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Abstract

Background: Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric
carbon dioxide concentrations ([CO2]) will influence the structure and function of soil archaeal communities.

Methodology/Principal Findings: We measured abundances of archaeal and bacterial 16S rRNA and amoA genes,
phylogenies of archaeal 16S rRNA and amoA genes, concentrations of KCl-extractable soil ammonium and nitrite, and
potential ammonia oxidation rates in rhizosphere soil samples from maize and soybean exposed to ambient (,385 ppm)
and elevated (550 ppm) [CO2] in a replicated and field-based study. There was no influence of elevated [CO2] on copy
numbers of archaeal or bacterial 16S rRNA or amoA genes, archaeal community composition, KCl-extractable soil
ammonium or nitrite, or potential ammonia oxidation rates for samples from maize, a model C4 plant. Phylogenetic
evidence indicated decreased relative abundance of crenarchaeal sequences in the rhizosphere of soybean, a model
leguminous-C3 plant, at elevated [CO2], whereas quantitative PCR data indicated no changes in the absolute abundance of
archaea. There were no changes in potential ammonia oxidation rates at elevated [CO2] for soybean. Ammonia oxidation
rates were lower in the rhizosphere of maize than soybean, likely because of lower soil pH and/or abundance of archaea.
KCl-extractable ammonium and nitrite concentrations were lower at elevated than ambient [CO2] for soybean.

Conclusion: Plant-driven shifts in soil biogeochemical processes in response to elevated [CO2] affected archaeal community
composition, but not copy numbers of archaeal genes, in the rhizosphere of soybean. The lack of a treatment effect for
maize is consistent with the fact that the photosynthesis and productivity of maize are not stimulated by elevated [CO2] in
the absence of drought.
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Introduction

Microorganisms play a critical role in the cycling of carbon (C)

and nitrogen (N) in soils, which may be affected by environmental

changes, such as the rapidly rising concentration of carbon dioxide

in the earth’s atmosphere ([CO2]) [1]. Most previous studies

concerning the effects of elevated [CO2] on soil microbial

community composition have focused on bacteria and/or fungi.

These studies have found significant [2,3,4], as well as insignificant

[5,6,7,8], effects of elevated [CO2]. However, there is a growing

appreciation for the importance of archaea to the global C and N

cycles [9,10]. Besides the known involvement of euryarchaeota in

methane production [11], recent studies have revealed the ability

of crenarchaeota to oxidize ammonia to nitrite [12,13,14], a

process originally thought to be performed only by bacteria [9].

Studies have found crenarchaeal 16S rRNA and amoA (the A

subunit of ammonia monooxygenase) gene sequences in a variety

of settings, including natural and agricultural soils [15,16,17],

suggesting their widespread distribution and previously unrecog-

nized contributions to soil biogeochemical cycles.

Free air CO2 enrichment (FACE) sites enable assessment of the

effects of elevated [CO2] on ecosystem processes in field settings,

without the disruption of the natural soil-plant-atmosphere

continuum that occurs with environmental or open-top chambers

[18]. Such FACE studies reveal important differences in the

responses of the two major plant photosynthetic types (C3 and C4)

to elevated [CO2]. Results from a FACE facility in central Illinois,

USA, indicate that the photosynthesis and productivity of maize, a

C4 plant, are not directly stimulated by elevated [CO2] (550 ppm)

unless drought stress occurs [19]. In contrast, photosynthesis is

directly stimulated by elevated [CO2] in soybean, a C3 plant [20].

When soybean is grown at elevated [CO2] increases in
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photosynthetic carbon uptake of ,20% [21], aboveground net

primary production of ,18%, and seed yield of ,15% have been

observed [22].

In addition to aboveground changes, FACE studies indicate that

elevated [CO2] affects belowground processes and soil N dy-

namics. Root biomass of soybean has been shown to increase

,30% in response to elevated [CO2] at the central Illinois FACE

site [23], whereas extractable amino N and ammonium concen-

trations in soils have been shown to decline [24]. It is also thought

that plants hosting N2-fixing bacteria, such as soybean, may

allocate additional C to the symbiosis in exchange for additional N

[25,26]. Belowground changes in response to elevated [CO2] have

the potential to alter the structure and function of soil archaeal

communities. For example, a recent study of soils beneath

trembling aspen (Populus tremuloides), a C3 tree, at a FACE site in

northern Wisconsin, USA, found a significant decline in the copy

numbers of archaeal 16S rRNA genes at elevated, relative to

ambient, [CO2] [27]. However, whether the response of soil

archaeal communities associated with the roots of aspen to elevated

[CO2] also occur with shorter-lived, non-woody, and annually-

rotated plants, including maize [28] and soybean [29], is unknown.

The objective of this study was to evaluate the influence of

ambient vs. elevated [CO2] on rhizosphere soil archaea, potential

ammonia oxidation rates, and extractable ammonium and nitrite

concentrations in a maize-soybean agroecosystem. We hypothe-

sized that because maize uses the C4 photosynthetic pathway,

there would be no change in abundances of archaeal and bacterial

16S rRNA and amoA gene sequences or phylogenies of archaeal

16S rRNA and amoA gene sequences between maize grown at

ambient and elevated [CO2]. We further hypothesized that there

would be no changes in potential ammonia oxidation rates or

extractable ammonium and nitrite concentrations between maize

grown at ambient and elevated [CO2]. In contrast, we hy-

pothesized that because soybean uses the C3 photosynthetic

pathway and has a symbiotic relationship with N2-fixing bacteria,

elevated [CO2] would lead to shifts in the above variables through

changes in factors such as plant inputs to soils. Maize-soybean

agroecosystems dominate the landscape of the midwestern US,

and they provide a model system for investigating the influence of

plant-microbe interactions on C and N cycling under global

change scenarios.

Materials and Methods

Field Site, Cultivation, and FACE System
Samples for this study were collected from the SoyFACE

(Soybean Free Air Concentration Enrichment) facility in Cham-

paign, IL, a 32-ha field of maize (Zea mays L. cv 34B43 [Pioneer

Hi-Bred International, Des Moines, IA]) and soybean (Glycine max

L. Merr. cv. 93B15 [Pioneer Hi-Bred International]). SoyFACE

was established in 2001, growing maize and soybean in annual

rotation following local agricultural practices. The soils are from

the Drummer-Flanagan series and classified as fine-silty, mixed,

mesic Typic Endoaquolls [30]. Spring tillage is performed before

planting of both crops; only maize crop residue is tilled in the fall.

Fields to be planted with maize received a treatment of 28% liquid

urea at a rate of 68 kg/acre prior to planting, whereas soybean

fields received no supplemental N.

The procedures for operation and crop cultivation have been

previously reported in detail [31]. After sowing, the infrastructure

for the CO2 treatment was installed in a randomized complete

block design (n = 4). Each block contained two 20-m-diameter

plots. One plot received an ambient [CO2] treatment and a

second plot received an elevated [CO2] treatment of 550 ppm, the

anticipated [CO2] for the year 2050 [32]. The infrastructure

consists of rings with horizontal pipes (with holes along the pipes)

that release CO2 on the upwind side of the plot. CO2 release is

controlled by measured [CO2] in the plots, wind direction, and

wind speed. The ambient plots are surrounded by the same

infrastructure, but do not receive the CO2 treatment. Thus we

utilized a total of 16 plots (i.e. 4 maize/ambient [CO2], 4 maize/

elevated [CO2], 4 soybean/ambient [CO2], and 4 soybean/

elevated [CO2]). [CO2] in the elevated plots is within 620% of the

target for 90% of the time [31].

Sample Collection and DNA Extraction
We collected rhizosphere soil samples from the roots of two

plants from each plot (32 total samples) over the course of two days

during the peak of the growing season in mid-August 2006 and late-

July 2008. All samples from each crop were collected on a single

day each year, and thus they do not capture potential temporal (e.g.

within season) fluctuations in the variables we measured. Each plant

was gently uprooted, shaken, and soil adhering to the roots was

collected. We did not sample in 2007 because the infrastructure for

treating maize with [CO2] is only installed biennially.

Within 24 hours of collection portions of the soil samples to be

utilized for molecular analyses were freeze dried, sieved to remove

roots and nodules, ground, and stored at 280uC before DNA

extraction. DNA was extracted from 0.25 g of soil from each plant

root using a PowerSoilTM DNA Isolation Kit (MoBio Labs, Inc.,

Carlsbad, CA). DNA concentrations were determined using the

Quant-iT PicoGreen dsDNA kit (Invitrogen, Carlsbad, CA). The

two DNA samples from each plot were combined in equimolar

amounts, yielding 16 total DNA samples per sampling year for

molecular analysis.

Real-Time Quantitative PCR
The extracted DNA was subject to real-time quantitative PCR

(q-PCR) [33], targeting fragments of the 16S rRNA and amoA

genes using primers specific to archaea and bacteria for each gene.

Archaeal and bacterial 16S rRNA gene sequences were amplified

using primers A109f [34,35] and PARCH519r [36], and 341F and

534R [37], respectively. Cycling conditions were as follows: 2 min

at 50uC, 10 min at 95uC, 50 cycles of 16 s at 95uC and 30 s at

xuC, followed by a plate read, where x = 59 for archaeal 16S

rDNA and x = 60 for bacterial 16S rDNA. Portions of archaeal

and bacterial amoA gene sequences were amplified using primers

amo196F and amo277R and amoA-1F and amoA-2R, respectively

[16]. Cycling conditions were as above, except that annealing steps

of 40 s at 53uC and 30 s at 54uC were used, respectively. All

reactions were performed in 10 ul volume with 1 ng of template

DNA using SYBR Green as a fluorescent dye on a 384 well

Applied Biosystems 7900HT Fast Real-Time PCR System

(Applied Biosystems Inc., Foster City, CA).

Standards of the respective genes for qPCR were obtained by

amplifying DNA from soil samples using the above primers with

the Roche FastStart High Fidelity PCR System. The amplification

products were visualized on 1% agarose gels in 16 TAE buffer

and purified from the gel using a QIAquick PCR purification kit

(QIAGEN Sciences, Valencia, CA). The purified PCR products

were cloned into pGEM-T Easy (Invitrogen). Single colonies,

verified for the expected insert using PCR, and sequenced to

confirm the identity of the expected gene, were grown in 1 ml of

LB medium supplemented with ampicillin (100 mg/ml) overnight.

Subsequently, the plasmids were extracted using a QIAprep Spin

miniprep kit (QIAGEN Sciences). The concentrations of the

purified plasmids were determined using the Quant-iT PicoGreen

dsDNA kit. Ten-fold dilution series of the plasmids were used to
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generate standard curves with ranges of approximately 109 to 101

copies ml21. Sample copy numbers were determined by relating

cycle threshold (Ct) values to known copy numbers in the

standards. All reactions were repeated to confirm results. The R2

values of all standard curves were .0.97.

Creation of Amplicon Libraries and Sequencing
DNA from the 2006 samples was used for amplicon-based

pyrosequencing of the archaeal 16S rRNA and amoA genes.

Amplification of the V3 region of the archaeal 16S rRNA gene

used primers A109f and PARCH519r, and amplification of a

portion of the archaeal amoA gene used primers Arch-amoF2 and

Arch-amoAR [38,39]. Primer Arch-amoF2 (59- GGTNGCVAA-

RRGHGCWTGG -39) was designed to amplify inside of the

region targeted by primer Arch-amoF [38] and Arch-amoAR in

order to broaden the diversity of the amoA genes amplified and to

decrease the size of the amplicons to ,500 bp, as recommended

for sequencing using Roche’s 454 GS-FLX system (454 Life

Sciences, Branford, CT). To the 59 end of both forward primers

we added Roche’s fusion primer A (59-GCCTCCCTCGCG-

CCATCAG-39), and to the reverse primers we added Roche’s

fusion primer B (59-GCCTTGCCAGCCCGCTCAG-39) followed

by one of four unique ten-base barcodes recommended by Roche

(59-ACGAGTGCGT-39, 59-ACGCTCGACA-39, 59-AGACGC-

ACTC-39, or 59-AGCACTGTAG-39).

The Roche FastStart High Fidelity PCR System was used for

amplification following the manufacturer’s instructions with the

following thermocycler procotol: 2 min at 95uC; 25 cycles

consisting of 30 s at 94uC, 1 min at xuC, and 1 min at 72uC;

and 7 min at 72uC, where x = 59 for the archaeal 16S-V3 rRNA

gene and x = 54 for the archaeal amoA gene. Twelve independent

PCRs (of 30 ml each) were performed for each of the 16 samples

to amplify the archaeal 16S rRNA gene and twenty-four

independent PCRs (of 30 ml each) were performed for each of

the 16 samples to amplify the archaeal amoA gene. For each

sample the independent PCRs were combined and purified using

a QIAquick PCR Purification Kit. The DNA was run on a 1%

TAE gel and the correct-sized products were excised, purified,

and eluted in 16 TE. The DNA concentration in each sample

was quantified using the Quant-iT PicoGreen dsDNA kit, and

DNA quality was assessed using a Bioanalyzer with a DNA1000

chip.

A LR25 sequencing plate was divided into four regions. To each

region a master DNA pool, created by combining eight purified

PCR products (four samples from the 16S rRNA gene and four

samples from the amoA gene) in equimolar ratios, was added.

Pyrosequencing proceeded from fusion primer B at the University

of Illinois Biotechnology Center using Roche’s 454 GS-FLX

system. Sequences were assigned to their original samples using

the gene-specific and barcode sequences. Primer and barcode

sequences were trimmed and low-quality sequences were removed

from the dataset using established criteria for evaluating the

quality of pyrosequencing reads [40,41], including removal of

sequences with Q25 scores ,25, incorrect tag or primer

sequences, non IUPAC characters, or read lengths , or . than

the 2s range of all reads for each gene. These quality-control

procedures eliminated an average of 11% of all 16S rDNA

sequences and 6% of all amoA sequences.

Analysis of 16S rDNA Sequence Data
The 16S rRNA gene sequences from each sample were

analyzed with the RDP classifier [42], and sequences identified

as being bacterial in origin were removed from the dataset (Table

S1). Sequences from each sample were aligned using Infernal [43]

with the RDP’s pyrosequencing pipeline [44] and the NAST

alignment tool [45]. The RDP and NAST multiple sequence

alignments for each sample were merged (http://acai.igb.uiuc.edu/

bio/merge-nast-infernal.html), and manually edited in Jalview [46].

The sequences were then clustered (max. distance = 3%, step

size = 3) using the complete-linkage clustering method in RDP,

which uses a furthest neighbor clustering approach. The alignment

and cluster files were used for dereplication, rarefaction, and Chao1

analyses (max. distance = 3) in RDP. The relative abundances of the

representative sequences from the dereplication analyses were

recorded. The multiple sequence alignments containing represen-

tative sequences from all 16 samples were combined into a single

multiple alignment, which was used to create 100 bootstrapped

maximum likelihood (ML) trees using RAxML version 7.0.4 [47]

with the GTRGAMMA nucleotide substitution model. The ML

trees were rooted using bacterial 16S rRNA gene sequences from E.

coli J01859 and Nitrosomonas europaea AL954747. The trees were

visualized using iTOL [48].

We used the best-scoring ML tree for downstream multivariate

analysis, because unlike taxonomy-based methods (e.g. RDP’s

classifier) that assign names to sequences, the ML tree enables

evolutionary relationships to be considered in comparisons among

samples. The best-scoring ML tree was analyzed using weighted

and unweighted principle coordinates analysis (PCA) in Unifrac

[49] to determine if statistical differences exist among our

treatments. Weighted PCA accounts for the relative abundance

of a particular sequence in a sample.

Analysis of amoA Sequence Data
The amoA nucleotide sequences from each sample were subject

to dereplication, rarefaction, and Chao1 analyses using FastGroup

II with a percent sequence identity (with gaps) of 97% [50]. The

representative sequences from each sample were then dereplicated

for all maize and soybean plots. The relative abundances of the

representative sequences were recorded at each step. The second

sets of representative sequences were aligned using CLUSTAL W

[51] in the MEGA 4.0 software package [52] and then manually

edited in Jalview. FastTree 2.1.2 was used to infer an

approximately-ML phylogenetic tree [53], which was rooted using

a bacterial amoA gene nucleotide sequence. The tree was visualized

and analyzed as described above for the 16S rDNA data. We

analyzed nucleotide sequences, rather than predicted amino acid

sequences, to focus on genetic heterogeneity among samples.

Biogeochemical and Soil Moisture Measurements
Ammonium and nitrite were extracted, and potential nitrifi-

cation assays performed within 24 hours of sampling using a

fresh portion of the 2008 samples from which roots and nodules

were removed. Ammonium and nitrite were extracted from 1 g

soil using 2 M KCl, and their concentrations were measured

using the phenolhypochlorite and sulfanilamide spectropho-

metric methods, respectively [54], and used as a measure of N in

soil solution that is available to plants and microbes. Potential

ammonia oxidation assays were performed using the chlorate

inhibition method, as described in He et al. [39]. Briefly, 1 g of

soil was added to a 50 ml centrifuge tube containing 20 ml

phosphate buffer solution and 1 mM ammonium sulfate.

Potassium chlorate (10 mM final concentration) was added to

inhibit nitrite oxidation. The suspension was incubated in the

dark at room temperature for 24 hours and nitrite was extracted

with 2 M KCL [39] and analyzed as above. In addition, potential

ammonia oxidation assays were performed as above except with

antibiotics (100 ml/L ampicillin and streptomycin) added to the

assays to reduce potential ammonia and nitrite oxidation by
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bacteria. Soil pH was measured following extraction with 0.01 M

CaCl2 [55].

Volumetric soil water content was measured within 24 hours

of rhizosphere sampling using a capacitance probe (Diviner-

2000, Sentek Sensor Technologies, Australia). Within each

replicate plot, measurements were taken at location between

the crop rows and two locations within the crop rows. Data are

reported as the average soil water content between 5–25 cm and

25–55 cm depth, based on data collection at depth increments of

10 cm.

Statistical Analyses and Nucleotide Sequence Accession
Numbers

The qPCR, PCA, ammonium, nitrite, and potential ammo-

nia oxidation rate data were analyzed using one-way ANOVAs

in PAST [56] to test for significant differences among plant/

[CO2] combinations. For each crop, growing season, and soil

layer, the soil moisture data were analyzed using a complete

block analysis of covariance with day of year as the repeated

measure, [CO2] treatment as a main effect, block as a random

factor and early season saturated soil H2O in each plot at the

beginning of the growing season as the covariate (Mixed

Procedure, SAS 9.1, The SAS Institute, Raleigh, NC, USA).

Treatment effects on the specific measurement dates were

assessed with pair-wise comparisons using the pdiff option in the

Mixed Procedure. Sequences obtained in this study have been

deposited in the EMBL Short Read Archive (accession

#ERP000203).

Results

Mean copy numbers among samples for the archaeal 16S

rRNA, bacterial 16S rRNA, archaeal amoA, and bacterial amoA

gene sequences, ranged from 0.2–4.66106, 10.1–34.66106, 1.1–

6.16105, and 1.3–5.76104 per gram of dry soil, respectively. No

statistical differences existed in the copy numbers of the bacterial

16S rRNA, archaeal amoA, or bacterial amoA gene sequences

among treatments for samples from either year. However, the

archaeal 16S rRNA gene was significantly more abundant in

soybean at ambient [CO2] than maize at ambient [CO2] in both

years. There was no difference in the abundance of the archaeal

16S rRNA gene between maize at ambient and elevated [CO2] or

soybean at ambient and elevated [CO2] (Fig. 1).

The RDP classifier indicated that .99.7% of the recovered 16S

rRNA gene sequences were archaeal in origin, which is consistent

with the fact that we used primers specific to the archaeal 16S

rRNA gene. The average number of reads obtained per sample

was 656 (range: 270–1274) and the average read length was

252661 bp. Chao1 richness estimates indicate an average of 15–

51 archaeal operational taxonomic units in the samples based on

16S rDNA phylogenetic diversity (Table S1). Rarefaction curves

did not plateau, indicating that additional diversity of archaea

exists in these samples than was captured by the present

sequencing effort (Fig. S1). All samples were dominated by a

relatively small number of abundant taxa and larger numbers of

relatively rare taxa (Figs. 2, S2). RDP’s classifier and phylogenetic

analysis indicated that, on average, ,96% of the sequences were

from representatives of the crenarchaeota, and particularly

Figure 1. Abundance of archaeal and bacterial 16S rRNA and amoA genes from rhizosphere soil samples collected during the a)
2006 and b) 2008 growing seasons based upon quantitative PCR. The abbreviations are as follows: maize ambient [CO2] (Ma), maize
elevated [CO2] (Me), soybean ambient [CO2] (Sa), and soybean elevated [CO2] (Se). Mean values (+/2 one standard deviation) are shown. Letters
indicate statistical differences among treatments.
doi:10.1371/journal.pone.0015897.g001

Archaeal Response to Elevated Atmospheric CO2

PLoS ONE | www.plosone.org 4 December 2010 | Volume 5 | Issue 12 | e15897



Archaeal Response to Elevated Atmospheric CO2

PLoS ONE | www.plosone.org 5 December 2010 | Volume 5 | Issue 12 | e15897



crenarchaeota group 1.1b (Figs. 2, S3). Unweighted PCA, based

upon phylogenetic analysis of the 16S rDNA data, indicated no

difference in archaeal community composition among treatments

(data not shown), and weighted PCA of the 16S rDNA data

indicated no difference in archaeal community composition

between maize at ambient and elevated [CO2]. However,

weighted PCA of the 16S rDNA data indicated significant

differences in archaeal community composition between soybean

and maize at ambient and elevated [CO2] and soybean at ambient

and elevated [CO2]. The difference in community composition

between soybean at ambient and elevated [CO2] was greater than

the difference between maize and soybean at ambient [CO2]

(Fig. 3a). These differences in community composition were partly

caused by greater relative abundance of euryarchaeota (and

specifically members of the class Methanomicrobia) for soybean at

elevated [CO2] (Figs. 2–4). For example, euryarchaeota comprised

Figure 3. Principle component analysis of a) archaeal 16S rRNA
and b) archaeal amoA gene sequence data from phylogenetic
trees (Figs. 2, S3, S5) of samples collected during the 2006
growing season. PCA was performed in UniFrac [49] using abundance
weights. The symbols are as follows: soybean elevated [CO2] (Se),
diamonds; soybean ambient [CO2] (Sa), triangles; maize elevated [CO2]
(Me) circles; maize ambient [CO2] (Ma), squares. The mean PCA scores
(+/2 one standard deviation) are shown for each axis. For a), no plant/
[CO2] combinations differ on PCA2, whereas Se and Sa are statistically
different (p,0.05) from each other and Me and Ma on PCA1. There is no
difference (p = 0.72) between Me and Ma on PCA1. For b), no plant/
[CO2] combinations differ on PCA1, whereas Se is significantly different
from Ma (p,0.05) on PCA2. Se is marginally different from Me (p = 0.08),
and Sa from Ma (p = 0.11), on PCA2.
doi:10.1371/journal.pone.0015897.g003

Figure 4. Percentages of archaeal lineages (identified in Figs. 2,
S3) for which there were statistical differences among plant/
[CO2] combinations. The abbreviations are as follows: maize ambient
[CO2] (Ma), maize elevated [CO2] (Me), soybean ambient [CO2] (Sa), and
soybean elevated [CO2] (Se). Mean values (+/2 one standard deviation)
are shown. Letters indicate statistical differences among treatments.
doi:10.1371/journal.pone.0015897.g004

Figure 2. Phylogenetic trees of archaeal 16S rRNA gene sequences from rhizosphere soil samples from soybean grown at ambient
and elevated [CO2]. The colored bars represent the relative abundances of representative sequences from individual plots for each [CO2] treatment
(Table S1). Each colored bar in each phylogenetic tree represents data from a different plot. Starting from the root, the colors for the leaf ranges
indicate crenarchaeota group 1.1a (green), crenarchaeota group 1.1c (dark blue), euryarchaeota (tan), and crenarchaeota group 1.1b (light blue).
Clusters within crenarchaeota group 1.1b were further divided into arbitrarily named groups as shown (e.g. 1.1b_1). Only branches with bootstrap
support .60 are shown, and identical branch lengths are shown.
doi:10.1371/journal.pone.0015897.g002
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an average of 9.6% of sequences from soybean at elevated [CO2],

but only an average of 1.5% of sequences from the other plant/

[CO2] combinations (Fig. 4). The only statistical difference in the

relative abundance of sequences from clusters of crenarchaeota

among treatments was lower abundance of crenarchaeota group

1.1b_3 (the names of the suffices, i.e. ‘‘_3,’’ used here and

throughout this paper, are arbitrarily assigned) for soybean at

elevated [CO2] than maize at ambient [CO2] (Figs. 2, 4, S3, S4).

The average number of reads of the archaeal amoA gene

obtained per sample was 1378 (range: 83–2380) and the average

read length was 221638 bp. Rarefaction curves suggest greater

diversity of the archaeal amoA gene than was captured by our

sequencing effort (Fig. S1). All samples were dominated by a

relatively small number of abundant amoA gene sequences and

larger numbers of relatively rare amoA gene sequences (Figs. S2,

S5). Unweighted PCA of the amoA data indicated no differences

among treatments (data not shown), whereas weighted PCA

indicated marginal differences between maize and soybean at

ambient, and at elevated, [CO2]. Phylogenetic differences among

our samples were overall less pronounced for the archaeal amoA

than 16S rRNA gene (Fig. 3).

For the 2008 samples, mean KCl-extractable ammonium

concentrations were 3.7–8.8 mg NH4-N/g soil, nitrite concentra-

tions 0.02–0.16 mg NO2-N/g soil, potential ammonia oxidation

rates 0.01–0.07 mg NO2-N/g soil/day, and pH values 5.3–6.3.

Ammonium concentrations, nitrite concentrations, potential

ammonia oxidation rates (with and without antibiotics added to

the assay), and pH values of rhizosphere soil were significantly

higher for soybean than maize at ambient [CO2]. Extractable

ammonium and nitrite concentrations were significantly lower for

soybean at elevated than ambient [CO2]. There was no difference

in pH, ammonium concentrations, nitrite concentrations, or

potential ammonia oxidation rates between maize at ambient

and elevated [CO2]. There were also no differences in soil pH or

potential ammonia oxidation rates between soybean at ambient

and elevated [CO2] (Fig. 5). Elevated [CO2] did not affect soil

moisture for either crop when the samples for this study were

collected (Table 1) or for at least 20 days prior to our sampling

dates (A. Leakey, personal communication).

Discussion

Our results indicate that the effect of elevated [CO2] on

rhizosphere soil archaea and KCl-extractable ammonium and

nitrite concentrations varied between representatives of the two

major plant photosynthetic types, maize and soybean. Consistent

with our hypothesis, there was no effect of elevated [CO2] on

maize for any of the variables measured in this study (Figs. 1, 3–5).

Maize uses the C4 photosynthetic pathway, which is saturated at

ambient [CO2], and thus elevated [CO2] does not directly

stimulate photosynthesis or productivity in maize. Elevated [CO2]

may indirectly influence C4 plants by increasing soil moisture

during drought [57], but there was no difference in soil moisture

between ambient and elevated [CO2] for either crop during

collection of our samples (Table 1).

A possible explanation for greater relative abundance of

euryarchaeota than crenarchaeota in the rhizosphere of soybean

and maize at ambient [CO2] (Figs. 2–4) is that N2 -fixing bacteria

live in the root nodules of soybean, whereas they do not live in

maize roots. H2 is a by-product of N2 fixation by legumes [58,59],

and H2 is also used as a reducing agent to convert CO2 to methane

during anaerobic respiration by methanogens. Nearly half of

cultivated euryarchaeota, including those of the class Methano-

microbia, are methanogens. Thus euryarchaeota may increase in

Figure 5. Average KCl-extractable ammonium and nitrite concentrations, pH, and potential rates of ammonia oxidation from
rhizosphere soil samples collected during the 2008 growing season. The abbreviations are as follows: maize ambient [CO2] (Ma), maize
elevated [CO2] (Me), soybean ambient [CO2] (Sa), and soybean elevated [CO2] (Se). Mean values (+/2 one standard deviation) are shown. Letters
indicate statistical differences among treatments. For potential ammonia oxidation data, closed bars indicate assays to which antibiotics were added
and open bars indicate assays to which antibiotics were not added, as described in the text. Statistical comparison of potential ammonia oxidation
data is among assays with antibiotics and among assays without antibiotics.
doi:10.1371/journal.pone.0015897.g005
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relative abundance in environments with greater H2 production

because they are capable of metabolizing H2, in contrast to other

archaea. Prior research also suggests that elevated [CO2] may lead

to greater rates of N2 fixation and H2 production by some legumes

[25,60]. Thus the greater relative abundance of euryarchaeota in

the rhizosphere of soybean at elevated than ambient [CO2] may

be caused by increased H2 production at elevated [CO2].

However, rates of N2 fixation and H2 production for soybean

grown at elevated versus ambient [CO2] at this FACE site have

not been reported [25], so this hypothesis requires further

investigation.

Archaeal community composition may also be influenced by

pH, plant type, and/or N concentration, as suggested by prior

studies [15,39]. Soil pH was consistently higher for soybean than

maize in samples from 2008, whereas concentrations of KCl-

extractable ammonium and nitrite were similar between maize

and soybean at elevated [CO2], but higher in soybean at ambient

than elevated [CO2] (Fig. 5). Decreased extractable N concentra-

tions at elevated [CO2] (Fig. 5 and [24]) may indicate increased

plant uptake and/or microbial immobilization of N, as well as a

possible interacting influence of pH (or plant type) and N on

archaeal community composition. However, direct evaluation of

such potential influences on archaeal community composition is

not possible using the data reported here because our soil pH and

KCl-extractable nitrogen data come from the 2008 samples,

whereas the community composition data come from the 2006

samples.

Phylogenetic changes in archaeal community composition at

elevated [CO2] in the rhizosphere of soybean could have

implications for climate change and/or biogeochemical processes

if different groups of archaea have varying influences on rates of

soil processes, as has been demonstrated for bacteria [61,62]. For

example, a shift toward more Methanomicrobia in the rhizosphere

of soybean in response to elevated [CO2] could enhance

atmospheric warming. Previous research showed that rice paddy

soils exposed to elevated [CO2] displayed increased methane

emissions [63,64], although soils from beneath a grass at a FACE

experiment in Switzerland displayed decreased methane emissions

in response to elevated [CO2] [65]. Recent studies implicate

crenarchaea with ammonia oxidation [12,14] and show that

crenarchaeal abundance may influence rates of ammonia

oxidation [39]. However, despite decreased relative abundance

of crenarchaeota in the rhizosphere of soybean at elevated [CO2]

(Fig. 4), we observed no influence of elevated [CO2] on potential

ammonia oxidation rates (Fig. 5). Nevertheless, in agreement with

our data (Figs. 2, S3), previous studies demonstrate that members

of crenarchaeota group 1.1b are the dominant archaeal lineages in

most soils [9,15,66,67]. Thus greater knowledge of the ecology and

physiology of different groups of soil crenarchaeota, and

particularly group 1.1b, is required to project the effects of

changes in crenarchaeal community composition on ecosystem

processes. A potential target for future study are members of

crenarchaeota group 1.1b_3, which inhabit rhizosphere soils [68]

and have been selectively enriched in mixed culture [69].

Our finding of decreased relative abundance of crenarchaea in

the rhizosphere of soybean at elevated [CO2] is qualitatively

consistent with interpretations based upon results from soils

beneath trembling aspen [27]. However, the finding from

trembling aspen was driven by decreased archaeal 16S rRNA

gene copy numbers at elevated [CO2], which is not indicated by

our q-PCR data (Fig. 1). Instead, our phylogenetic data indicate a

shift in archaeal community composition towards lower relative

abundance of crenarchaea at elevated [CO2]. Together these

results from both long-lived and woody (i.e. aspen), as well as

annually-planted and herbaceous (i.e. soybean), C3 plants, indicate

distinct changes in the absolute and relative abundances of

rhizosphere archaea in response to plant-driven changes in soil

biogeochemical processes at elevated [CO2]. Improving projec-

tions of changes to C and N cycling in soils in response to rising

[CO2] will require knowledge of the functional significance of such

shifts on intra- and inter-annual time-scales.

Supporting Information

Figure S1 Rarefaction curves of archaeal 16S rRNA and
amoA gene sequences for maize and soybean rhizo-
sphere samples. Samples from ambient [CO2] plots are in grey

and samples from elevated [CO2] plots are in black. The numbers

at the ends of each curve identify the specific SoyFACE plot that

each sample came from. 1:1 lines, indicating infinite diversity, are

also shown. OTUs were defined as groups of sequences sharing

97% 16S rRNA or amoA nucleotide sequence similarity.

(TIF)

Figure S2 Rank-relative abundance curves (on semi-log
axes) for OTUs of archaeal 16S rRNA and amoA gene
sequences for maize and soybean rhizosphere samples.
Samples from ambient [CO2] plots are in grey and samples from

elevated [CO2] plots are in black, as in Fig. S1.

(TIF)

Figure S3 Phylogenetic trees of archaeal 16S rRNA gene
sequences from rhizosphere soil samples from maize
grown at ambient and elevated [CO2]. The colored bars

represent the relative abundances of representative sequences from

individual plots for each [CO2] treatment. Each colored bar in

each phylogenetic tree represents data from a different plot.

Starting from the root, the colors for the leaf ranges indicate

Table 1. Soil water content (% vol/vol) of plots of soybean and maize grown at ambient and elevated [CO2] on dates of
rhizosphere sampling during the 2006 and 2008 growing seasons.

5–25 cm 25–55 cm

Crop Year DOY Ambient [CO2] Elevated [CO2] Ambient [CO2] Elevated [CO2]

soybean 2006 227 38.961.3 39.561.3 42.860.4 42.260.4

2008 213 30.360.9 31.560.9 39.261.1 38.661.1

maize 2006 227 32.261.9 34.761.9 38.560.8 40.060.8

2008 198 33.461.3 34.461.3 42.061.0 41.561.0

There were no statistically significant effects of elevated [CO2] during these sampling periods.
doi:10.1371/journal.pone.0015897.t001
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crenarchaeota group 1.1a (green), crenarchaeota group 1.1c (dark

blue), euryarchaeota (tan), and crenarchaeota group 1.1b (light

blue). Clusters within crenarchaeota group 1.1b were further

divided into arbitrarily named groups as shown in Fig. 2 (e.g.

1.1b_1). Only branches with bootstrap support .60 are shown,

and identical branch lengths are shown for all branches and leaves.

(PDF)

Figure S4 Percent of different archaeal lineages (iden-
tified in Figs. 2, S3) for which there was no statistical
difference among plant/[CO2] combinations. The abbre-

viations are as follows: maize ambient [CO2] (Ma), maize elevated

[CO2] (Me), soybean ambient [CO2] (Sa), and soybean elevated

[CO2] (Se). Mean values (+/2 one standard deviation) are shown.

(TIF)

Figure S5 Phylogenetic trees of amoA rRNA gene
sequences from rhizosphere soil samples for each
plant/[CO2] combination. The colored bars represent the

relative abundances of representative sequences from individual

plots for each plant/[CO2] combination, as in Figs. 2, S3.

Identical branch lengths are shown for all branches and leaves.

(PDF)

Table S1 Number of reads obtained per sample for
each gene and Chao1 estimates.
(PDF)
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