status in cumulus cells. We found an increased frequency of fragmented
mitochondria, a decreased transmembrane potential and an aggregated distribution of mitochondria in cumulus cells from
diabetic mice. Furthermore, while mitochondrial biogenesis in cumulus cells was induced by maternal diabetes, their
metabolic function was disrupted as evidenced by lower ATP and citrate levels. Moreover, we present evidence suggesting
that the mitochondrial impairments induced by maternal diabetes, at least in part, lead to cumulus cell apoptosis through
the release of cytochrome c. Together the deleterious effects on cumulus cells may disrupt trophic and signaling
interactions with the oocyte, contributing to oocyte incompetence and thus poor pregnancy outcomes in diabetic females.
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Introduction

In women, type I (insulin-dependent) diabetes has been linked to

complications during pregnancy, often resulting in miscarriage,

embryonic developmental abnormalities and congenital malforma-

tions [1]. Likewise, numerous studies have suggested that the diabetic

condition adversely affects development of pre- and post-implanta-

tion embryos in rodents [2,3,4,5]. Recently, emerging evidence has

shown that oocytes from diabetic mice experience delayed

maturation, abnormal cellular metabolism, mitochondrial dysfunc-

tion and meiotic defects [6,7,8]. These changes in the oocyte may be

manifested later as developmental abnormalities in preimplantation

embryos, congenital malformations, and even metabolic disease in

the offspring [8,9]. However, the pathway(s) by which maternal

diabetes exerts its effects on the oocyte remains ill defined.

Mammalian ovarian follicles are highly specialized structures that

support the growth and development of oocytes. Bidirectional

communication between the oocyte and companion somatic cells,

known as the granulosa cells, is essential for the development and

function of both follicular compartments [10]. In antral follicles,

there are two major types of granulosa cells that are anatomically

and functionally distinct: mural granulosa cells, which line the wall

of the follicle and play a principally steroidogenic role, and cumulus

cells, which form an intimate association with the oocyte. Cumulus

cells possess specialized trans-zonal cytoplasmic projections that

penetrate through the zona pellucida and form gap junctions at

their tips with the oocyte, generating an elaborate structure called

the cumulus-oocyte complex (COC) [11,12]. Cumulus cells have

long been known to play a nurturing role in supporting oocyte

development by providing essential nutrients to oocytes [13].

Recently, we detected abnormal metabolism, increased apoptosis

and decreased gap junction communication in granulosa cells from

diabetic mice [8,14,15,16]. Moreover, mitochondria are the

primary energy-generating system in most eukaryotic cells,

participating in intermediary metabolism and apoptosis.

Given the above findings, we hypothesized that maternal diabetes

adversely impacts the mitochondria in cumulus cells, which may be

further transferred into the oocyte, contributing to poor oocyte

quality. To test this hypothesis, we investigated the effects of

maternal diabetes on mitochondrial status in cumulus cells using

streptozotocin (STZ)-induced diabetic and Akita (insulin 2 gene

mutant) mouse models. Molecular, cellular and biochemical

analysis demonstrated structural, spatial and metabolic dysfunction

of mitochondria in cumulus cells of diabetic mice. Furthermore, we

provide evidence that mitochondrial impairments are involved in

apoptosis of cumulus cells induced by maternal diabetes.

Results

Morphological alterations of mitochondria in cumulus
cells of diabetic mice

To determine if maternal diabetes affects mitochondrial

structure in cumulus cells, transmission electron microscopy

(TEM) was performed on cumulus-oocyte complexes (COCs)
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from control and diabetic mice. Representative photomicrographs

are shown in Fig. 1. Most mitochondria in the control cumulus

cells presented as bean-shaped structures with numerous trans-

versely orientated cristae enveloped by an intact outer membrane

(Fig. 1A). In striking contrast, we observed a higher frequency of

morphological alterations in cumulus cell mitochondria from

diabetic mice (6067% vs 2569% control, p,0.05; Fig. 1D). They

displayed small spherical structures with fewer and disarrayed

cristae, and a decreased electron density of the matrix (Fig. 1B,

arrow). In addition, an increased proportion of membrane rupture

and the presence of vacuoles in mitochondria (Fig. 1C, arrow)

were found in diabetic cumulus cells as compared to controls.

These ultrastructural defects have been correlated with mitochon-

drial fission, metabolic disorders and cell death [17,18].

Decrease in mitochondrial membrane potential in
cumulus cells of diabetic mice

In light of defects in mitochondrial structure described above,

we assessed whether there was any alteration in mitochondrial

membrane potential (Dym) in cumulus cells of diabetic mice.

COCs from control and diabetic mice were stained with JC-1, a

fluorescent probe that selectively enters mitochondria and

reversibly changes color from green to red as the Dym increases

[19], and then examined by fluorescence microscopy. As shown in

Fig. 2A, mitochondria in control and diabetic cumulus cells were a

combination of both low and high membrane potential organelles,

as evident by the green and the red fluorescence. In general,

mitochondria in the control cells had predominantly high

membrane potential as indicated by the red fluorescence (Fig. 2;

arrows). However, a trend towards lower membrane potential, loss

of red fluorescence and accordingly increased green mitochondria,

was observed in the diabetic cumulus cells (Fig. 2A; arrowheads).

For quantitative analysis, we measured the intensity of red and

green fluorescence, and then the ratios of red/green were

calculated to characterize Dym. Notably, the red/green ratio

was significantly decreased in the cumulus cells of diabetic mice as

compared to those of control mice (0.7360.20 vs 1.2360.38

control, p,0.05; Fig. 2B). Such a fluorescence shift from red to

green suggests a general drop of mitochondrial membrane

potential in cumulus cells exposed to maternal diabetes.

Mitochondrial redistribution in cumulus cells of diabetic
mice

Trafficking of mitochondria is thought to be important for

mammalian cells to be able to cater to differing energy requirements

and provide a means for environmental sensing [20]. To determine

whether maternal diabetes affects the spatial organization of

mitochondria in cumulus cells, we compared the mitochondrial

localization between cumulus cells from control and diabetic mice.

Cells were examined by confocal microscopy following Mito-

Tracker staining. Roughly, mitochondrial distribution patterns in

the cumulus cells could be classified into two different categories: (1)

mitochondria surrounding the nucleus, termed perinuclear distri-

bution (Fig. 3Aa–d), and (2) mitochondria aggregated in parts of the

cytoplasm, termed aggregating distribution (Fig. 3Ae–h; arrow-

head). By performing quantitative analysis, we found that the

percentage of the perinuclear distribution pattern was significantly

decreased in diabetic cumulus cells relative to control (5869% vs

8165% control, p,0.05; Fig. 3B), whereas the proportion of the

aggregating distribution pattern was concomitantly increased

relative to control (4269% vs 1965% control, p,0.05; Fig. 3B).

These results indicate a redistribution of mitochondria in cumulus

cells from diabetic mice.

Increased mitochondrial biogenesis in cumulus cells of
diabetic mice

To investigate the potential effects of maternal diabetes on

mitochondrial biogenesis in cumulus cells, we first evaluated

mitochondrial DNA (mtDNA) content in cumulus cells from

control and diabetic mice by quantitative real-time PCR. Data

Figure 1. Altered mitochondrial morphology in cumulus cells
of diabetic mice. Cumulus-oocyte complexes collected from control
and diabetic mice were subjected to transmission electron microscopy
analysis and mitochondrial structure was compared. (A) Representative
electron micrograph of mitochondria from control cumulus cells,
showing bean-shaped structures with numerous transversely orientated
cristae enveloped by an intact outer membrane; (B–C) Representative
electron micrographs show alterations in mitochondrial morphology of
diabetic cumulus cells: (B) small spherical mitochondria with fewer and
disarrayed cristae and a decreased electron density of the matrix
(arrow), and (C) mitochondria with membrane rupture or large vacuoles
(arrow). Higher magnification views of boxed regions are also presented
(right panel). (D) Quantification analyses of abnormal mitochondria in
cumulus cells from control and diabetic mice. Data are presented as
mean percentage of abnormal mitochondria 6 SD in total examined
mitochondria. * p,0.05 vs control.
doi:10.1371/journal.pone.0015901.g001
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are expressed as the ratio of mtDNA to nuclear DNA, as shown

in Fig. 4A. Surprisingly, we found that mtDNA content in

cumulus cells was significantly higher in diabetic mice than in

control mice (1.6360.09 vs 1.3560.12 control; p,0.05). Further,

we measured the mRNA levels of genes implicated in

mitochondrial biogenesis, such as peroxisome proliferator-acti-

vated receptor gamma coactivator 1 alpha (PGC-1a), nuclear

respiratory factor 1 (NRF1) and mitochondrial transcription

factor A (TFAM) [21]. In agreement with elevated mtDNA

content, the cumulus cells of diabetic mice demonstrated an

approximate 2-fold increase in PGC-1aand TFAM mRNA

expression compared with those of control mice (Fig. 4B and

C). No significant difference was detected for NRF1 transcripts

(Fig. 4D). Together these data demonstrate a mitochondrial

biogenic response in cumulus cells of diabetic mice.

Metabolic dysfunction of mitochondria in cumulus cells
of diabetic mice

Given the alterations in mitochondrial structure and biogenesis,

we asked whether mitochondrial metabolism was disrupted in

cumulus cells of diabetic mice. Mitochondria generate most of

cell’s supply of ATP, and the only source of citrate in the cell is

mitochondrial tricarboxylic acid cycle (TCA) [22]. Hence, to

address the question above, cumulus cells separated from COCs of

control and diabetic mice were processed to measure ATP and

citrate levels. All metabolites are expressed as pmoles/mg DNA

(see Methods). As shown in Fig. 5, the average ATP and citrate

levels were both markedly reduced in the cumulus cells of diabetic

mice as compared to controls (ATP: 70.3619.8 vs 105.0612.2

control, p,0.05; Citrate: 17.261.7 vs 19.862.1 control, p,0.05),

suggesting a decline of mitochondrial function.

Figure 2. Decreased mitochondrial membrane potential in cumulus cells of diabetic mice. Cumulus-oocyte complexes from control and
diabetic mice were stained with JC-1 to evaluate mitochondrial membrane potential (Dym) by fluorescence microscopy. Representative images of
cumulus cells are shown. (A) Generally, mitochondria in cumulus cells of control mice were predominantly in red form (arrows), indicating the high
Dym. In contrast, the loss of red fluorescence and thus increased green mitochondria were observed in cumulus cells of diabetic mice (arrowheads),
indicating the low Dym. (B) Histogram shows the ratio of red to green fluorescence intensity calculated to characterize Dym. Note the decreased Dym

in cumulus cells of diabetic mice. Error bars indicate 6 SD. * p,0.05 vs controls. Scale bar: 20 mm.
doi:10.1371/journal.pone.0015901.g002

Figure 3. Mitochondrial distribution was disrupted in cumulus cells of diabetic mice. Cumulus-oocyte complexes collected from control
and diabetic mice were labeled with MitoTracker Red to visualize mitochondrial localization and costained with DAPI to visualize nuclei.
Representative confocal sections of cumulus cells are shown. (A) Mitochondria of most cumulus cells from control mice show perinuclear distribution
pattern (a–d). Notably, in cumulus cells from diabetic mice, aggregating distribution pattern of mitochondria was readily observed (e–h; arrowhead).
(B) Quantification of cumulus cells with each mitochondrial distribution pattern from control and diabetic mice. Data are expressed as mean
percentage 6 SD from three independent experiments in which at least 200 cells were analyzed. * p,0.05 vs control. Scale bar: 20 mm.
doi:10.1371/journal.pone.0015901.g003
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Mitochondrial/cytochrome c pathway is involved in
apoptosis in cumulus cells of diabetic mice

In mammalian cells, signaling cascades leading to apoptosis can

be divided into two broad groups. The intrinsic pathway (also

called mitochondrial pathway) is characterized by the central role

of mitochondria in the initiation of the caspase cascade executing

the apoptotic program. In the extrinsic pathway, caspase

activation is triggered by death receptors on the cell surface

[23]. As described above (Fig. 1 and 2), we have detected altered

mitochondrial morphology and reduced Dym in the cumulus cells

of diabetic mice. These abnormalities have been widely reported

as being sufficient to activate the apoptotic program by promoting

cytochrome c release from mitochondria into the cytoplasm

[24,25]. Thus, one possibility is that the observed mitochondrial

defects lead to cumulus cell apoptosis in diabetic mice through

cytochrome c translocation. To address this possibility, we first

evaluated apoptosis in cumulus cells from control and diabetic

mice using the TUNEL assay coupled with confocal microscopy

(Fig. 6A). Condensed chromatin (Fig. 6A; arrows) can be observed

in apoptotic cumulus cells, indicated by positive TUNEL staining.

Quantitative analysis demonstrated a significant increase in the

incidence of cumulus cell apoptosis from diabetic mice as

compared with controls (10.465.6% vs 3.061.9% control;

Fig. 6B). We next examined whether the subcellular localization

of cytochrome c was altered in those apoptotic cumulus cells from

diabetic mice using immunostaining [26]. Confocal microscopy

clearly revealed a punctate distribution pattern of cytochrome c in

control cumulus cells, which co-localized with the mitochondria-

specific dye, MitoTracker Red (Fig. 7A). However, apoptotic

cumulus cells from diabetic mice (Fig. 7B; arrows), as evidenced by

positive staining with the active caspase-3 antibody (red) and

condensed chromatin (blue) [27], always displayed a diffuse

staining of cytochrome c in the cytoplasm (green). This observation

suggests that there is cytochrome c loss from mitochondria/

translocation to the cytoplasm. Those non-apoptotic cumulus cells

of diabetic mice, which are stained negatively with the active

caspase-3 antibody, retained mitochondria-localized cytochrome c,

similar to control cells (Fig. 7B; arrowhead, lower panel). Taken

together, the co-occurrence of cytochrome c release, casapase-3

activation and apoptosis suggest that maternal diabetes induced-

apoptosis in cumulus cells is mediated, at least in part, by the

mitochondrial pathway.

Facilitative glucose transporters (GLUTs) are essential for the

glucose transport activity in cells. Glucose limitation related with

GLUT1 deficiency has been reported to result in a decrease in

mitochondrial membrane potential, cytochrome c redistribution to

cytosol, and subsequent activation of mitochondria-dependent

apoptosis [28,29]. We therefore tentatively examined GLUT1

expression and glucose uptake (File S1). We detected a dramatic

downregulation of GLUT1 protein expression (Fig. S1) and

Figure 4. Increased mitochondrial biogenesis in cumulus cells of diabetic mice. Cumulus cells removed from cumulus-oocyte complexes
were collected for analysis. (A) mtDNA content was calculated using quantitative real-time PCR by measuring the ratio of cytochrome b
(mitochondrial gene) to b-actin (nuclear gene) DNA levels in cumulus cells of control and diabetic mice. (B–D) mRNA levels of genes implicated in
mitochondrial biogenesis determined by real-time RT-PCR in cumulus cells from control and diabetic mice. At least three experiments were
performed and data are presented as the mean 6 SD of the fold changes. * p,0.05 vs control.
doi:10.1371/journal.pone.0015901.g004
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concomitant glucose uptake (Fig. S2) in diabetic cumulus cells

compared with controls. It is therefore possible that glucose

deprivation may trigger the mitochondrial impairments and

apoptosis in diabetic cumulus cells. Regardless, the exact

mechanisms underlying this process remain to be uncovered.

Analysis of cumulus cells from Akita genetic diabetic
model

Akita mouse, a diabetic model with spontaneous mutation of

insulin 2 gene [30], was used to test whether the abnormalities in

cumulus cells were caused by streptozotocin itself rather than

maternal diabetes. Some key phenotypes were checked and similar

results were obtained. Mitochondrial membrane potential was

dramatically reduced in cumulus cells from Akita mice in comparison

with wild type mice (Fig. S3A–B). Confocal microscopy revealed a

significantly higher percentage of apoptosis in Akita cumulus cells

than in WT (16.865.2% vs 7.764.7% WT; Fig. S4A–B). Compared

to WT, Akita mice also demonstrated the decreased GLUT1

expression (Fig. S1B) and glucose uptake (File S1; 1.8560.53 vs

2.4960.46 counts/mg protein WT; Fig. S2B) in cumulus cells.

Discussion

In the present study, we revealed alterations in morphology,

distribution, biogenesis and metabolism of mitochondria in

cumulus cells of diabetic mice, suggesting mitochondrial dysfunc-

tion. Furthermore, cumulus cells in diabetic mice undergo

apoptosis at increased frequency, likely via the mitochondrial, cell

intrinsic, pathway.

Effects of maternal diabetes on the mitochondrial status
in cumulus cells

Mitochondria are dynamic organelles, and their length, shape

and size are controlled by precisely regulated rates of fusion and

Figure 5. Reduced ATP and citrate content in cumulus cells of diabetic mice. Cumulus cells removed from cumulus-oocyte complexes were
collected to determine the levels of ATP and citrate. Values are expressed as pmoles per mg DNA. (A–B) Histogram shows the average ATP and citrate
content in cumulus cells from control and diabetic mice. All measurements were performed in triplicate. Error bars indicate 6 SD. * p,0.05 vs
controls.
doi:10.1371/journal.pone.0015901.g005

Figure 6. Increased apoptosis in cumulus cells of diabetic mice. (A) Cumulus-oocyte complexes from control and diabetic mice were stained
with TUNEL to visualize apoptotic cells (green) and counterstained with DAPI to confirm nuclear status (blue). Arrows indicate the condensed nuclei
of apoptotic cells. Representative confocal sections of cumulus cells are shown. (B) Frequency of TUNEL-positive nuclei in cumulus cells from control
and diabetic mice. Data represent mean 6 SD of three independent experiments in which at least 30 COCs were analyzed. * p,0.05 vs controls. Scale
bar: 20 mm.
doi:10.1371/journal.pone.0015901.g006
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fission [31]. An imbalance of these two processes can dramatically

alter the overall mitochondrial morphology [17]. Using TEM, we

observed a high frequency of mitochondrial morphological

anomalies in cumulus cells of diabetic mice, displaying small

spherical structures with fewer and disarrayed cristae (Fig. 1)—

these are often referred to as ‘‘fragmented mitochondria’’ [18].

This suggests that the maternal diabetic condition disrupts

mitochondrial dynamics in cumulus cells, resulting in greater

mitochondrial fission. Mounting evidence suggests that fusion and

fission of mitochondria affects the ability of cells to distribute their

mitochondria to specific subcellular location. For example,

mitofusins (MFN1 and MFN2) are dynamin family GTPases

known to be essential for mitochondrial fusion [32]. Aggregation

of mitochondria has been observed in cell lines expressing MFN

mutants [32,33] and MFN2-deficient neurons and myotubes

[34,35]. Remarkably, our immunofluorescent data revealed that

maternal diabetes leads to a mitochondrial redistribution in

cumulus cells. Increased mitochondrial aggregates were readily

observed in diabetic cumulus cells as compared to controls (Fig. 3).

The mechanism of such mitochondrial clusters is hypothesized to

be attributable to the formation of tethered intermediates, which

are unable to complete mitochondrial fusion, whereby ongoing

fission then leads to fragmented-tethered mitochondrial clusters

[35,36]. Furthermore, it is generally thought that trafficking of

mitochondria is important for cellular function by placing them in

appropriate locations relative to energy requiring process [20].

Hence, those fragmented and mislocated mitochondria in the

cumulus cells of diabetic mice may result in subcellular energy

depletion and even cell death [23,37,38].

Mitochondrial biogenesis is a complex process involving the

coordinate expression of mitochondrial and nuclear genes, import

of products of the latter into the organelle and turnover [39]. It has

been documented that PGC-1aregulates mitochondrial biogenesis

by serving as a coactivator of multiple transcription factors, such as

NRF and TFAM [40,41,42]. Our quantitative real-time PCR

analysis showed that mtDNA content was significantly increased in

cumulus cells from diabetic mice when compared to those from

controls. In agreement, PGC-1a and TFAM mRNAs were

upregulated in the diabetic cumulus cells (Fig. 4). To our surprise,

although mitochondrial biogenesis is stimulated, their metabolic

Figure 7. Cytochrome c translocation and caspase-3 activation in apoptotic cumulus cells of diabetic mice. (A) Cumulus-oocyte
complexes collected from control mice were stained with cytochrome c antibody and MitoTracker to determine the subcellular localization of
cytochrome c (green) and mitochondria (red), and counterstained with DAPI to visualize nuclei (blue). Representative confocal sections of cumulus
cells are shown. Cytochrome c shows a punctuate distribution pattern and co-localizes with the mitochondria (yellow) in control cumulus cells. (B)
Cumulus-oocyte complexes collected from diabetic mice were stained with cytochrome c antibody (green), activated caspase-3 antibody (red) and
DAPI (blue). All apoptotic cumulus cells of diabetic mice (arrows), as evidenced by positive staining of active caspase-3 antibody (red; arrows) and
condensed chromatin (blue; arrows), always display diffuse staining of cytochrome c (green; arrows), indicating its translocation from mitochondria to
cytoplasm. In contrast, those non-apoptotic cumulus cells of diabetic mice (green, lower panel; arrowheads) stained negatively with active caspase-3
antibody still show mitochondria-localized cytochrome c. Scale bars: 20 mm.
doi:10.1371/journal.pone.0015901.g007
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function was reduced in the cumulus cells of diabetic mice (Fig. 5).

Increased mtDNA content and impaired mitochondrial function

have also been reported in several other diabetic and aged tissues

[43,44,45,46,47]. Taking into account the decreased GLUT1

expression and glucose uptake in diabetic cumulus cells (Fig. S1

and S2), we speculate that the increased mitochondrial biogenesis

may be a compensatory response to impaired glycolytic metabolism

and dysfunctional mitochondria in cumulus cells of diabetic mice.

It is known that mitochondria play diverse roles in cell

physiology and pathology including regulation of apoptosis,

participation in ion homeostasis and transport of metabolites.

These important functions are highly dependent on the trans-

membrane potential [48]. By JC-1 staining, we found that Dym

was markedly reduced in the cumulus cells of diabetic mice as

compared to control cells (Fig. 2). On the one hand, Dym has been

demonstrated to be essential for mitochondrial fusion, although

the mechanistic link between them remains to be resolved.

Ionophores that dissipate the mitochondrial membrane potential

cause mitochondrial fragmentation, owing to an inhibition of

mitochondrial fusion [49,50]. On the other hand, loss of Dym

could induce the opening of the permeability transition pore in the

inner mitochondrial membrane and consequent rupture of the

outer mitochondrial membrane, which may allow the release of

proteins that reside in the intermembrane space, including

cytochrome c, to activate the caspase cascade that executes the

apoptotic program [51,52]. In line with this notion, we found that

cytochrome c is released from the mitochondria to the cytoplasm

in all apoptotic cumulus cells of diabetic mice, coinciding with

activation of caspase-3 (Fig. 6 and 7), implicating the mitochon-

drial death pathway in maternal diabetes-induced cumulus cell

apoptosis. In addition, the potential role of mitochondrial

fragmentation and redistribution, which we observed in cumulus

cells from diabetic mice, has also been described as participating in

the control of apoptosis [25,53,54].

Collectively, our data demonstrates that maternal diabetes

induces mitochondrial dysfunction in cumulus cells, which leads,

at least in part, to an increase in apoptosis, probably by regulating

GLUT1 expression and concomitant glucose transport.

Potential effects of mitochondrial dysfunction and
apoptosis in cumulus cells on oocyte quality in diabetic
mice

Cumulus cells and the oocyte are metabolically coupled

throughout follicular development by membrane specializations

know as gap junctions [55]. It is well known that cumulus cells

support oocyte development through the provision of essential

nutrients, information molecules, metabolic precursors and

signaling molecules [56]. An important point, particularly in

relation to diabetes, is that oocytes are deficient in their ability to

use glucose as an energy substrate and require cumulus cell-

provided products of glycolysis like pyruvate for their own

development [55]. For example, only pyruvate can support oocyte

development in vitro if no cumulus cells are present. However,

when these cells are included in the culture medium glucose is also

able to support oocyte maturation [57]. Notably, pyruvate can

easily move into the mitochondrial matrix which contains

pyruvate dehydrogenase, where it enters TCA cycle generating

energy such as ATP [58]. Moreover, oocytes enclosed in cumulus

cells have higher amounts of ATP than those lacking cumulus cells

[59], suggesting that cumulus cells provide ATP for oocyte

development. Pyruvate produced as a product of glycolysis by

cumulus cells also could be transferred to oocytes via gap junction

[10]. Thus, mitochondrial function is critical for the energy

production through glycolysis and TCA cycle pathways in

cumulus cells and thereafter energy supply for oocyte maturation.

Combining our previous findings [14,16] with the results

presented here, we conclude that mitochondrial dysfunction and

the resultant apoptosis in cumulus cells may compromise the

competence of oocyte in diabetic mice through the following

possible pathways. First, reduced ATP levels in cumulus cells

(Fig. 5) and decreased oocyte-somatic cell gap junction commu-

nication may together contribute to the low ATP content we

observed in diabetic oocytes [7,8]. Such a variation in ATP

content has been suggested to significantly affect oocyte quality,

embryonic development and even the implantation process

[60,61]. Second, potential oxidative stress in the cumulus cells of

diabetic mice may create an unfavorable condition for oocyte

development. Mitochondria are the major reactive oxygen species

(ROS) generator, as well as one of the main target of ROS-

induced oxidative damage [62]. By performing DCFDA staining

on cumulus-oocyte complexes (see File S1), we found that ROS

production is significantly increased in cumulus cells from diabetic

mice when compared to those from control mice (Fig. S5A–B),

which is probably the result of glucose deprivation and

mitochondrial dysfunction [62,63,64]. mtDNA is highly suscepti-

ble to oxidative attack because of its lack of both protective

histones and DNA repair activity [65]. Thus, it is possible that

mitochondrial dysfunction give rise to oxidative stress in cumulus

cells of diabetic mice, leading to mtDNA damage. Notably,

mtDNA deletion in granulosa cells has been proposed as a factor

affecting oocyte quality of aged women [66,67]. Furthermore,

oocytes exposed to environmental oxidative stress exhibit the

accelerated aging phenomena [68]. Finally, apoptosis of cumulus

cells may compromise developmental capability of the oocyte. Gap

junction intercellular communication has been demonstrated to be

able to spread cell-injuring signals generated by cells undergoing

apoptosis into healthy neighbors [69,70,71]. Moreover, granulosa

cell apoptosis was found to be accelerated in human patients with

unexplained infertility [72]. Increased apoptosis of the surround-

ing cumulus cells has been correlated with oocyte maturation

delay and poor pregnancy outcomes [73,74,75,76]. It is therefore

possible that toxic metabolites from cumulus cells undergoing

apoptosis travels through gap junctions into the oocyte. All

together, maternal diabetes may indirectly impair oocyte compe-

tence by disrupting mitochondrial function in cumulus cells and

their communications with the oocyte.

In conclusion, our results suggest a potential mechanism by

which maternal diabetes affects oocyte quality. Together with our

previous findings detailing the mitochondrial dysfunction in

oocytes from diabetic mice [8], targeting drugs to override

conditions that lead to mitochondrial damage and/or improve

mitochondrial function may have therapeutic potential in treating

reproductive failure of diabetic females.

Materials and Methods

Ethics Statement
All mouse studies were approved by the Animal Studies

Committee at Washington University School of Medicine and

conform to the Guide for the Care and Use of Laboratory Animals

published by the National Institutes of Health. Female B6SJLF1

mice (age 20–24 days; Jackson Laboratories, Bar Harbor, ME)

were used in this research.

Generation of diabetic mice
To generate a type I diabetic model, female mice received a

single injection of streptozotocin (Sigma, St. Louis, MO) at a dose

Effects of Maternal Diabetes on Cumulus Cells

PLoS ONE | www.plosone.org 7 December 2010 | Volume 5 | Issue 12 | e15901



of 190 mg/kg (dissolved in sodium citrate buffer, pH 4.4). Four

days after injection, glucose concentration was measured from tail-

blood samples via a Hemocue B glucose analyzer (Stockholm,

Sweden). If glucose levels were greater than 300 mg/dl, the animal

was selected for use as a diabetic model. Control mice were also

randomly selected, and their blood sugar was checked to ensure

that it was less than 150 mg/dl.

Akita mice
Akita mice have an autosomal dominant mutation, resulting in

hyperglycemia and notable pancreatic b-cell dysfunction [30]. All

Akita mice (FVB.B6-Ins2Akita/MlnJ; The Jackson Laboratory,

Stock No: 006867) had glucose checked at approximately 5–7 wk

through a tail-blood sample. If glucose levels were more than

250 mg/dl, these mice were considered to have the mutation. Age

matched wild type mice were FVB/N females with glucose levels

,100 mg/dl.

Cumulus-oocyte complex retrieval
Diabetic mice and age-matched controls were superovulated

with 10 IU Pregnant Mares Serum Gonadotropin (PMSG; Sigma)

by intraperitoneal injection. 48 hours later, the ovaries were

removed and placed in a dish containing M2 medium (Sigma).

Cumulus-oocyte complexes (COCs) were obtained by manual

rupturing of antral ovarian follicles with a sterile needle. For some

experiments, cumulus cells were collected by mouth pipetting the

COCs repeatedly.

Transmission electron microscopy
For ultrastructural analysis of mitochondria, COCs were

processed for transmission electron microscopy (TEM) as

described previously [77]. Evaluations of mitochondrial morphol-

ogy were accomplished by taking TEM micrographs from

randomly selected areas of cumulus cells. To quantify the

abnormal mitochondria, for each group, 15 micrographs taken

from 15 COCs from three mice were counted in blinded fashion at

25,0006magnification.

Estimation of mitochondrial membrane potential (Dym)
in cumulus cells

Mitochondrial membrane potential was assessed using the

MitoPT-JC1 assay kit (#924; Immunochemistry, Bloomington,

MN). Briefly, COCs were incubated in assay buffer with JC-1 for

15 min at 37uC. After two washes, cells were mounted on slides

with a drop of assay buffer and then examined using fluorescence

microscope. In healthy cells with high Dym, JC-1 spontaneously

forms complexes known as J-aggregates with intense red

fluorescence. In contrast, in unhealthy cells with low Dym, JC-1

remains in the monomeric form, which shows only green

fluorescence [19]. The ratios of red/green fluorescence intensity

were calculated to characterize the Dym [78,79]. To quantify the

fluorescence intensity, 10 different regions taken from 10 COCs

were randomly selected from 10 images for each group. These

regions were measured and quantified by Image J (National

Institute of Health).

Immunofluorescence
For mitochondria localization, COCs were cultured in M2

medium containing 200 nM MitoTracker Red (Molecular Probes,

Eugene, OR) for 30 min at 37uC. Following washes, COCs were

fixed with 4% paraformaldehyde for 20 minutes and then treated

with 0.5% Triton X-100 for 20 minutes. After the brief

counterstaining with 49,69-diamidino-2-phenylindole (DAPI),

samples were analyzed by confocal microscopy (Meta 510; Carl

Zeiss, Germany).

For cytochrome c subcellular distribution, COCs were labeled

with MitoTracker Red as described above, and then fixed with 4%

paraformaldehyde for 20 minutes and permeabilized with 0.5%

Triton X-100 for 20 minutes. Followed by blocking in 1% BSA-

supplemented PBS for 1 hour, samples were incubated with

mouse monoclonal cytochrome c antibody (BD Biosciences, San

Jose, CA) overnight at 4uC. In some experiments, samples labeled

with cytochrome c antibody were also co-labeled with rabbit

polyclonal cleaved caspase-3 antibody (Cell Signaling Technology,

Danvers, MA). Alexa 488 goat anti-mouse and/or Alexa 594 goat

anti-rabbit secondary antibodies were then applied for 1 hour at

room temperature as appropriate. Nuclear status was evaluated by

DAPI staining. Samples were examined by confocal microscopy

(Meta 510; Carl Zeiss, Germany).

Determination of mtDNA content in cumulus cells
Total DNA was extracted from cumulus cells removed from

COCs using a DNeasy kit (QIAGEN, Chatsworth, CA). mtDNA

content was calculated using quantitative real-time PCR as

described previously [47,80] by measuring the threshold cycle

ratio (DCt) of a mitochondria-encoded gene (cyto b, forward 59

CCACTTCATCTTACCATTTATTATCGC, reverse 59 TTT-

TATCTGCATCTGAGTTTAATCCTGT) versus a nuclear-

encoded gene (b-actin, forward 59 CTGCCTGACGGCCAGG,

Reverse 59 CTATGGCCTCAGGAGTTTTGTC). Data are

expressed as mtDNA/nuclear DNA. All measurements were

performed in triplicate.

Real-Time RT-PCR
Cumulus cells removed from 200 COCs per group were

collected for total RNA extraction using an RNeasy kit

(QIAGEN). 200 ng of RNA was used for cDNA synthesis. Real-

time RT-PCR assay was performed according to the detailed

procedure described by Ratchford et al. [16]. Each reaction was

run in triplicate and consisted of 10 ng cDNA, 16 Power SYBR

Green PCR System (Applied Biosystem, Foster City, CA) and

4 mM forward/reverse primers. The fold change in gene

expression was calculated using the DDCt method [81] with the

house keeping gene, glyceraldehydes-3-phosphate dehydrogenase

(GAPDH), as the internal control. Primer sequences are listed

below:

PGC-1a-for: AAGTGTGGAACTCTCTGGAACTG;

PGC-1a-rev: GGGTTATCTTGGTTGGCTTTATG;

NRF1-for: CTCATCCAGGTTGGTACAGG;

NRF1-rev: GTCGTCTGGATGGTCATTTC;

TFAM-for: AATGTGGAGCGTGCTAAAAG;

TFAM-rev: AGCTGTTCTGTGGAAAATCG;

GAPDH-for: ATTGTCAGCAATGCATCCTG;

GAPDH-rev: ATGGACTGTGGTCATGAGCC.

Metabolite analytic assays
Cumulus cells removed from 100 COCs were homogenized in

10 ml 0.1N NaOH. The homogenate was heated to 80uC for

20 min, and then 5 ml of 0.15N HCl and 0.1 M Tris-HCl (pH 6.6)

cocktail was added to maintain a pH of 8.1. The samples were

stored at 280uC until the analytic assays were performed to

determine the ATP and citrate levels. Assays were designed to link

reactions ending with NAD/NADH or NADP/NADPH, which

then were enzymatically amplified in a cycling reaction, and a

byproduct of the amplification step was measured in a fluoromet-

ric assay. The detailed assay conditions are described in Chi et al.
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[82]. Reactions are normalized to total DNA, and metabolite

contents are expressed as pmol/mg DNA.

Terminal dUTP nick end labeling (TUNEL) assay
Cumulus cells apoptosis was evaluated using TUNEL (Roche

Molecular Biochemicals, German) as previously described [83].

COCs were fixed in 4% paraformaldehyde in PBS, permeabilized

with 0.1% Triton X-100, and then incubated in fluorescence-

labeled dUTP and terminal transferase for 1 hour at 37uC in the

dark. Nuclear DNA was counterstained with DAPI. Complexes

were visualized using confocal microscopy (Meta 510; Carl Zeiss,

Germany). Apoptosis was expressed as the percentage of TUNEL-

positive nuclei per COC. These experiments were performed in

triplicate with 10 COCs per group for each experiment.

Statistical analysis
Data are presented as mean 6 SD, unless otherwise indicated.

Statistical comparisons were made with Student’s t test and

ANOVA when appropriate. P, 0.05 was considered to be

significant.

Supporting Information

Figure S1 GLUT1 protein expression is downregulated
in cumulus cells of diabetic mice. Cumulus cells isolated

from cumulus-oocyte complexes were processed for Western blot

to analyze GLUT1 protein expression, and b-actin was used as an

internal control for loading variability. Representative Western

blots showing the decreased GLUT1 expression in cumulus cells

from (A) Streptozotocin (STZ)-induced diabetic and (B) Akita mice

compared to their controls.

(TIF)

Figure S2 Decreased glucose uptake in cumulus cells of
diabetic mice. Glucose uptake was measured in cumulus cells

from (A) control/STZ-induced diabetic and (B) WT/Akita mice,

respectively, and each sample was normalized to total protein.

Error bars indicate 6 SD. * p,0.05.

(TIF)

Figure S3 Reduced mitochondrial membrane potential
in cumulus cells of Akita mice. Cumulus-oocyte complexes

(COCs) from wild type and Akita mice were stained with JC-1 to

evaluate mitochondrial membrane potential (Dym) by fluorescence

microscopy. Representative images are shown. (A) Mitochondria

in WT cumulus cells were predominantly in red form, indicating

the high Dym. The loss of red fluorescence and increased green

mitochondria were observed in Akita cumulus cells. (B) Histogram

shows the ratio of red to green fluorescence intensity calculated to

characterize Dym. Note the decreased Dym in Akita cumulus cells.

Error bars indicate 6 SD. * p,0.05. Scale bar: 20 mm.

(TIF)

Figure S4 Increased apoptosis in cumulus cells of Akita
mice. (A) Cumulus-oocyte complexes from wild type and Akita

mice were stained with TUNEL to visualize apoptotic cells (red)

and counterstained with DAPI to visualize nuclei (blue).

Representative confocal sections of cumulus cells are shown. (B)

Frequency of TUNEL-positive nuclei in cumulus cells from WT

and Akita mice. Data represent mean 6 SD of three independent

experiments in which at least 30 COCs were analyzed. * p,0.05.

(TIF)

Figure S5 Increased ROS production in cumulus cells of
diabetic mice. (A) Cumulus-oocyte complexes (COCs) from

control and STZ-induced diabetic mice were stained with

DCFDA to determine ROS production by fluorescence micros-

copy. Representative images are shown. (B) Histogram shows the

increased fluorescence intensity in cumulus cells of diabetic mice.

Error bars indicate 6 SD. * p,0.05. Scale bar: 20 mm.

(TIF)

File S1 Additional materials and methods.

(DOC)
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