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Abstract

The Ebola fusion peptide (EBO+¢) is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola
virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-
aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently,
several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain
insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO;¢ and its mutant
WB8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM), a
good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of
EBO;¢ to induce lipid mixing. On the other hand, EBO,¢ was structurally sensitive to interaction with lipid rafts (DRMs), but
the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote
membrane aggregation in comparison to EBO;¢. Single molecule AFM experiments showed a high affinity force pattern for
the interaction of EBO;¢ and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our
study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing
a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion
peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features
suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.
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Introduction

The Filoviridae family contains the Ebola and Marburg viruses.
These are enveloped viruses composed of seven genes which
encode eight proteins in the Ebola virus and seven in the Marburg
virus [1]. The single-stranded negative-sense RNA genome is
encased in a nucleocapsid complex, which consists of the following
four viral proteins: the nucleoprotein (NP), the viral proteins
(VP35 and VP30) and the polymerase (L). This complex is
surrounded by a matrix consisting of VP40 and VP24, which is
packaged by a lipid membrane envelope obtained during budding
from the host cell. The envelope is composed of the GP protein,
which is post-translationally cleaved by a furin protease into two
fragments, GP1 and GP2, although this cleavage is not necessary
for i wvitro viral infection of cells [2,3]. A disulfide bridge in the
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mature molecule connects these subunits. GP1 is responsible for
interaction with its cellular receptor, and GP2 is involved in the
mechanism of membrane fusion [4,5].

Membrane fusion is a common feature among enveloped
viruses and 1s an important part of the viral infection cycle [6].
However, this process can be triggered in different ways. Viruses
can enter cells by direct fusion with the cell plasma membrane or
through the endocytic pathway [7,8]. Fusion is mediated by the
viral envelope protein that contains a nonpolar fusion peptide. In
general, fusion peptides that belong to class I viral fusion proteins
are located at the N-terminus, whereas in class II, they are in the
internal region [9]. However, in both cases they are typically rich
in alanine and glycine residues and highly conserved within a virus
family [10]. The interaction of the fusion peptide with target
membranes 1s critical for fusion. Therefore, this region has to be

January 2011 | Volume 6 | Issue 1 | e15756



exposed at the proper place and time in order to trigger the
interaction.

The Ebola fusion peptide is a highly conserved hydrophobic
sequence of about 16 amino acids (***GAAIGLAWIPYFG-
PAA® [11]. Recently, we have solved the NMR atomic structure
of the Ebola fusion peptide in the presence of mimetic membranes,
where a loop with a central 3;y-helix appears to be stabilized by
aromatic-aromatic interaction [12]. The ability of the Ebola
peptide to induce membrane fusion has been related with the
presence of phosphatidilinositol in the host cell membrane and
Ca?" during this process [13,14].

Recent studies have suggested the critical role of lipid rafts in
filovirus entry into the host cells. Lipid rafts are microdomains in
biological membranes that are rich in cholesterol and sphingolip-
ids and play an important role in many events including the
endocytic, bio-synthetic and signal transduction pathways
[15,16,17]. The requirement of lipid rafts for the virus to enter
host cells has been related with the localization of receptors and
co-receptors in these microdomains [18,19]. Many viruses use a
specific interaction between their GPs and cell surface receptors to
nitiate the attachment to cells and subsequent fusion. Thus, lipid
rafts may promote virus entry by concentrating the viral receptors
and facilitating binding via an efficient interaction of these
receptors with viral proteins. Interestingly, the filovirus co-factor
folate receptor-o (FRay) is a raft-associated glycophosphatidylino-
sitol-anchored protein [20,21]. However, the critical role of FRa
has been questioned due to the fact that FRénegative cells are fully
infectible by GP pseudotypes [22].

In order to determine the importance of cholesterol during
membrane fusion and the real importance of the aromatic-
aromatic interaction in the peptide structure, we studied the
interaction of the wild type (wt) fusion peptide and its mutant W8A
peptide with either cholesterol-depleted cells or rafts isolated from
Vero and BHK-21 cells. Our results show that the Ebola fusion
peptide interacts with living cells, and its capacity to induce cell-
cell fusion is decreased in cholesterol-depleted cells. Force
spectroscopy based on atomic force microscopy (AFM) assays
reveals a pattern of high affinity force when the Ebola fusion
peptide interacts with membrane rafts. It is also observed that the
peptide is able to induce aggregation of the lipid rafts, suggesting
an important role for phosphatidylinositol and cholesterol during
entry of the virus into the target cells.

Results

Cholesterol depletion and cell viability

The lipid composition and the curvature of biological
membranes are limiting steps for peptide interactions with living
cells and liposomes [23,24]. Cholesterol has been proven to be
essential for filovirus replication, and the entry of the Ebola and
Marburg viruses is inhibited after cholesterol depletion of the
target cells [25]. In cells not depleted of cholesterol, viral proteins
co-localize with caveolin after internalization [25]. Caveolae are
vesicles enriched with cholesterol and sphingolipids and have been
shown to be involved in a wide range of biological events such as
cellular entry by certain viruses [26,27].

In this work, we depleted cholesterol from cells to understand its
importance in the mechanism of membrane fusion, an early step
in the Ebola infection cycle. Since Vero and BHK-21 mammalian
cells are permissive to infection mediated by the Ebola virus, initial
attempts were performed by using those cells [28]. B-cyclodextrins
were used to since they are very effective to selectively extract
cholesterol from membranes of intact cells without binding or
insertion into the plasma membrane [29,30]. Vero and BHK-21
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cells were treated with increasing concentrations of MBCD for
30 min at 37°C and then assayed for cholesterol quantification. As
shown in Fig. 1A, cholesterol depletion was dose-dependent for
Vero and BHK-21 cells. In addition, insect cells (C6/36),
previously grown in medium with cholesterol, were assayed as a
cellular control of low cholesterol content cells. Insect cells are
cholesterol auxotrophs and can be depleted of cholesterol by
growth in delipidated serum. As observed mn Fig. 1A, the
cholesterol content of C6/36 cells was maintained after incubation
with up to 12 mM MPBCD. However, upon incubation with 20
and 24 mM MBCD, it was not possible to detect cholesterol due to
the low cell adhesion induced by depletion. To determine the
effect of MBCD on cell viability, Vero, BHK-21 and C6/36 cells
were incubated in the absence or in the presence of MBCD. At the
same time we added M'T'T reagents to prevent cellular loss during
the washing step (see Experimental Procedures). In general, insect
and mammalian cell monolayers were intact after 30 min
incubation with up to 16 or 24 mM of MBCD, respectively (data
not shown). Fig. 1B shows that insect cells were more affected by
cholesterol depletion than mammalian cells. Indeed, 16 mM
MBCD was able to decrease 50-60% of cholesterol in mammalian
and insect cells but only affected the wviability of insect cells
(Fig. 1B). Thus, our results showed that some different MBCD
concentrations can induce similar levels of cholesterol depletion
but different responses in cellular viability. In our studies, low
MPBCD concentrations, which cause depletion of cholesterol but
do not affect the cellular viability, were chosen to examine the role
played by cholesterol during protein-membrane interaction.

Ebola fusion peptide and lipid membrane interaction
To study the ability of the wild type Ebola fusion peptide
(WtEBOyg) to induce cell-cell fusion, we synthesized a small
hydrophobic peptide, previously described as a region belonging
to the GP2 protein that interacts with target cells during virus-cell
fusion [11,31]. Vero cells were incubated at 25 or 37°C, and fusion
reactions were started by the addition of wtEBO,s. Our data
showed that the Ebola fusion peptide was able to induce cell-cell
fusion at neutral pH and in the absence of Ca®" (Fig. 2A). As
expected, despite the fact that the fusion process occurred at both
temperatures, it was slower at 25°C. In order to determine the
importance of cholesterol in the fusion process, Vero cells were
depleted of cholesterol by pre-treatment with MBCD. As shown in
Fig. 2B, cholesterol-depleted cells were less susceptible to lipid
mixing, indicating that cholesterol is important for fusion.
Previous studies had shown that low endosomal pH is required
for infection and cell-cell fusion mediated by Ebola virus GP
[32,33] and that low pH is required for optimal functioning of
cathepsin B and L, which are important to the initial step of Ebola
virus entry into target cells [34]. However, there is no information
concerning any association between low pH and membrane
fusion. As EBO, does not have any amino acid with pKa lower
than 7, it should not be expected any effect under lower pH.

Secondary structure induced by membrane interaction
Secondary structures of wt and its mutant W8A in the presence
of vesicles were examined using conventional F'T-IR spectroscopy.
Representative spectra of the amide I band for the peptides in the
absence or in the presence of vesicles are shown in Fig. 3. The
amide I band consists of the C=0O stretching (76%), C-N
stretching (14%) and C-C-N deformation (10%) modes and
appears in the region from 1600 to 1700 cm™ ', This band is
highly sensitive to the secondary structure of proteins and serves as
an indicator of o-helix, B-sheet, turn and random conformation.
Both the wt and W8A peptides diluted in DMSO showed a similar
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Figure 1. Effect of MBCD on cell viability. (A) Cholesterol
depletion. Cells were pre-treated with MBCD for 30 min at 37°C, and
cholesterol content was quantified as described in Experimental
Procedures. (B) Cell viability. Cells were incubated with MBCD for
30 min at 37°C. Then MTT reagent was added and incubated for 4 h.
The cells were incubated overnight with the solubilization buffer.
Absorbance was measured at 570 nm. The bars represent BHK-21, VERO
and C636, respectively from left to right.
doi:10.1371/journal.pone.0015756.9001

profile, with broad spectra at a maximum around 1665 cm™'
(Fig. 3A). In general, peaks in between 1680 and 1660 are related
to turn, suggesting an unfolded structure in the presence of a high
amount of DMSO. However, in the presence of 50% DMSO, it
was possible to observe a peak that arose at approximately
1625 cm ™!, suggesting an increase of b-sheet structure for
wtEBO g that was not observed for W8A (Fig. 3B). The increase
in B-sheet structure could be linked to peptide aggregation induced
by the contact with water, since a flared spectrum, as observed for
WB8A, could be correlated to an increase of other structural
components.

As previously described by Suarez et al. (2003), the structure of
the Ebola fusion peptide can be correlated to the ability of the
peptide to perturb membranes, either by increasing permeability
or leading to fusion [14]. Thus, we prepared vesicles with different
lipid compositions to probe the role that some lipids play during
membrane recognition and compared the results with detergent-
resistant membranes (DRMs) extracted from VERO cells. In
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Figure 2. Peptide membrane interaction. (A) Living Vero cells were
incubated with wtEBO,¢ at 25 (circles) or 37°C (square). Membrane
mixing was followed by the decrease in the pyrene excimer/monomer
fluorescence ratio for 30 min. (B) Living Vero cells in the absence
(square) or in the presence (circle) of MBCD were incubated with
WtEBO;¢ at 37°C. Membrane mixing was followed by the decrease in
the pyrene excimer/monomer ratio for 30 min. The peptide concen-
tration was 100 uM in all experiments. The MBCD concentration was
20 mM. The percentage of lipid mixing was obtained by the relation
described in Freitas et al [12].

doi:10.1371/journal.pone.0015756.9002

general, interaction between fusion peptide and lipid membrane
does not happen in a promiscuous fashion; rather, it is dependent
on membrane composition and curvature. To follow the structural
behavior adopted by wt and mutant peptides during membrane
interaction, we prepared large unilamellar vesicles (LUVs) and
DRMs. In the presence of different lipid compositions the
wtEBO;6 showed a distinct structural profile in comparison to
EBO,s W8A. The structural components observed for wtEBO ¢
and EBO W8A in the presence of 50% DMSO were present when
these peptides were incubated with membranes of different LUV
compositions, suggesting a poor structural response in these cases
(Fig. 3C, D and E).

On the other hand, the conformational exchange undergone by
wtEBO ¢ in the presence of DRM:s reinforces the requirement of a
specific lipid composition in membranes during binding that drives
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Figure 3. Effect of lipid vesicles in the FTIR spectra of the amide | band of wtBO,¢ (solid lines) and W8A (dashed lines) at 25°C.
Peptides in 100% (A) and 50% (B) DMSO or in the presence of LUVs of different compositions: PC (C), PC:PE:PIl:Cho (D), PC:PE:SPM:Cho (E), or in the
presence of lipid rafts from Vero cells (F). The peptide concentration was 19.5 mM, and the LUV concentration was 44 mM. The ordinate represents

absorption (in arbitrary units).
doi:10.1371/journal.pone.0015756.g003

the wtEBO¢ aggregation into a folded state. The flared peak
observed for both peptides in the presence of DRMs is
representative of several mixed structural components, possibly
suggesting a non-homogeneous correlation between binding and
structure (Fig. 3F). The data suggest a kind of structural fluctuation
that could be stabilized by the full extension of the membrane
protein (GP2 protein).

Peptide-membrane raft interaction followed by Single
Molecule Force Spectroscopy

To investigate how specific the interaction between the Ebola
fusion peptide and microdomains is, we have carried out single
molecule force spectroscopy assays. We have measured the direct
adhesion force between the Ebola fusion peptide and isolated
microdomains (DRMs) from VERO cells. DRMs extracted from
the cells as small vesicles were applied onto a glass surface, and the
peptide was covalently immobilized to the AFM tip (see
Experimental Procedures). Several cycles of the force-distance
curve were recorded (Fig. 4). The data show a specific interaction
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between the peptide and the isolated rafts with an interaction force
of about 41625 pN (Fig. 4). As expected for a specific interaction,
the force values decreased to 75£25 pN when DRMs membranes
were saturated with wtEBO¢ (1 mM) (Fig. 4).

Vesicle aggregation induced by Ebola fusion peptide
Vesicle aggregation induced by Ebola fusion peptide was
evaluated by dynamic light scattering (DLS). The incubation of
wtEBO,6 with PC liposomes (apparent hydrodynamic radius of
100 nm) resulted in a new liposome population with an Rh
between 800 and 900 nm (Fig. 5A), which represents 23.2% of the
total population. In contrast, EBO;s W8A was not able to induce
PC vesicle aggregation in the same conditions (Fig. 5A). As it can
be observed in Fig. 5, the extent of membrane perturbation was
dependent on lipid composition. Despite of the fact that
polydispersion had shown a similar profile for vesicles composed
of PC:PE:PI:Cho and PC:PE:SPM:Cho, the effects on vesicles size
were completely distinct (Fig. 5B and 5C). In the presence of
PC:PE:PI:Cho (Fig. 5B), the mutant W8A was not able to induce
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Figure 4. The AFM measurement of the molecular forces
associated with EBO,s-DRM interactions. Force distributions over
time before and after the system was saturated with 1T mM wtEBO. All
experiments were done in phosphate buffer at room temperature.
doi:10.1371/journal.pone.0015756.9004

vesicle aggregation, while wtEBO g induced a slight aggregation
(Fig. 5B and 5C). In the case of PC:PE:SPM:Cho vesicles (Fig. 5C),
both peptides were able to shift a small population of the initial
vesicles into an aggregate form, indicating that the binding
efficiency was not enough to lead into aggregation, as is also shown
by FTIR (Fig. 5C).

On the other hand, under interaction with DRMs, it was
possible to see a clear dependence on both membrane composition
and peptide structure. As observed in Figs. 5D and 5E, the initial
populations of DRM vesicles displayed a more heterogeneous
profile than the liposomes. The effects on membrane aggregation
induced by both peptides in the presence of DRMs from BHK-21
and VERO cells were different, reflecting a difference in lipid
composition. For BHK-21 DRMs, both peptides were able to
induce agreggation. However, for EBO, W8A, a small amount of
the initial DRM population remained, and a broad range of
vesicles sizes, as well as an increased polydispersity, was detected.
For VERO DRMs, the initial vesicles were completely converted
into aggregates while in the presence of the peptides. However,
wtEBO ¢ induced huge aggregates, with a z-average of 1690 nm,
while EBO,s W8A splitted the original peak into two populations:
one with smaller sizes (z-average of 597 nm) and the other with
larger sizes. These data reinforce the ability of the Ebola fusion
peptide to interact with DRMs and trigger vesicle aggregation, an
ability which could be associated with membrane fusion. The
wEBO ¢ was more efficient to induce membrane fusion than the
EBO;¢W8A suggesting that Trp8 is important for the observed
effects.

Energetic behavior of peptide membrane interaction

To examine the energetic behavior of the peptide membrane
interaction, we used calorimetric titration. The heat absorbed or
released during the binding reaction reflects the overall energy of
peptide-lipid interaction. In the first injections it is expected that all
or at least most of the peptide binds to the membranes and the
observed hat effect is usually the maximum; after a few injections,
the heat effect should decrease because of progressive binding,
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leading to a saturation of binding sites in the membranes.
However, in all isotherms shown here we did not observe a
continuous decrease of the absolute value of the heat effect. As
shown in I'ig. 6A, the injections were followed by two peaks. The
first peak reflects the exothermic binding between the peptide and
PC liposomes and the second peak represents an endothermic
component that could be related to another energetic contribu-
tions triggered by peptide-liposome binding, such as membrane
destabilization and peptide conformational changes. Although the
binding of both peptides was exothermic, the binding of wtEBO 4
was slightly more exothermic than the binding of W8A mutant for
PC liposomes (Fig. 6A, a and b). In addition, the endothermic
process was very fast in both cases (=1 min), and its contribution
was greater for wtEBO 5 than for EBO,s W8A peptide (Fig. 6B).
Since no modifications of peptide structure was observed while
wtEBOjs was able to induce PC vesicle aggregation and to
promote vesicle leakage (data not shown), the endothermic
behavior was correlated with these events, since modification of
peptide structure was not observed. Similar titrations were
performed in the presence of PC:PE:PI:Cho and PC:PE:SPM:Cho
vesicles (Fig. 6E and G). In the case of the interaction between
wtEBO; or the mutant W8A and PC:PE:PI:Cho vesicles, a
similar exothermic binding contribution was observed (Fig. 6C, a
and b). The event correlated to the endothermic peak was slower
(=2 min) than that observed in the presence of PC liposomes
(Fig. 6D). On the other hand, for PC:PE:SPM:Cho, the binding of
wtEBO6 was less exothermic than the binding of EBO,;5-W8A
(Fig. 6L, a and b), and the endothermic peak was sharper and the
event correlated to it was faster (=45 sec) (Fig. 6I). Thus, the data
show that wtEBO 4 and its mutant EBO5-W8A can interact with
membranes of different lipid compositions but with a distinct
energetic response. In addition, a more complex event was
observed in the presence of lipid rafts. In general, the isothermal
titration is performed by several injections, but after each one the
heat flux tends to return to the equilibrium that is reflected in the
return to the baseline level. In the case of DRMs, the return to the
baseline level failed probably because of the presence of a very
slow additional endothermic event. As shown in Fig. 5D and E, the
Ebola fusion peptide was more efficient to induce aggregation of
DRMs than vesicles of other lipid compositions (Fig. 5). However,
the energetic response for the interaction between EBO;5-W8A
and DRMs from BHK-21 cells showed a small endothermic and
exothermic contribution (Fig. 6G, a). In contrast, wtEBOg
induced an exothermic curve with a positive slope increasing with
time after its interaction with DRMs (Fig. 6G, b). In both cases, the
data show endothermic peaks as observed for other vesicles,
although it has not been possible to discriminate the end of the
endothermic process. For DRMs from Vero cells, the presence of
sharp endothermic peaks followed by a broader exothermic peak
was observed (Fig. 61, a and b; Fig. 6]).

Discussion

Although studies of the fusion domains of Ebola virus and Ebola
pseudovirus have been at the forefront of research on cell entry in
the filovirus infection cycle, many questions involving GP2 binding
and membrane fusion remain unsolved. In this study, we showed
that the Ebola fusion peptide is able to use lipid rafts as a target for
virus entry into cells, which could explain why cholesterol-depleted
cells have impaired Ebola virus GP-pseudotype-virion entry and
fusion [35]. We demonstrated this ability in experiments of raft
aggregation and cell-cell fusion (Fig. 1 and Fig. 5). Our results also
demonstrate that Trp8 has an important role in the virus infection
cycle. This was observed after substitution of this residue for
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Figure 5. Dynamic light scattering of vesicles incubated with
Ebola fusion peptide. (A) PC LUVs, (B) PC:PE:PI:Cho LUVs, (Q)
PC:PE:SPM:Cho LUVs, (D) lipid rafts from BHK-21 cells and (E) lipid rafts
from Vero cells. All experiments were done in phosphate buffer pH 7 at
37°C. The peptide concentration was 100 uM, and the liposome
concentration was 1 mM.

doi:10.1371/journal.pone.0015756.9g005

alanine in the Ebola fusion peptide. The mutation abolished the
ability of the peptide to acquire secondary structure in the
presence of SDS micelles, as shown by Freitas et al. [12],
suggesting that aromatic-aromatic interactions established by Trp8
and Phel2 are important in stabilizing a helical structure in the
peptide [12]. Mutation at the same position affects the GP
transport at the cell surface and its incorporation into VSV-Ebola
virus pseudotype, in addition to creating a reduction in infectivity
[11]. Furthermore, a structural change was directly correlated with
the fusion activity (Fig. 3). In general, the Ebola fusion peptide can
adopt more than one structure in an environmentally dependent
manner. As it is frequently observed for peptides, the Ebola fusion
peptide adopts a random conformation in solution [12,14].
However, two other states have been described for the
membrane-bound peptide: o -helical and B structures. The a-
helix is observed in the interaction with membranes in the absence
of Ca®". This structure appears to be related to the ability of the
peptide to cause membrane destabilization but not membrane
fusion [13,14,36]. In fact, by DLS we observed that wtEBO; is
able to induce liposome aggregation in the absence of Ca?", and
although membrane fusion was not observed, the aggregation can
be counted as an important step in this process (Fig. 5). In the
presence of Ca”", the peptide acquires a B-strand conformation by
interaction with membranes that is related to the ability of this
peptide to induce fusion [13,14,36]. Nevertheless, we suggest that
the acquisition of a B-structure is not the unique feature needed for
fusion since wtEBO;g was not able to induce fusion of
PC:PE:SPM:Cho liposomes, in spite of the high PB-structure
content. Thus, the correlation between structure and fusion cannot
be a simple general rule.

Figure 7 shows a schematic representation of the role of the
Ebola fusion domain (EBOg) in the fusion process. The
magnitude of the forces of the interaction between the Ebola
fusion peptide and isolated microdomains (DRMs) from VERO
cells was also highly striking. This sharp interaction decreased by
about 10-fold when the membrane was saturated with free
peptide. Furthermore, calorimetric results showed that the
interaction between the Ebola fusion peptide and lipid rafts is
complex, suggesting multiple energetic contributions (Fig. 6). The
peptide conformational changes, lipid bilayer order/disorder and
vesicle aggregation represent possible energetic contributions for
the calorimetric profile. However, the understanding of the many
contributions to the peptide/membrane interaction can give
important insights into the filovirus infection cycle. In conclusion,
we present a clear-cut demonstration of the ability of the Ebola
fusion peptide to interact with lipid rafts (Figure 7), an interaction
which is likely the crucial step in cell entry and the infection cycle
of filoviruses.

Materials and Methods

Peptide

The Ebola fusion domain was purchased from Genemed
Synthesis (South San Francisco, CA). Its purity and molecular
mass were assessed by electrospray mass spectrometry, high-
performance liquid chromatography and amino acid analysis. The

January 2011 | Volume 6 | Issue 1 | 15756



The Role of Lipid Rafts in Virus-Cell Interaction

A MWWFFF B

0.112 peal.sec’
010 20 30 40 50 60 2 13 1 15 16 17
Time (min) Time (min)
C D
2.543 pcal.sec™
' | \ » 2 min
20 30 40 50 60 14 15 16 17
Time (min) Time (min)
E F
0.269 ycal.sec”
— E—D
010 20 30 40 50 6o i2 13 14 15 16 17
Time (min) Time (min)

G

MH—H«W ommﬁY\

0 10 20 30 40 50 60

Time (min) Tlme (mm)
| J
oou uca] \‘\/
0 10 20 30 40 50 60 25 26 27 28 29
Time (min) Time (min)

Figure 6. Binding of wtEBO,¢ and W8A to lipid membranes by isothermal titration calorimetry. Each peak corresponds to a 5 pL
injection of vesicles into the sample cell containing a 100 uM solution of wtEBO;¢ (a) or W8A (b) peptide. (A) PC LUVs, (C) PC:PE:PI:Cho LUVs (2:1:0.5:1),
(E) PC:PE:SPM:Cho LUVs (1:1:1:1.5) LUVs, (G) lipid rafts from BHK-21 cells and (1) lipid rafts from VERO cells. (B), (D), (F), (H) and (J) are enlarged views of
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selected heat peak of titration experiments shown in (A, b), (C, b), (E, b), (G, b) and (I, b) curves, respectively. All measurements were conducted at
37°C in phosphate buffer pH 7. The peaks were obtained after subtraction of the heat of dilution of the vesicles into buffer from the raw data

obtained with the peptides.
doi:10.1371/journal.pone.0015756.9006
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"‘-ﬁ_,—\,/— .;." - - —E‘\-.

AAAASEOEAS

Ebo¢,-membrane interaction

Figure 7. Schematic view of Ebola virus entry and fusion promoted by the fusion domain (EBO,¢). The interaction between Trp8 and
Phe12 is emphasized with the tridimensional structure of EBO,¢ immersed in the lipid membrane (from PDB entry 2RLJ, [12]).

doi:10.1371/journal.pone.0015756.g007

purity was greater than 95%. Stock solutions were prepared by
suspending the peptide at a final concentration of 1 or 2 mM in
double-distilled water, where it is fully insoluble, and solubilization
was achieved after addition of membrane models or dimethyl
sulfoxide (DMSO). The peptide concentration was calculated from
the absorbance at 280 nm using a molar absorption coefficient
€950 0f 6,970 M~ 'em ™"

Vesicle size and aggregation

Vesicle sizes were characterized by DLS measurements in a
Zetasizer Nano ZS (Malvern, UK). The measurement range was
from 0.6 nm to 6 mm, and the analyzed range was from 50 to
2000 nm. The peptide concentration was 100 uM, and the
liposome concentration was 1 mM. All solutions were filtered
through 0.2 mm pore diameter membranes (Avanti Lipids Polar,
Alabama, USA) into dust-free cells. The determination of the
apparent hydrodynamic radius was performed using the CON-
TIN method [37].

Fourier Transform Infrared

The FT-IR spectra were collected on a Nicolet Magna-IR 760
Fourier transform instrument (Nicolet, Madison, WI, USA). The
spectral analysis was performed with the GRAMS 8.0 software
(Thermo Scientific, USA). All spectra were collected in the
presence of DyO.

Cholesterol quantification

Following treatment with the Methyl-B-cyclodextrin (MBCD),
Vero (Monkey cells), BHK-21 (Hamster cells) and C6/36 (Insect
cells) monolayers were washed twice with PBS and treated with
dissociation buffer-free enzyme (Gibco, CO) for a few seconds.
Then, cells were scraped into PBS and centrifuged for 2 min at
730xg. The pellet was treated with the amplex red cholesterol
assay kit (Molecular Probes, Invitrogen). The cholesterol was

@ PLoS ONE | www.plosone.org

quantified by excitation at 530-560 nm and emission at 580—
620 nm.

Cell viability

The Vero, BHK-21 and C6/36 monolayers (ATCC) were
washed twice with PBS and incubated in the presence of the
MBCD and MTT. Four hours later the cells were incubated
overnight in solubilization buffer (20% SDS, 50% dimethylforma-
mide, pH 4.5).

Lipid raft purification

All procedures were carried out on ice. Four T-150 and two T-
75 glasses of cells were washed twice with phosphate buffer and
treated for 10 sec with a dissociation buffer (enzyme-free). Cells
were harvested and washed by centrifugation at 730 xg for 2 min
at 4°C in phosphate buffer and then once in phosphate buffer
containing protease inhibitor cocktail (SIGMA, Saint Louis, MO,
USA), 20 mM sodium orthovanadate activated (33), 2 mM
aminoethyl-benzene sulfonyl fluoride (PMSF) and 1% triton X-
100. The cells were then lysed by passage through a 28.7 needle 10
times. An equal volume of 80% sucrose was added to the mixer
with the lysed cells and placed in the bottom of a sucrose gradient
(40-5%) and centrifuged at 30,000 rpm for 24 h at 4°C using a
SW40 Ti rotor. The gradient was fractionated, and the raft
fraction was confirmed by dot blotting using cholera toxin B
subunit-peroxidase conjugate (SIGMA, Saint Louis, MO, USA).

Isothermal titration calorimetry

All measurements were carried out at 37°C in a VP-ITC from
MicroCal, Llc. (Northampton, MA, USA). All solutions were
degassed for 5 min prior to use. For each injection, 5 uL of a
20 mM stock solution of LUVs was injected into the sample cell
(V=1.422 mL) containing 100 uM of wtEBO 4 or EBO5-W8A.
Data handling (subtraction of baselines and heats of dilution, as
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well as peak integration) was performed with the Origin 7.0
software provided by MicroCal.

Single molecule force spectroscopy

Force spectroscopy measurements were carried out at room
temperature using a Nanowizard AFM (JPK Instruments,
Germany). The AFM was mounted with a Nanoworld cantilever,
and the constant spring was calibrated at each assay by the
thermal noise method [38]. The Ebola fusion peptide was
immobilized over an AFM functionalized tip. The AFM silicon
tip was functionalized with carboxylic groups using radio
frequency (RF) plasma treatment by applying acrylic acid (AA)
vapor at 100 W plasma discharge for 5 min [39]. Afterwards, the
AFM COO" tip was covered with 10 pL of Ebola fusion peptide
for 5 min and then washed with PBS. The microdomain vesicle
was immobilized over slide glass. During the force-curve cycle the
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