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Abstract

Endosymbiotic dinoflagellates in the genus Symbiodinium are fundamentally important to the biology of scleractinian
corals, as well as to a variety of other marine organisms. The genus Symbiodinium is genetically and functionally diverse and
the taxonomic nature of the union between Symbiodinium and corals is implicated as a key trait determining the
environmental tolerance of the symbiosis. Surprisingly, the question of how Symbiodinium diversity partitions within a
species across spatial scales of meters to kilometers has received little attention, but is important to understanding the
intrinsic biological scope of a given coral population and adaptations to the local environment. Here we address this gap by
describing the Symbiodinium 1TS2 sequence assemblages recovered from colonies of the reef building coral Montipora
capitata sampled across Kane'ohe Bay, Hawai'i. A total of 52 corals were sampled in a nested design of Coral
Colony(Site(Region)) reflecting spatial scales of meters to kilometers. A diversity of Symbiodinium ITS2 sequences was
recovered with the majority of variance partitioning at the level of the Coral Colony. To confirm this result, the Symbiodinium
ITS2 sequence diversity in six M. capitata colonies were analyzed in much greater depth with 35 to 55 clones per colony. The
ITS2 sequences and quantitative composition recovered from these colonies varied significantly, indicating that each coral
hosted a different assemblage of Symbiodinium. The diversity of Symbiodinium 1TS2 sequence assemblages retrieved from
individual colonies of M. capitata here highlights the problems inherent in interpreting multi-copy and intra-genomically
variable molecular markers, and serves as a context for discussing the utility and biological relevance of assigning species
names based on Symbiodinium ITS2 genotyping.
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Introduction central Great Barrier Reef or in Panama) can also associate with

. . . L . different Symbiodinium [12,14], as can colonies of the same species
Coral reefs are biologically diverse ecosystems providing habitat

for a wide range of marine organisms. The growth of corals and their
ability to form the calcium carbonate substrate reflects their
endosymbioses with photosynthetic dinoflagellates belonging to the
genus Symbiodinium [1]. Nine divergent lineages, clades A—I, have
been described in Symbiodinium based on nuclear ribosomal DNA
(rDNA) and chloroplast 23S rDNA [2] with each clade containing
multiple genetic varieties often resolved using the internal tran-
scribed spacer (ITS) regions [e.g. 3-6].

Symbiodinium diversity is partitioned by a variety of factors
including biogeographical barriers, host species, colony depth,

from the same reef environment [5,10,14,15]. Fidelity in the
association between some coral species and Symbiodinium has lead
to a degree of co-evolution resulting in host-symbiont specificity
[9,16]. For example, the ITS2 Symbiodinium genotype C42
associates with Pocillopora and C31 with Montipora [9]. Attributed
to levels of irradiation, Symbiodinium in corals such as Montastraea
spp. and Madracis pharensis in Panama [8,17] and Pocillopora
damicornis in the Great Barrier Reef [18] partition as a function of
depth and/or location on individual colonies [8]. Host symbiont
acquisition strategy also affects Symbiodinium assemblages with hosts

irradiance, and host symbiont transmission strategy [7-10].
Biogeographic patterns in Symbiodinium are evident between reefs
in different oceans (Pacific versus Atlantic) [9], among reefs within
an ocean (e.g. Pacific reefs in Japan and the Great Barrier Reef
Australia) [11,12], and from reefs across a latitudinal gradient (e.g.
eastern Australia coastline) [12,13]. The same coral species from
mnshore and offshore reefs within the same reef complex (e.g. in the
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that acquire their symbionts from the environment (horizontal
symbiont acquisition strategy) primarily associating with a similar
pool of symbionts, and those that acquire their symbionts from the
parent colony (vertical symbiont acquisition strategy) harboring
their own unique suite of symbionts specific to a host genus [9,10].

Understanding the factors that affect distribution and specificity
patterns in coral-dinoflagellate symbioses and the physiological
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range of host-symbiont combinations is important for understand-
ing how corals will respond to environmental change. In this
regard, functional variability in isolated Symbiodinium types and
specific coral-Symbiodinium symbioses have been correlated with
numerous factors. Variation in the photophysiology of Symbiodi-
num [17,19,20], growth rate of coral colonies [21], symbiont
carbon fixation and translocation to the host [22,23], symbiont
thermal tolerance [24], and host disease susceptibility [22] all
provide evidence for range thresholds in physiological perfor-
mance of different host-symbiont assemblages as a response to the
environment. As coral bleaching and disease are predicted to
impact coral reef ecosystems in the future and have recently
increased in severity and occurrence [25,26], the different host-
symbiont combinations that can occur and the environmental
tolerance of those symbioses will provide the framework for
predicting future shifts in coral reef communities.

The number of unique Symbiwdinium that reside in individual
coral hosts is an area of ongoing debate [27,28]. Heterogeneous
mixtures of Symbiodinium have been identified in a variety of host
species e.g. [7,8,15,18], and more sensitive molecular techniques
such as quantitative real time PCR have enabled the detection of
Symbiodimium clades in low abundance [29-31]. However, the
number of Symbiodinium species and their occurrence among
marine hosts remains a central issue that is highly relevant to our
understanding of the capacity of coral-algal symbiosis and reef
ecosystems to adapt with changes in the environment [32]. The
nuclear internal transcribed spacer region 2 (ITS2) is currently
most often utilized to resolve Symbiodinium diversity within the
phylogenetic clades A-1 e.g. [2,5,12,16,18,33], and is being
promoted as a species level marker [9,30,34]. However, the
multi-copy nature and intra-genomic variability of the ITS2
[35,36] often results in the isolation of more than one ITS2
sequence type from an individual Symbiodinium cell, and this
interpretational complexity combined with low genetic divergence
among ITS2 sequences [e.g. 9] makes the application of this
marker in species assignment problematic [16,37].

Symbiodinium Diversity

In order to further investigate the partitioning of Symbiodinium in
corals and the utility of the ITS2 marker in describing Symbiodinium
diversity, we set out to investigate the Symbiodinium communities in
colonies of Montipora capitata at similar depths over a spatial scale of
meters to kilometers in Kane’ohe Bay, O’ahu Island, Hawai’l. As
M. capitata exhibits vertical transmission of its symbionts, we also
set out to examine whether patterns of Symbiodinium I'TS2 diversity
map onto the M. capitata aipsp and nad5 genotypes. The data reveal
that Symbiodinium ITS2 diversity is different among colonies of M.
capitata and does not reflect host genotype. These data highlight
both the complexity of the Symbiodinium I'TS2 sequence diversity in
corals, and are used as a framework to discuss the problems
inherent in using this marker to designate species in the genus
Symbiodinium.

Methods

Ethics Statement

This study was conducted under the research guidelines of the
University of Hawaii Executive Policy E5.211 and corals collected
under the State of Hawaii Special Activity Permit number 2007-02
issued to the Hawaii Institute of Marine Biology.

Sample collection and sites

The sampling for this study was conducted in June 2007 in
Kane’ohe Bay, on the island of O’ahu. 52 colonies of Montipora
capitata (brown branching morph) were sampled from one location
at the same relative position on each colony (upper region) using a
hammer and chisel at a depth of 1-2 m from three sites nested in
three regions of the bay (sites 1-9; Figure 1) that lie on a northerly
environmental gradient from nearshore to offshore. Region 1 was
located near the Kane’ohe Stream mouth (Sites 1-3), Region 2 in
the centre of the bay (Sites 4-6), and Region 3, near the outer
barrier reef (Sites 7-9). Latitudinal and longitudinal coordinates
for Sites 1-9 are 21.24.902N and 157.46.826W, 21.25.271N and
157.47.255W, 21.25.574N and 157.47.336W, 21.26.039N and
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Figure 1. Location of corals sampled in study. Location of study in Hawai'i (1a) and sites in Kane'ohe Bay, O’ahu (1b). Six colonies of Montipora
capitata were sampled at a depth of 1-2 m from each of the nine sites (except Site 9 where only 4 colonies were sampled). Region 1 is shaded in

blue, region 2 in green, and region 3 in yellow.
doi:10.1371/journal.pone.0015854.g001
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157.47.497W, 21.26.200N and 157.47.518W, 21.26.265 and
157.47.440W, 21.27.026N and 157.47.585W, 21.26.992N and
157.47.762W, 21.27.112N and 157.47.820W, respectively. Six M.
capitata colonies were sampled from Sites 1-9. Two samples from
Site 9 failed to amplify in PCR, reducing the sample number at
that site to four.

DNA extraction

For extraction of nucleic acids, the coral fragments (=5 mm? of
tissue from verrucae and surrounding corallites including entire
polyps) were removed from each colony and stored at 4°C in
400 ul of DNA extraction buffer [50% (w/v) guanidinium
isothiocyanate; 50 mM Tris pH 7.6; 10 uM EDTA; 4.2% (w/v)
sarkosyl; 2.1% (v/v) B-mercaptoethanol] at the time of collection,
until processed (up to 2 weeks). The coral samples in DNA
extraction buffer were then incubated at 72°C for 10 min and
centrifuged at 16,000 g for 5 min. The supernatant was mixed
with an equal volume of 100% isopropanol to precipitate the DNA
and chilled at —20°C overnight. The precipitated DNA was
pelleted by centrifugation at 16,000 g for 15 min, and washed in
70% ethanol before resuspension and storage in Tris Buffer (0.1 M
pH 8).

PCR, cloning, and sequencing of Symbiodinium

The Symbiodinzum partial 5.8S, I'T'S2, and partial 28S region was
amplified in PCR using the forward its-dino (5" GTGAATTGCA-
GAACTCCGTG 3') and reverse us2rev2 (5 CCTCCGCTTA-
CTTATATGCTT 3') primers [38]. The products of these ampli-
fications are referred to from here as Symbiodinium I'TS2 sequences.
Each 25 pl PCR reaction contained 1 pl of DNA template, 2.5 ul
of 10x ImmoBuffer, 0.1 pl IMMOLASE™ Hot-Start DNA
Polymerase (Bioline, MA), 3 mM MgCl,, 0.5 ul of 10 mM total
dNTPs (2.5 mM each), 5 pmol each primer, and deionized sterile
water to volume. PCR was performed on a BioRad iCycler™
using the following conditions: 95°C for 7 min, followed by 35
cycles of 45 s at 95°C, 45 s at 52°C, and 45 s at 72°C, with a final
extension at 72°C for 5 min. PCR amplicons were purified using
the QIAquick® PCR Purification Kit (Qiagen, CA), ligated into
the pGEM®-T Easy vector (Promega, WI), transformed into o-
select gold efficiency competent cells (Bioline, MA), and grown
overnight on selective LB media (ampicillin 50 pg/ml, 0.1 mM
IPTG, 50 pg/ml X-gal). Positive clones were grown overnight in
Circlegrow® (MP Biomedicals, CA) and plasmids purified using
the Perfectprep® Plasmid Isolation Kit (Eppendorf, Hamburg).
Clones from PCR products (3 clones from 1 coral colony, 5 clones
from each of 36 coral colonies, 6 from each of 13 coral colonies,
and 7 from each of 2 coral colonies) were sequenced in both
directions using BigDye Terminators (PerkinElmer, MA) on an
ABI-3100 automated sequencer at the University of Hawai’i.
Additional clones were sequenced from two colonies sampled from
each region (six colonies in total, 35-55 clones per colony).
Sequences were inspected, aligned, and edited using MacVector®
8.0.2 software. Symbiodinium ITS2 sequences used for downstream
analyses were edited as described in Stat et al [16]. For all
analyses, Symbiodinium 1TS2 was categorized by clade (C or D)
[34], I'T'S2 secondary structure (folding), and I'TS2 sequence. The
secondary structure of all I'T'S2 sequences were estimated using
4SALE and the ITS2 database website [39-42] using published
Symbiodinium I'TS2 structures as templates [16,36,43].

PCR and sequencing of Montipora capitata genes
To determine whether Symbiodinium I'TS2 composition is a factor
of host lineage, the host Montipora capitata colonies were genotyped

using both the mitochondrial NADH dehydrogenase 5’ intron
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(nadd) and the nuclear ATP synthetase subunit beta intron (atpsp).
M. capitata nad5 was amplified with primer pair ND51a (NADS5_700F:
5" YITGCCGGATGCYATGGAG 3’ and NADI_157R: 5" GGG-
GAYCCTCATRTKCCTCG 3') as outlined in Concepcion et al.
[44], and atpsfp was amplified with a primer pair redesigned from
Jarman et al. [45] to be specific for M. capitata (F: 5" TGATT-
GTGTCTGGTGTAATCAGC 3’ and R: 5" CGGGCACGGG-
CGCCGGGGGGTTCGTTCATS') [46]. For both markers, each
25 ul PCR contained 1 ul of DNA template, 2.5 pul of 10x
ImmoBuffer, 0.1 ul IMMOLASE™ Hot-Start DNA Polymerase
(Bioline Inc.), 3 mM MgCly, 0.5 pl of 10 mM total dN'TPs (2.5 mM
each), 13 pmol each primer, and deionized sterile water to volume.
PCR amplification was performed on a BioRad iCycler™ as
follows: 95°C for 7 min, followed by 35 cycles at 95°C for 30 s,
53°C for 30 s, 72°C for 30 s, and a final extension at 72°C for
10 min. All successfully amplified PCR products were “cleaned”
with 0.75 units of Exonuclease I: 0.5 units of Shrimp Alkaline
Phosphatase (Exo:SAP) per 7.5 ul PCR product at 37°C for 60 min,
followed by deactivation at 80°C for 10 min prior to being cycle-
sequenced in both directions using Big Dye Terminators (Applied
Biosystems) and run on an ABI-3130XL automated DNA
sequencer. atpsff alignments were confirmed by eye and trimmed
to 252 bp. Since computational phasing of diploid nuclear loci can
be more accurate than cloning in separating alleles from
heterozygous individuals [47], gametic phases for afpsf were
inferred using PHASE [48,49] as implemented in DNASP [50].

Statistical parsimony networks

Statistical parsimony networks of Symbiodinium 1TS2 sequences
were constructed using the software TCS 1.21 [51]. The
cladogram estimation was performed under a 95% connection
limit and gaps were treated as a 5% state with the alignment edited
so that each indel was considered a single mutation.

Analysis of spatial partitioning in Symbiodinium and
Montipora

We set out to determine the spatial scale(s) at which Montipora
capitata and  Symbiodinium composition partition across Kane’ohe
Bay: meters (Coral Colony), 10’s of meters (Site), and 100’s to
1000’s of meters (Region). Due to the sampling design, Sites are
nested within Regions, denoted as Site(R), and M. capitata colonies
are nested within Sites, denoted as Colony(S(R)). We used the
PERMANOVA+1.0.2 software add-on for PRIMER 6 [52] to run
three-level hierarchical analyses of molecular variance (AMOVA)
[53] to test for spatial structuring. PERMANOVA+ was run using
Type I sums of squares, unrestricted permutation of raw data, and
significance was determined by permutation test (10,000 permu-
tations) of the pseudo-I statistic. Post foc pairwise comparisons
were conducted among Regions, Sites, and Colonies using an
alpha of 0.05 while controlling the family-wise false discovery rate
at or below 0.05 [54]. @ statistics (analogous to Wright’s [55] F-
statistics) were calculated from the PERMANOVA+ output
following Excoffier et al. [53]. ® ranges from 0 to 1, where 0
indicates that genetic composition among samples is identical and
1 indicates that at least one sample is completely differentiated and
fixed for a single unique genetic sequence or type. We used
PERMANOVA+ because the standard AMOVA software,
ARLEQUIN 3.1 [56], cannot run analyses on data sets with more
than two hierarchical spatial levels with non-diploid data.
PERMANOVA+ was not developed with AMOVA in mind,
consequently, some calculations were required prior to and
following the analysis. Prior to analysis, the AMOVA matrices
of genetic distance were generated in ARLEQUIN 3.1, the square
root of each distance was taken, and the matrices were imported to
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PERMANOVA+. For Symbiodinium 1TS2 and M. capitata atpsf
sequences, the simple pairwise genetic distance was used. For
Symbiodinium ITS2 secondary structure, the average simple
pairwise genetic distance among sequences coding for each folding
group was used. For Symbiodinium I'T'S2 clades, because sequence
divergence has no impact on the analysis of two categories (clade C
or D), the only possible distances were zero or one.

AMOVA uses certain statistical terms and notations that carry
accepted biological meanings based on loci with either two bi-
parentally inherited alleles or one maternally inherited haplotype
per individual. Symbiodinium I'T'S2 is a multi-copy intra-genomically
variable marker and we are drawing sequences from multiple
individuals of Symbiodinium, therefore we incorporate this assump-
tion into our AMOVA analysis. We thereby negate any traditional
biological inferences, such as the inbreeding coefficient @y, that
are calculated when each sequence represents a single haplotype
or one of two alleles [55]. The lowest level of inference that can be
made here for Symbiodinium is the variation in I'TS2 sequences
within Colonies(S(R)) relative to the variation among Colo-
nies(S(R)), denoted as O sry). Pesry carries biological meaning,
just not that of ®rs. In the interest of clarity, we similarly avoid
other standard AMOVA notation laden with biological implica-
tions such as @, Pgc, and gy [53] in order to focus on the
statistical inference of AMOVA in ITS2. If there is a significant
difference in the I'TS2 composition detected by the AMOVA, this
implies that the Symbiodimium assemblages are partitioned,
regardless of the actual number of individuals represented.

Diversity Indices
“True diversity”, D, [57] was calculated using the Shannon and
Weaver [58] diversity index, H', as follows,

D= exp(H)) (1)

, N
H :—Zizlp,«lnpi (2)

where p 1s the proportion of I'T'S2 sequence ¢ out of s sequences in

the sample. True diversity represents the effective number of

elements, which in this case is the effective number of ITS2
sequences [57]. Coverage estimates of clone libraries were
calculated using the equation:

C= (1— (%)) 100 (3)

where 7 is the number of unique Symbiodinium ITS2 sequences and
N is the total number of clones sequenced from the library [59].
Rarefaction analyses [60,61] were performed using Analytic
Rarefaction v2 [62].

Results

Symbiodinium identified in Montipora capitata from
Kane'ohe Bay

A total of 275 Symbiwodinium I'TS2 sequences belonging to clades
C and D were recovered from the colonies of M. capitata.
Seventeen different Symbiodinium I'TS2 sequences were identified;
14 in clade C and 3 in clade D (Table 1). In addition to the
previously published I'TS2 sequences C3, C17, C17.2, C21, C31,
DI, and Dla [5,16,33,34,63], nine novel clade C sequences and
one novel clade D sequence were recovered (C3.14, C21.6,
C21.11, C21.16, C31.1, C31.5, C31.6, C31.9, C31.10; and D1.6,
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accession numbers HQ630872-HQ630881). Statistical parsimony
analysis resolved single networks for Symbiodinium ITS2 sequences
in clade C and D (Figure 2). Conformational changes to the I'T'S2
secondary structures occur within stems I and II for sequences in
clade C and in stem II for sequences in clade D (Figure 2, Figure
S1). Five putative ITS2 folding structures were identified for
sequences in clade C; Group A contains C3 and C3.14, Group B
contains C17, C21, C21.6, C21.11, and C21.16, Group C
contains C17.2, Group D contains C31.9 and C31.10, and Group
E contains C31, C31.1, C31.5, C31.6 (Figure 2). Two folding
structures were identified in clade D; Group F contains D1a, and
Group G contains D1 and DI1.6.

Spatial structure and diversity of Symbiodinium in
Kane'ohe Bay

We set out to determine if there is any partitioning of
Symbiodinium composition at the nested scales of Region, Site(R),
and host Coral Colony(S (R)) using AMOVA. In most analyses,
data organized by clade, secondary structure group, or ITS2
sequence gave concordant results (Table 2), therefore we present
the analyses of ITS2 sequences and note when differences
occurred in secondary structure and clade analyses from here
forward. Spatial partitioning of Symbiodinium ITS2 sequence
composition was detected at the scales of Site(R) (P<<0.01) and
Colony(S (R)) (P<<0.01; Table 2). The greatest structuring in I'T'S2
composition occurred among Coral Colonies(S (R)) (@ ¢swry=
0.87), as opposed to Sites(R) (@ gg)=0.27). Because there was no
spatial structure in I'TS2 by Region, Regions were pooled for post
hoc pairwise comparisons of I'T'S2 among all Sites and Colonies(S).
Zero of 36 pairwise comparisons among Sites and 42 of 126
comparisons among Clolonies(S) indicated statistically significant
differences in Symbiodimium 1TS2 sequence composition when
controlling the family-wise false discovery rate, but there was no
apparent spatial pattern to these differences. Among pairwise
comparisons of Colonies(S), grouping the sequences by clade
resulted in the detection of fewer statistically significant differences
(33 of 42) than when grouping by secondary structure (42 of 42).

As results from the hierarchical AMOVA indicate that the
majority of the spatial structure in Symbiodinium I'TS2 composition
within M. capitata in Kane’ohe Bay occurs at the scale of Coral
Colony, we sequenced additional clones from two colonies
haphazardly selected from each Region (6 colonies with a total of
35-55 clones per colony) to further explore inter-colony Symbiod:-
num sequence diversity. Symbiodinium from clade C was recovered
from four colonies, clade D from one colony, and clades C and D
from one colony (Figure 3). The number of sequence types
recovered from each colony varied from two in Colony 1 to nine
in Colony 9. The “true diversity” of Symbiodinium I'TS2 within each
colony was also variable (Colony 1: D=1.9; 9: D=5; 25: D=2.2;
31: D=2.6, 44: D=5.3; 49: D=1.9). AMOVA-based pairwise
comparisons of I'TS2 sequences in the six colonies indicate that the
clone libraries from each colony are different from one another with
the exception of those from Colonies 1 and 25 (Table 3). Despite the
fact that all clones from Colonies 9, 31, 44, and 49 are from clade C,
they represent unique non-random distributions of Symbiodinium
I'TS2 sequences. The coverage estimates indicated that the obtained
sequences covered a high percentage of the diversity in each clone
library (C'=94%, 83%, 94%, 94%, 84% and 95% for Colonies 1, 9,
25,31, 44, and 49 respectively), and are supported by rarefaction
curves reaching an asymptote for libraries from four colonies (1, 25,
31, 49), and approaching an asymptote for the remaining two (9, 44;
Figure 4). For Colonies 9 and 44, additional sequencing would have
recovered minimally more diversity that would not have affected the
result. Therefore, given that; 1) the hierarchical AMOVA indicated
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Table 1. Symbiodinium ITS2 sequences and Montipora
capitata ATP synthetase subunit B genotypes for colonies
sampled in Kane'ohe Bay, Hawaii.
Symbiodinium 1TS2 Montipora capitata
Region Site Colony sequence(s) genotype
1 1 1% D14 D1a' C
1 2 €212, C31% C21.16 D
3 D1a’ M
4 313, C17.2', 216 E
5 313, 17.2', 21’ A
6 314, C17.2" Q
2 7 14, 17! I
8 D1a*% D1’ A
9* 213 C21.112 I
10 D1a’®, D1.6' R
1 C17.23, €212 M
12 D1a* D1.6' L
3 13 313, c21%, 17, 2111’ H
14 €213, C17%, C21.6 C
15 C17.2%, C31.52 E
16 313, C17.2', €31.5 H
17 172, €212, 3141, c31' A
18 314, C17.2! %
2 4 19 C17.2% €312 €31.10" H
20 C17.2% €312, C31.1" J
21 313 a3', 17!, a17.2’ F
22 214, €312 P
23 €313, C17.2%, C21.16' A
24 c31°, 21’ H
5 25* D13, D1a? P
26 D1a% D12 T
27 31° N
28 D1a% C21', D1' H
29 D1a? D12 G
30 €212, C21.6% C17.2 J
6 Bl 21113, €212 H
32 314, €212 H
33 214, c17.2! S
34 c17.2%, ¢3', c21', ¢31.10' N
35 31% C17.2! M
36 €212, €312, C17.2" J
3 7 37 €21% C17.2', €31.10', D1a' A
38 c31° A
39 313, €212 311" F
40 213, 17.2", €31 B
41 313, c21.117, €311 (o}
42 c31° u
8 43 212 C17.2', C21.6', C31', K
316’
44% €312, a3', 21, 2111 I
45 21% €312 C17.2 C
46 C17.23, €312, 21’ K

Table 1. Cont.

Symbiodinium Diversity

Symbiodinium 1TS2

Montipora capitata

Region Site Colony sequence(s) genotype
47 Dl1a*, D1° H
48 C313, C21.11% @31.1” w
9 49% 314, C17.2" M
50 €313, €316, C31.9' A
51 D13 D1a? 31" A
52 214, c31' I

*denotes corals where 35-55 Symbiodinium ITS2 sequences were recovered.
Only the first 5 sequences identified from these colonies are presented in the
table.

Superscript numerals indicate the frequency of that sequence in the colony.
doi:10.1371/journal.pone.0015854.t001

Cloral Colony as the level at which most variation in Symbiodinium
I'TS2 sequence composition occurs, and 2) pairwise comparisons of
the six colonies with increased clone sampling indicates variation in
ITS2 composition between colonies, we conclude that the
Symbiodinium assemblage in Montipora capitata from Kaneohe Bay is
mostly partitioned at the level of Coral Colony.

The Symbiodinium 1TS2 composition in Montipora capitata in
Kane’ohe Bay from all colonies (3—7 clones from 52 colonies)
compared to the six colonies with additional clones (35-55 clones
from 6 colonies) was assessed to determine whether a similar
sequence diversity (not distribution) could be recovered using these
two approaches. Of the 17 Symbiodinium I'TS2 sequences identified
in M. capitata from Kane’ohe Bay, 13 were recovered from the six
colonies with increased clone sequencing (Figure 5). The four that
were not identified (C21.6, C21.16, C31.6, and D1.6) represent
rare or low frequency in the grouped sequences. The true diversity
of Symbiodinium ITS2 sequences was the same for all colonies
sampled in the Bay grouped and the six colonies grouped (D=7.2).
A high coverage of sequences from the clone libraries pooled for
the two groupings was achieved (C'=93% and 95% for all colonies
and six colonies respectively) and is further supported by
rarefaction analyses (Figure 6). There was also no significant
difference in the Symbiodinium I'T'S2 sequence composition between
the groups using AMOVA (®=—0.07, P=0.487). These data
suggest that the total Symbiodinium sequence diversity (not
distribution) present in shallow water M. capitata in Kane’ohe
Bay can be recovered with either sequencing a few clones from
many coral colonies or by sequencing a large number of clones
from a few coral colonies.

Spatial Structure of Montipora capitata in Kane'ohe Bay
All corals sampled in this study had the same host nad5
haplotype, which was identical to accession DQ351257 of
Montipora capitata from NCBI [44]. Because there was no sequence
variation among samples, this marker is not discussed any further.
Four polymorphic sites with no indels in the region aligned for
atpsf} accounted for 11 unique alleles (Genbank accession numbers
HQ630861-HQ630871) and 23 unique single-locus genotypes
among our coral host samples (host genotype A-W, Table 1). We
set out to determine if there is any partitioning of Montipora capitata
atpsf composition at the nested scales of Region, Site(R), and
Colony(S (R)) using AMOVA. As we expected, there was no
partitioning of M. capitata by Region (@ «r=0.01, P=0.34) or
Site(Region) (® g¢=0.04, P=0.21). There was, however, a
significant difference among Colonies(S(R)) (® 15 = 0.46, P<<0.001).
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structures and dashed lines on networks separate sequences grouped
doi:10.1371/journal.pone.0015854.g002

Structure of Symbiodinium by Montipora capitata
genotype

We tested whether Symbiodinium composition is related to the host
coral genotype using AMOVA based on host genotypes represented
in more than one colony (11 genotypes, 40 colonies). There is no
indication that Symbiwodinium I'TS2 sequence composition is related to
M. capitata’s atpsfp genotype (@ =—0.14, P=0.91).

@ PLoS ONE | www.plosone.org

by folds.

Discussion

Spatial partitioning of Symbiodinium in Montipora
capitata across Kane’ohe Bay

The absence of Symbiodinium community structure in Montipora
capitata among Regions in Kane’ohe Bay contrasts with the
partitioning of Symbiodinium in corals between oceans, reefs at
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sequence, analyzed by AMOVA.

Symbiodinium Diversity

Table 2. Differences in Symbiodinium diversities among Colony(Site(Region)), categorized by clade, secondary structure, and ITS2

df Clade ITS2 Secondary Structure ITS2 Sequence
[ P ()] P [ P
Region 2 —0.134 0.905 —0.126 0.925 —0.024 0.905
Site(Region) 6 0.287* 0.010% 0.268* 0.009% 0.271* 0.009*
Colony((Site)Region) 43 0.918* 0.000* 0.855* 0.000* 0.870* 0.000*

Significant values (P<<0.05) are indicated with an asterisk.
doi:10.1371/journal.pone.0015854.t002

different latitudes, inner and outer lagoonal environments, and on a
single reef as a function of depth [e.g. 5,7,12,13,14,17,18].
Differences between sites within Kane’ohe Bay in the Symbiodinium
community of M. capitata were evident primarily as a dominance of
either clade C or D (colonies at Sites 2 and 5 contained more clade
D than other sites). Garren et al. [14] reported that an increase in
clade D Symbiodinium abundance in the Montastraea annularis species
complex on Panamanian reefs was attributed to increased levels of
suspended solids present in inner lagoonal environments relative to
the outer lagoonal environment where clade C was dominant. Some
symbionts in clade D Symbiodinium appear to be associated with
corals that are exposed to “stressful”” environmental conditions (e.g.
elevated sea surface temperature and increased sedimentation)
[64,65]. Similarly here, Site 2 is close to the outlet of the Kane’ohe

Bay Stream and has low salinity (Palmer e/ al. unpubl. data), which
may represent a stressful environment for corals at this site.
However, Symbiodinium clade D was also more abundant than other
clades at site 5, which is situated approximately 3 km from the
stream outlet where there is no indication of environmental stressors
(temperature, salinity, sedimentation) that are harmful to corals
(Palmer et al unpubl. data). Even though the presence of
Symbiodinium clade D is mostly attributed to factors causing a more
stressful environment, its occurrence may not be strictly correlated
with such factors as has been shown over regional scales with
temperature anomalies [66]. Also, the scale at which Symbiodinium
diversity is recorded and the spatial scale at which environmental
factors are measured may influence results investigating correlations
between clade D Symbiodinium and stressful environments.

3a. Number of colonies | 3b. Symbiodinium ITS2 frequency in Montipora capitata | 3c. Symbiodinium ITS2 frequency in individual Montipora capitata colonies
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Figure 3. Symbiodinium identified in Montipora capitata colonies from Kane’ohe Bay, Hawai'i.

oye

The Symbiodinium clades identified per

region are displayed as pie charts in 3a. The frequency of Symbiodinium ITS2 sequences per region is displayed as bar graphs in 3b. The total
frequency of ITS2 sequences per region is calculated from 3-7 clone sequences from each colony of M. capitata sampled in that region. The
frequency of Symbiodinium ITS2 sequences for six colonies of M. capitata in which 35-55 clones were analyzed is displayed as bar graphs in 3c. Boxed
numerals indicate groupings of colonies with significantly different Symbiodinium ITS2 composition.

doi:10.1371/journal.pone.0015854.9003
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Table 3. ®-values for AMOVA pairwise comparisons of
Symbiodinium ITS2 sequences among six colonies of
Montipora capitata.

Colony 1 Colony 9 Colony 25 Colony 31 Colony 44
Colony 9 0.982*
Colony 25  0.041 0.904*
Colony 31  0.988* 0.085* 0.991*
Colony 44  0.978* 0.060* 0.901* 0.214*
Colony 49  0.996* 0.550* 0.920* 0.704* 0.349*

Statistically significant values (o.=0.05) are indicated with an asterisk.
doi:10.1371/journal.pone.0015854.t003

Spatial partitioning of Symbiodinium diversity in M. capitata across
Kane’ohe Bay was most evident at the level of Colony(S(R)). It is
noteworthy that here, one coral sample was collected from a
uniform location on each coral colony to allow for comparison of
Symbiodinium assemblages among coral colonies. This strategy was
adopted to minimize the sampling impact on the 52 coral colonies
and to make the analytical work feasible in terms of cost and effort.
However, it is possible that samples taken from multiple locations
on the same coral colony might resolve spatial heterogeneity of
Symbiodinium assemblage in Montipora capitata colonies, as has been
demonstrated in Montastraea spp. from the Caribbean [7,67].
Although very few studies examining Symbiodinium diversity in

10
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corals consider this issue, the complexity of Symbiodinium I'TS2
assemblages resolved here suggest that it would be a valuable
subject to examine in future studies. That said, inter-colony
variation in Symbiwodinium within the same host species has been
observed over broad geographic scales (e.g. different latitudes and
oceans) [9,11], and as a function of depth on the same reef [e.g.
17,18]. Similarly, variation in Symbiodinium within the same host
species within the same reef environment has been shown for a few
host species [e.g. 15]. However, it has previously been reported
that shallow water M. capitata (brown morph) around O’ahu
engaged in a highly specific symbiosis with Symbiodinium I'TS2 C31
[33]. Similarly here, ITS2 C31 was recovered from M. capitata
colonies with the highest frequency across all Regions (Figure 3b)
confirming the prevalence of Symbiodinium containing this ITS2
sequence. An unexpectedly high diversity of other Symbiodinium
ITS2 sequences were also retrieved from M. capitata (brown
morph) here, including C3, C17, C21, D1, and Dla, with some
colonies containing four sub-clade C ITS2 sequences. It is
important to note that these ITS2 sequences have previously
been described as representing ecologically dominant endosymbi-
onts of corals (i.e. they occupy a distinct ecological niche, either
specificity to a host species or biogeographic region and hence
interpreted as different species) based on fingerprint profiles of
amplified Symbiodinium 1TS2 wusing denaturing gradient gel
electrophoresis (DGGE) from colonies sampled in nature
[5,9,34,63]. This high number of potential endosymbiont
“species” within individual coral colonies previously reported to
contain a single specific endosymbiont “species’ highlights the fact
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Figure 4. Rarefaction curves of Symbiodinium ITS2 sequences recovered from colonies of Montipora capitata. Numerals correspond to

colony number from Table 1 and Figure 3.
doi:10.1371/journal.pone.0015854.9g004
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that additional sampling, and/or the application of different
analytical methods significantly influences the interpretation of the
taxonomic nature and composition of Symbiodinium diversity in
individual coral colonies and species. In this context, a greater
understanding of the spatial scale at which Symbiodinium ITS2
sequences vary (among and within colonies, and among polyps
from the same colony), and the extent of intra-genomic variation
in individual Symbiodinium cells is needed.

The forces driving differences in Symbiodinium assemblages
among the M. capitata colonies described here are unknown, but
likely reflect some combination of host-symbiont specificity,
environmental, and stochastic processes [68]. Although no
evidence of specificity between Symbuwodinium ITS2 and host
mitochondrial NADH dehydrogenase 5’ intron (rad5) and nuclear
ATP synthetase subunit beta intron (afpsff) genotypes was detected,
it is possible that alternate host (or Symbiodinium) markers with
different taxonomic resolution might reveal a correlation between
host genotype and their endosymbiont communities.

Interpreting Symbiodinium diversity using ITS2
Identifying heterogeneous Symbiodinium communities is relatively
easy at the cladal level because the high level of genetic variation
that exists between lineages allows their presence (in high or low
abundance) to be determined using sensitive molecular techniques
such as Quantitative Real Time PCR [e.g. 29-31]. However,
defining the number of sub-clade Symbiodinium present in heteroge-
neous endosymbiotic communities using a marker like ITS2 is not
as straightforward. I'T'S2 is a multi-copy marker that is intra-
genomically variable within Symbiodinium [35,36]. In an attempt to

@ PLoS ONE | www.plosone.org
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overcome these issues, the dominance of an ITS2 sequence
amplified in PCR and the accompanying DGGE fingerprint is
currently being used to describe the Symbiwodinium type present in a
sample and delineate species within the genus [e.g.
5,9,12,30,33,63,69]. This methodology and interpretation empha-
sizes dominance of a sequence in a sample and disregards low
abundant sequences (<5-10% in abundance) as intra-genomic
variants that are not important [18,29,70]. However, in addition to
the dominant sequence type C31, many of the M. capitata colonies in
this study associated with multiple Symbiodinium I'TS2 sequences that
have previously been described as ecologically dominant and
representative of independent biological entities (i.e. species). The
most extreme examples of this are M. capitata colonies 9 and 44
(Table 1, Figure 3) harboring Symbiodinium ITS2 C3, C17, C21,
(€31, and other novel types, that collectively encompass almost all of
the secondary structures in I'TS2 recovered here. As the statistical
parsimony network of clade C Symbiodinium depicts a step-wise
evolution from the ancestral clade C sequence, I'TS2 C3 [9], to the
most derived, C31, and as the rDNA is multicopy and is variable in
a Symbiodinium genome [35,36], there are three possible biological
interpretations of the sequence diversity recovered here that lie at
the extremes and at some point along the continuum from intra-
genomic to inter-genomic diversity. The first is that every sequence
recovered represents an individual Symbiodinium cell type or species
(i.e. the highest Symbiwodinium diversity possible). The second is that
the corals contain a single Symbiodinium cell type or one species that
contains intra-genomic variants encompassing all the sequence
diversity recovered (C3 to C31; i.e. the lowest Symbiodinium diversity
possible). The third, and in our opinion the most likely, is some
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combination of possibilities 1 and 2. With the data in hand, it is
mmpossible to distinguish which of these scenarios explains the
Symbiodinium sequence diversity in M. capitata reported here. We can
say, however, that because the Symbiodinium ITS2 sequence
composition among colonies is variable, the Symbiwodinium commu-
nities in these corals are different. The problems of interpreting
exactly what the endosymbiotic ITS2 sequence data from an
individual coral means in terms of species diversity are well
illustrated when considering the recently nominated species
Symbiodinium trenchi and  Symbiodinium glynni [30,69]. The species
Symbiodinium trenchi is identified using the ITS2 Dla DGGE
fingerprint, however, this fingerprint always contains a band that
corresponds to the D1 sequence. The DI sequence can occur
independently of Dla, and when Dla is absent, the DI DGGE
fingerprint is used to define the species Symbiodinium glynni. A study
by Thornhill ¢t al. [36], however, clearly demonstrates that the D1
and Dla sequences are intra-genomic variants in an isoclonal cell
line. Therefore, when the Dla ITS2 DGGE fingerprint (with its
companion D1 sequence) is detected in an endosymbiotic sample, it
is impossible to distinguish whether these sequences represent intra-
genomic variants of one cell type, or co-occurring populations of
two Symbiodinium species, S. trenchi and S. glynni. Thus, the use of ITS2
sequences that are known to be intra-genomic variants to delineate
different species is problematic when assessing the diversity of
species in endosymbiotic Symbiodinium communities in corals.

That said, defining cryptic Symbiodinium types and their
prevalence is fundamentally important when considering endo-
symbiont shifting/shuffling in corals as a response to changes in
the environment [32,64,71]. One solution to the problems
encountered in interpreting ITS2 diversity in environmental
samples (ie. host organisms) of Symbiodinium is to develop and
apply a new marker(s) that has a similar level of resolution to the
ITS2, but that exhibits a one to one relationship between sequence
type and an individual Symbiodinium cell. In our opinion, the power
of applying DGGE of Symbiodinium I'T'S2 to coral endosymbionts
lies in comparing fingerprint patterns among samples to determine
whether or not the signatures are the same or different, an
approach widely used in the field of microbial ecology. However,
the properties of I'T'S2 as a marker clearly make it a suboptimal
choice for species assignment in Symbiodinium.

Endemicity and distribution ranges of Symbiodinium types have
mostly been inferred using the ITS2 in studies generally
constituting 1-2 colonies per host species [e.g. 5,9,12,63]. The
utility of small host sample sizes is to enable a “snapshot” of
Symbiodinium diversity from various host species from numerous
reef environments. However, replicate sampling of host species on
reefs previously targeted in “‘snapshot™ Symbiodinium diversity
studies often reveal missed diversity among endosymbiont
communities within a host. For example, Pocillopora damicornis,
Stylophora pistillata, Acropora palifera and Gomiastrea favulus have all
been shown to associate with a higher diversity of Symbiodinium
than originally perceived around Heron Island in the Great
Barrier Reef [5,10,18], as was Porites lobata in Hawai’i [72], and
Montastraea frankst and Siderastrea siderea in the Caribbean [73].
Similarly, a Symbiodinium 1T'S2 sequence previously considered to
be Caribbean-specific was reported from Acropora at Johnston Atoll
in the central Pacific [16]. Symbiodinium ITS2 C17 and C21 were
not previously reported from marine invertebrates hosts in Hawai’i
[33], yet they were all recovered here from increased sampling of
one host species, at a single depth, from a single bay. As such,
some of the generalized biogeographic and host specificity patterns
of Symbiodinium may simply reflect a gross under-sampling of
endosymbiont communities in marine invertebrates [9]. The
higher Symbuwodinium diversity and among colony endosymbiont
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variation shown here and in the studies described above, shows
that some of the biogeographic patterns in Symbiodinium distribu-
tion and host specificity do not hold with increased sampling effort.
As such, a much greater depth of sampling on a global scale will be
required to accurately describe radiation within the genus,
understand host specificity and the environmental thresholds of
symbioses, and define biogeographic patterns in Symbiodinium
diversity.

Sampling strategy to recover Symbiodinium diversity

The high sequence diversity of Symbiwdinium reported here from
colonies of Montipora capitata was recovered by screening a small
number of clones from a large number of colonies, or the inverse,
screening a large number of clones from a small number of
colonies. When additional parameters are included in the
experimental design (e.g. sampling, depth, multiple hosts, larger
biogeographic region), a greater number of colonies will need to be
investigated. Also, we show that there is no standard number of
Symbiodinium ITS2 clones that need to be sequenced from all clone
libraries to accurately assess endosymbiont diversity in M. capitata
colonies. For some colonies (e.g. Colony 1, 25, 31, 49; Figure 4)
Symbiodinium 1TS2 diversity can be captured with <10 clone
sequences, while for others (e.g. Colony 9 and 44) a higher number
of clones need to be sequenced to get an accurate estimation of
endosymbiont I'TS2 diversity. Similarly, Stat et al. [16] showed that
only Symbiodinium ITS2 C15 was recovered from Porites lobata at
Johnston atoll, while a higher sequence diversity (2-7 sequences)
was recovered in other coral species at the same location.
Therefore the number of coral colonies analyzed and number of
clones sequenced per colony will need to be tailored to each study
and will reflect some combination of the host species investigated
and the environment from which the coral was sampled.

Conclusion

Symbiodinium I'TS2 sequence assemblages found in M. capitata are
variable among individual colonies. The driving force behind these
differences is unknown, but likely reflects some combination of
host-symbiont specificity, environmental, and stochastic processes.
The multi-copy nature and known variability of ITS2 within
individual Symbiodinium cells (intra-genomic) make it impossible to
distinguish how many independent biological entities these
sequence assemblages represent. However, the intricacy of this
dataset highlights both the complexity of coral Symbiodinium
associations, and innate problems in interpreting I'TS2 sequence
types that question the assumptions and validity of using the I'TS2
to delineate Symbiodinium species.

Supporting Information

Figure S1 Symbiodinium I'TS2 secondary structures.
(DOC)
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