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Abstract

Background: There is consensus that experimental autoimmune encephalomyelitis (EAE) can be mediated by myelin
specific T cells of Th1 as well as of Th17 phenotype, but the contribution of either subset to the pathogenic process has
remained controversial. In this report, we compare functional differences and pathogenic potential of ‘‘monoclonal’’ T cell
lines that recognize myelin oligodendrocyte glycoprotein (MOG) with the same transgenic TCR but are distinguished by an
IFN-c producing Th1-like and IL-17 producing Th17-like cytokine signature.

Methods and Findings: CD4+ T cell lines were derived from the transgenic mouse strain 2D2, which expresses a TCR
recognizing MOG peptide 35–55 in the context of I-Ab. Adoptive transfer of Th1 cells into lymphopenic (Rag22/2) recipients,
predominantly induced ‘‘classic’’ paralytic EAE, whereas Th17 cells mediated ‘‘atypical’’ ataxic EAE in approximately 50% of
the recipient animals. Combination of Th1 and Th17 cells potentiated the encephalitogenicity inducing classical EAE
exclusively. Th1 and Th17 mediated EAE lesions differed in their composition but not in their localization within the CNS.
While Th1 lesions contained IFN-c, but no IL-17 producing T cells, the T cells in Th17 lesions showed plasticity, substantially
converting to IFN-c producing Th1-like cells. Th1 and Th17 cells differed drastically by their lytic potential. Th1 but not Th17
cells lysed autoantigen presenting astrocytes and fibroblasts in vitro in a contact-dependent manner. In contrast, Th17 cells
acquired cytotoxic potential only after antigenic stimulation and conversion to IFN-c producing Th1 phenotype.

Conclusions: Our data demonstrate that both Th1 and Th17 lineages possess the ability to induce CNS autoimmunity but
can function with complementary as well as differential pathogenic mechanisms. We propose that Th17-like cells producing
IL-17 are required for the generation of atypical EAE whereas IFN-c producing Th1 cells induce classical EAE.
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Introduction

Experimental Autoimmune Encephalomyelitis (EAE), an ani-

mal model representing human multiple sclerosis (MS), is

mediated by CD4+ helper T cells which trigger an (auto)-

inflammatory response against central nervous system (CNS)

structures that culminates in demyelination, axonal damage and

paralysis. Over decades, IFN-c secreting Th1 cells primed by a

heterodimeric cytokine IL-12 were considered to be the only

effector T cells inducing EAE. Paradoxically, however, mice

deficient of either IFN-c [1], IL-12 p35 subunit [2] or their

corresponding receptors IFN-cR [3] and IL-12Rb2 [4] were not

protected, but highly susceptible to EAE induction. In contrast,

mice treated with antibodies neutralizing the IL-12 p40 subunit, or

mutant mice lacking IL-12 p40 subunit were resistant to EAE

induction [5–8]. Cua et al. explained this paradox by the double

usage of the IL-12 p40 subunit by both IL-12 and IL-23

(heterodimer of IL-12p40 and IL-23p19 subunits). In fact, this

work demonstrated that IL-12 specific p35, but not IL-23 specific

p19, is dispensable for EAE development [9]. IL-23 was shown to

drive the maintenance and expansion of a distinct and newly

identified CD4+ helper T cell subset, Th17 cells, which produced

abundant amounts of IL-17 instead of IFN-c [10].

Initially these findings seemed to suggest that Th17 cells but not

Th1 cells were the only pathogenic effector cells in EAE. These

conclusions were mainly drawn from studies of EAE actively

induced by immunization with complete Freund’s adjuvant, a

harsh treatment that profoundly impacts the general immune

response. More recently, however, studies of adoptive transfer

EAE using polarized Th1 and Th17 cells support pathogenic roles

for either subset. But some of the findings remained contradictory.

O’Connor and colleagues demonstrated that MOG specific Th1

cells are highly pathogenic, and are required to facilitate entry of

Th17 cells into CNS lesions [11]. Using MOG-specific transgenic

T cells, Yang et al found that T-bet expression was essential for

EAE induced by Th1 and Th17 cells [12]. Recently, another study
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proposed that the ratio of myelin-specific Th17 versus Th1 cells

determines the site of CNS inflammation [13]. Similarly, both IL-

12 and IL-23 driven myelin-reactive T cells were found to induce

distinct clinical EAE outcomes [14]. Finally, in spontaneous

mouse EAE models with different genetic backgrounds CNS

lesions contained both Th1 and Th17 cells, suggesting that both

T cell lineages participate in the autoimmune pathogenesis

[15,16].

In the present study, we searched for functional differences and

pathogenic potential of the ‘‘monoclonal’’ MOG-specific CD4+ T

cells with Th1- and Th17-like functional profiles. These were

derived from MOG-specific TCR transgenic (2D2) mice with

C57BL/6 genetic background. When adoptively transferred into

lymphopenic hosts, either individually or combined, both Th1 and

Th17 cells per se were capable of inducing EAE, but combinations

of Th1 and Th17 cells displayed a potentiated effect. The clinical

disease mediated by either CD4+ T cell lineage differed

profoundly. While Th1 cells mediated classic EAE with hind limb

paralysis, Th17 cells transferred a disease with ataxic gait in

approximately half of the animals. Within the CNS infiltrates,

Th17 cells seemed to convert to a Th1 phenotype, but not vice-

versa. Finally, Th1 cells differed from Th17 cells by their cytotoxic

potential. They lysed antigen presenting astrocytes in in vitro co-

cultures, an activity not seen with Th17 cells.

Results

Differentiation and functional characterization of MOG-
specific Th1 and Th17 cells

We used 2D2 TCR transgenic T cells that recognize MOG [17]

to obtain sufficient numbers of Th1 and Th17 cells. We optimized

in vitro differentiation protocols for Th1 and Th17 cells as

described in methods. With this protocol, we obtained bulk

numbers of Th1 and Th17 cells largely free of contaminating IL-

17 and IFN-c producing cells in Th1 and Th17 polarizations,

respectively (Figure 1). In Th1 cultures, we consistently obtained

more than 50% of T cells that produced IFN-c and in Th17

cultures 20–50% of cells produced IL-17. More than 90% of these

cells expressed the Va3.2/Vb11 transgenic TCR chains

(Figure 1A). ELISA results confirmed that Th1 cells produced

IFN-c and Th17 cells produced large amounts of IL-17 in a

mutually exclusive manner (Figure 1B). Also, mRNA of the

signature transcription factors for Th1 and Th17 cells, T-bet and

RORct respectively, together with IFN-c and IL-17 were

expressed selectively in their corresponding T cell subset

(Figure 1C).

To further understand the functional differences of Th1 and

Th17 cells, we measured the expression of a panel of cytokines and

activation markers. Both Th1 and Th17 cells did not produce

appreciable levels of Th2-related cytokines IL-4 and IL-5 whereas

they produced comparable amounts of anti-inflammatory cytokine

IL-10 (Figure 2A). GM-CSF, an important pro-inflammatory

cytokine found to be important in EAE pathogenesis, was

exclusively expressed by Th1 cells (Figure 2B). The activation

status of Th1 and Th17 cells was evaluated by flow cytometry.

Th1 and Th17 cells markedly differed in the expression of the

characteristic cell surface activation markers CD62L and CD25.

While all Th17 cells were CD62Llow, only about 50% of Th1 cells

downregulated this receptor. On the other hand, Th17 cells did

not express CD25, as did Th1 cells (Figure 2C). Finally, the

antigen-specific reactivity of MOG-specific polarized Th1 and

Th17 cells was measured by a proliferation assay. Th17 cells

exhibited a higher proliferative response than Th1 cells in response

to their cognate antigen, MOG (Figure 2D).

Both Th1 and Th17 cells induce EAE, but with different
clinical phenotype

We compared the encephalitogenic potential of MOG-specific

Th1 and Th17 cell subsets in EAE by adoptive transfer. Three days

after secondary in vitro stimulation in polarizing conditions, we

transferred activated T cell blasts either individually or in

combination into Rag22/2 recipient mice. The use of lymphopenic

recipients allowed us to evaluate the pathogenic potential of these

CD4+ helper T cell subsets in the absence of host derived T and B

cells. In this model, we observed 100% EAE incidence with similar

day of disease onset, between 11 and 18 days post-transfer, in both

Th1 and Th17 cells recipient animals. Interestingly, co-transfer of

Th1 and Th17 cells induced EAE with earlier onset, between 10

and 13 days post-transfer, with severe disease (Figures 3A, B).

Th1 cells or Th1/Th17 co-transfers induced classical EAE in

almost all recipients, characterized by a paralysis progressing from

tail to head. In contrast, approximately 50% of Th17 cells

recipients came down with an atypical neurological disease

exhibiting an ataxia with an unbalanced gait and in few mice

severe axial and barrel rotatory defects (Figure 3C, Video S1).

Mice that recovered from such an ataxia eventually developed

classical EAE symptoms such as paralysis. We compared CNS

lesions of sick mice from all the adoptive transfer groups at the

peak of the disease. Histological and immunohistochemistry

analysis revealed that all groups exhibited severe immune cells

infiltration (CD4+ T cells and macrophages), astrogliosis, microglia

activation, demyelination and axonal damage. However, this was

largely indistinguishable between Th1 and Th17 single transfers or

between Th17 classic and ataxic EAE. Lesions were located

throughout the CNS in both Th1 and Th17 recipients, with no

significantly different preferential localization of CD4+ T cell

infiltrates. In addition, we found infiltration and demyelination in

the PNS, in particular the trigeminal root and the spinal roots in

both groups (Table 1, Figure S2 and data not shown).

Plasticity of Th17 cells in vivo
We analyzed the cellular composition of CNS infiltrating

mononuclear cells as well as peripheral lymphoid organs of

Rag22/2 recipients. Mice at the peak of paralytic or ataxic EAE

had major infiltrates in both brain and spinal cord. Flow cytometric

analysis for the intracellular cytokines showed that Th1 recipients

contained mainly IFN-c and negligible numbers of IL-17 producing

CD4+ T cells in both brain and spleen. In contrast, mice with Th17

mediated EAE had both IFN-c and IL-17 producing CD4+ T cells

in similar proportions. In addition, we found IFN-c+ IL-17+ double

positive CD4+ T cell population in the CNS but not in the

periphery of Th17 recipients (Figure 4A). Analysis of spinal cord

and lymph nodes yielded similar results (data not shown).

The co-existence of IFN-c+ and IFN-c+ IL-17+ double positive

cells in the CNS of Th17 recipient mice might suggest a possible

conversion of Th17 cells to the Th1 phenotype or de novo induction

from double negative cells in vivo. Since IFN-c is a negative

regulator of Th17 polarization, we hypothesized that IFN-c
produced by cells of the local milieu could have initiated this

conversion. To neutralize such signals, we treated Th17 cell

recipients with a blocking antibody for IFN-c. However, such

treatment had no effect on EAE onset or severity and majority of

the treated mice developed atactic phenotype similar to untreated

Th17 cells recipients (Figure 3). More important, T cell

conversion from Th17 to a Th1 phenotype was not impaired by

blocking IFN-c (Figure 4A). The expression levels of IFN-c and

IL-17 in the brains of Rag22/2 recipients after transfer of Th1,

Th17, mixture of Th1 and Th17 cells or Th17 cells and anti-IFN-

c blocking antibody were also measured. IL-17 was highly

Th1 and Th17 Cells in EAE
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expressed in Th17 recipients whereas, in Th1 cells transfers, the

levels were close to control. This is in agreement with flow

cytometric analysis where IL-17 production was not observed in

the brain of Th1 cells recipient mice. Expression levels of IFN-c

were higher in Th1 recipients. Nevertheless, the fact that IFN-c
was also expressed in Th17 recipient mice confirmed the

phenotypic conversion of Th17 cells or de novo induction from

double negative cells in the CNS. Neutralization of IFN-c partially

Figure 1. MOG-specific Th1 and Th17 cell differentiation. A. T cells from 2D2 mice were activated under Th1 and Th17 polarizing conditions.
Va3.2 and Vb11 transgenic TCR chains, as well as intracellular IL-17 and IFN-c cytokine expression was assessed by FACS. Data shown are gated in the
CD4+ population. B. IFN-c and IL-17 cytokines from culture supernatants of Th1 and Th17 polarized cells were quantified by ELISA. C. IFN-c, Tbet, IL-17
and RORct gene expression was quantified by real-time PCR of Th1 and Th17 polarized cells. Data shown are representative (A) or a mean of a
minimum of 5 experiments. Error bars indicate SEM (B and C).
doi:10.1371/journal.pone.0015531.g001

Th1 and Th17 Cells in EAE
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suppressed the IFN-c expression while increasing IL-17 expression

in the CNS (Figure 4B). To determine whether Th1 and Th17

polarizing cytokines, such as IL-12 and IL-23 respectively, released

by innate immune cells could have a role in Th17 cells plasticity,

Th17 cells were transferred into Rag22/2 6 IL-12p352/2

(deficient of IL-12) and Rag22/2 6 IL-12p402/2 recipient mice

(deficient of both IL-12 and IL-23). In both cases, IFN-c
production by the host would be compromised and phenotypic

conversion might not happen. Contrary to our expectations, all

these mice developed EAE albeit with delayed EAE onset and

Th17 cells converted to IFN-c producing cells (Figure S1).

Cytotoxic ability of Th1 and Th17 cells towards astrocytes
During CNS autoimmunity, T cells that invade the CNS are

thought to be reactivated by local antigen presenting cells such as

astrocytes. Indeed, several studies suggest that astrocytes can

present antigen to the invading T cells, and in vitro co-culture of

astrocytes with activated myelin-specific T cells (primarily Th1

cells) can lyse those astrocytes presenting myelin peptides [18].

Further, highly activated astrocytes are common components of

MS lesions and death of astrocytes can be unfavourable re-

myelination processes.

Th1 and Th17 cells, driven by IL-12 and IL-23 respectively,

show distinct gene expression profile, which determine their

functional capabilities. Microarray analysis of Th1 and Th17 cells

by us (unpublished data) and others showed differential expression

of cytotoxicity-related molecules in these two subsets [19]. In our in

vitro polarized T cells, granzyme B was up-regulated in Th1 cells in

relation to Th17 cells and naı̈ve cells, and Fas-L expression was

down-regulated in Th17 cells. Both Th1 and Th17 cells showed

Figure 2. Comparative characterization of MOG-specific Th1, Th2 and Th17 cells. T cells from 2D2 mice were activated under Th1 and Th17
polarizing conditions. A. IL-4, IL-5, IL-10 and GM-CSF cytokines from culture supernatants of Th1, Th2 and Th17 polarized cells were quantified by
ELISA (A and B). B. GM-CSF gene expression of Th1 and Th17 polarized cells was quantified by real-time PCR. C. CD25 and CD62L surface expression
was assessed by FACS and represent the mean percentage of positive cells in the CD4+ population; **p,0.01; ***p,0.001. D. Antigen specific
proliferation of differentiated Th1 and Th17 cells with titrated concentrations of rMOG was measured by quantification of radioactive 3H-thymidine
uptake. *p,0.05; **p,0.01. Data shown are expressed as mean 6 SEM of 3 (A, B), 9 (C) or representative of 3 (D) independent experiments.
doi:10.1371/journal.pone.0015531.g002

Th1 and Th17 Cells in EAE
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lower perforin expression than naı̈ve T cells (Figure 5). Based on

these findings, and to learn more about the differential pathogenic

mechanisms mediated by Th1 and Th17 cells, we explored the

cytotoxic potential of these distinct CD4+ T cell lineages. We

investigated whether Th1 and Th17 cells possess the ability to lyse

autoantigen-presenting astrocytes. Astrocytes were pre-treated

with IFN-c and TNF-a to up-regulate MHC class II expression

on the surface (Figure 6A) and further co-cultured with T cells

for 48 hours. We observed massive cytolysis of astrocytes induced

by Th1 cells but not by Th17 cells. Blocking MHC class II only

moderately suppressed the cytotoxicity by Th1 cells probably due

to the modest up-regulation of MHC class II or by the highly

activated nature of the T cells that were co-cultured (Figures 6B,
C Videos S2, S3). ELISA analysis of the co-culture supernatants

showed that the extent of cytotoxicity might be correlated with the

amount of IFN-c produced by the Th1 cells, which is partially

suppressed by MHC class II blocking (Figure 6D). The addition

of supernatant from the Th1 cultures, which contain abundant

amounts of IFN-c failed to induce cytolysis of astrocytes indicating

a possible cell-to-cell contact mediated mechanism responsible for

the cytotoxicity (Figure 7A, Video S4). However, blocking IFN-

c did not prevent the cytotoxicity mediated by Th1 cells. Further,

neither the anti-Fas-L antibody nor the inhibitors of granzyme B

and pan-caspase (ZVAD) inhibitors prevented Th1-mediated

astrocyte lysis (Figure 7B, Videos S5, S6).

Since MHC class II expression was only moderately increased

after stimulation, to evaluate the role of antigen presentation in

Th1-mediated cytotoxicity, we performed T cell co-culture

experiments with FT7.1 cells, a L cell fibroblast cell line stably

transfected with the I-Ab molecule [20] (Figure 8A). Again, we

observed a massive cell death induced by Th1 cells and a

moderate cytolysis by Th17 cells. MHC class II blocking almost

completely prevented death of FT7.1cells in all cases (Figure 8B,
C, Video S7, S8). Intriguingly, Th17 cells also lysed FT7.1 cells

albeit to a lower extent and delayed kinetics. Interestingly,

quantification of IFN-c and IL-17 in the co-culture supernatants

revealed the presence of IFN-c in addition to IL-17 in Th17 cells

co-cultures suggesting a phenotypic conversion of Th17 cells to

Th1 which might be responsible for the cytotoxicity (Figure 8D).
In addition, IFN-c blocking partially prevented death of FT7.1

cells mediated by Th1 and Th17 cells (data not shown).

Altogether, these data suggest a cell-to-cell contact dependent

cytotoxic capacity of Th1 but not Th17 cells towards antigen

presenting fibroblasts and astrocytes. Moreover, these data

Figure 3. Adoptive transfer EAE with polarized Th1 and Th17 cells. Th1 and Th17 polarized cells were adoptively transferred to Rag22/2

recipient mice, either alone or in combination or with anti-IFN-c treatment as indicated. Recipient mice were scored for EAE disease. A. Shown is the
percentage of EAE incidence in the different recipient mice. ***p,0.0001; Th1+Th17 vs. all other conditions. B. EAE clinical scores in the different
recipient mice. Data is represented as mean 6 SD. C. Incidence of classical and atypical EAE phenotype in different T cell transfers. Shown is the
percentage of classical vs. atypical EAE incidence in the different recipient mice. Th1: n = 29; Th17: n = 40; Th1+Th17: n = 16; Th17+ anti-IFN-c: n = 11.
doi:10.1371/journal.pone.0015531.g003
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demonstrate that in vitro generated Th17 cells are plastic and

convert to Th1 cells when recognize their cognate antigen,

supporting our data about in vivo Th17 plasticity in our EAE

model.

Discussion

Depending on the major cytokines produced, CD4+ T cells have

been classified into distinct subsets namely Th1, Th2, Th17, Th9,

Tfh and Treg. Recently, numerous studies were undertaken to

identify the T cell subset(s) primarily driving tissue-specific

autoimmune diseases, such as EAE. They showed that, in

principle, both Th1 and Th17 cells have the potential to mediate

autoimmune pathogenesis, though through different pathological

phenotypes [21–25].

Here, we compared the functional and pathogenic abilities of

Th1 and Th17 helper CD4+ T cell subsets derived from TCR

transgenic ‘‘monoclonal’’ T cells that recognize MOG and NF-M

peptides in the context of I-Ab. We used ‘‘monoclonal’’ T cells

from 2D2 TCR transgenic mice to rule out functional variations

due to different TCR repertoires. We optimized a protocol that

allowed us to generate sufficient numbers and purity of these

defined reactive cells and used them for adoptive transfer into

Rag2-deficient mice. Our data agree with recent studies [24,26]

that both Th1 and Th17 cells alone are capable of mediating EAE.

Furthermore, we show that Th1 and Th17 together synergize to

enhance disease severity and pathology.

The polarized Th1 and Th17 cells produced abundant amounts

of their signature cytokines, IFN-c and IL-17 respectively. In

addition, Th1 cells but not Th17 cells produced GM-CSF which is

in agreement with a recent study [27]. Although IL-23 can induce

the expression of GM-CSF in many innate cells, for unknown

reasons, our defined culture conditions did not allow GM-CSF

production by Th17 cells. Th1 but not Th17 cells readily

upregulated the surface expression of CD25, the IL-2 receptor

alpha chain commonly associated with the activation status of T

cells. Recent studies suggest that IL-2 acts as a negative regulator

of Th17 differentiation [28]. We speculate that Th17 cells do not

upregulate CD25 to avoid any inhibition rendered by IL-2.

Moreover, we added IL-23 but not IL-2 into our Th17

differentiation conditions which may further suppress CD25

expression.

The clinical EAE syndromes caused by Th1 and Th17 cells

were notably distinct. While transfer of Th1 cells alone induced a

classical EAE phenotype, characterized by an ascending caudo-

cranial paralysis. In contrast, approximately half of the Th17 cells

recipient mice developed atypical EAE with an ataxic gait

disturbance, reminding of an EAE variant described by Stromnes

et al in C3H mice immunized with MOG peptides. There, higher

Th17 cell numbers led to inflammation in the brain and an

atypical EAE, while Th1 skewing induced classic EAE [25].

Unexpectedly, the distinct clinical syndromes were not reflected by

macroscopic distributions of the lesions, but there were histological

distinctions. While lesions of Th1 recipients were dominated by

Th1 cells, Th17 recipients had infiltrates composed of both IFN-c
and IL-17 producing T cells. We speculate that transient high local

concentration of IL-17 in the brain might be responsible for the

atypical EAE presentation. However, due to the emergence of

IFN-c producing T cells in Th17 recipients, lesions might spread

throughout the CNS and remain indistinguishable between

recipients leading to classical EAE. In fact, we observed that

some Th17 recipients that presented ataxic disease progressed into

classic paralytic EAE. Interestingly, all of the Th1+Th17 co-

transfer mice developed only classical EAE demonstrating a

dominant effect of IFN-c on the disease outcome. This is in line

with the previous finding that IFN-c and its responsiveness of the

CNS determine the lesion localization [29,30].

The emergence of Th1-like cells in lesions initiated by

transferred IL-17 producing Th17 cells could be explained by

several mechanisms. Most prominently, Th1 cells could have

emerged from the numerous neutral cells contained in the

transferred inocula, or there might have been a shift from IL-17

to IFN-c production. Previous studies of highly purified cells

documented a high degree of plasticity of Th17 cells readily

Table 1. Quantification of inflammation and demyelination in spinal cord, brain and PNS.

Adoptive transfer EAE EAE score SC Inf SC DM Brain Inf Brain DM PNS

Th1 3.5 0.7 1 Cer, Obl, ON Cer:1, Obl: 1, ON:0 TG

3.5 0.5 1 Cer, Obl, Cer 3; Obl 1, TG

3.5 1.9 2 Cer, Obl, ON Cer 2, Obl 1, ON 1 TG

4 2.1 1 ON ON 1 TG, RO

4 3.5 2 Cer, ON Cer 1, ON 1 TG, RO

4 2.8 2 Cer, Obl, Trig, ON Cer 1, Obl 1, ON 1 TG, RO

Th17 4 2 2 Cer, obl Cer 2 TG

4 1.7 2 Cer, Obl, ON, ON 1 TG, RO

4 2.4 2 Cer, Obl, Trig Trig 2 TG, RO

ataxic 4.5 2 Cer, Obl, Trig, ON Cer 2, Obl 1, Trig 3, ON 1 TG

ataxic 1.3 1 Cer, Obl, Trig, ON Cer 1, Obl 1, ON 2 TG, RO

Th1+Th17 4 2.2 3 Cer, Obl, ON, ON 1 TG, RO

4 2.2 2 Obl, Trig, ON ON 1, Trig 2 TG, RO

4 2 3 Cer, Obl, ON, Trig ON 2, Trig 2 TG, RO

This quantification is according with the classification developed by [53]. SC Inf – inflammatory infiltrates per spinal cord section; SC DM – spinal cord extent of
demyelination determined semi-quantitatively: 1-perivenous, 2-confluent, 3-profound (half of spinal cord section), 4-complete (entire spinal cord section); Brain Inf and
Brain DM – Areas of the brain with inflammation and demyelination (with score as in SC): Cer-cerebellum, Obl-medulla oblongata, ON-optic nerves, Trig-central portion
of the trigeminal root; PNS – inflammation in the peripheral nervous system: TG-trigeminal root, RO-spinal roots.
doi:10.1371/journal.pone.0015531.t001
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Figure 4. Plasticity of Th17 cells in adoptive transfer EAE. Th1, Th17, Th1+Th17 cells or Th17 cells and anti-IFN-c antibodies were adoptively
transferred into Rag22/2 mice. A. EAE sick mice with classical EAE, minimum score of 3 were sacrificed, and brain and spleen were removed. Immune
cells were isolated and characterized for IFN-c and IL-17 expression by intracellular FACS staining. Data shown is gated in the CD4+ population and is
representative of a minimum of 5 animals analyzed per group. B. Expression of IFN-c and IL-17 in the brain from EAE sick mice was analyzed by real
time PCR. Rag22/2 control: n = 7; Th1: n = 7; Th17: n = 10; Th1+Th17: n = 5; Th17+anti-IFN-c: n = 6. Data are represented as mean 6 SEM. *p,0.05;
***p,0.0001.
doi:10.1371/journal.pone.0015531.g004

Figure 5. Cytotoxic molecules expression by Th1 and Th17 cells. T cells from 2D2 mice were activated under Th1 and Th17 polarizing
conditions. Expression of granzyme B, Fas-L and perforin in naive T cells (n = 4), Th1 (n = 6) and Th17 cells (n = 7) were measured by real time PCR. The
data is represented as mean 6 SEM.
doi:10.1371/journal.pone.0015531.g005

Th1 and Th17 Cells in EAE
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converting to Th1 phenotype in vivo, a process particularly

prominent in the lymphopenic recipients [31,32]. We used

Rag22/2 mice as recipients to avoid any host derived cells

contributing to the pathogenesis [33] and this could have

facilitated phenotype conversion. Converted IFN-c producing

Th1 cells were found both in the CNS and in the periphery and it

equalled the numbers of IL-17 producing Th17 cells. Interestingly,

in contrast to the previous studies [31,32], we found IFN-c+IL-17+

cells only in the CNS, not in peripheral lymphoid organs,

suggesting a specific milieu or re-activation inside the CNS

furthering the conversion to double cytokine producing T cells.

Since host derived IFN-c might antagonize the maintenance of IL-

17 phenotype [34], we neutralized the IFN-c in vivo by blocking

antibodies. However, IFN-c neutralization neither affected clinical

disease nor phenotypic conversion of Th17 cells but partially

suppressed IFN-c related gene expression in the CNS. This could

be due to the maximal activation of T cells before transfer or,

more trivially, the exclusion of sufficient doses of antibodies from

the CNS. In vitro, we observed conversion of Th17 cells to the Th1

phenotype only after renewed encounter with the antigen. Also,

locally formed IL-12, the master cytokine inducing IFN-c

production in naı̈ve CD4+ T cells, could have supported the

conversion of Th17 cells [35]. However, unexpectedly, Th17 cells

induced EAE in both IL-12p35 deficient (lacking IL-12 solely) and

in IL-12p40 deficient mice (lacking both IL-12 and IL-23 and, in

both hosts, we noted conversion of Th17 cells into IFN-c
producers. Recently it has been reported that a minor subset of

Th17 cells can convert to IFN-c producers in the absence of IL-12

in vitro [36]. We speculate that yet unknown factor(s), independent

of IL-12, IL-23 might induce phenotypic conversion in vivo.

Finally, it is possible that infiltrating Th17 cells or IFN-c2IL-172

cells that, in the CNS, local antigen-presenting cells such as

astrocytes or microglia could have driven T cells from an IL-17 to

IFN-c production. Our data thus indicate a one-way phenotype

conversion from IL-17- to IFN-c producer but not vice-versa. The

distinct clinical outcomes may be dependent on the extent of in vivo

conversion of Th17 to the Th1 phenotype. In line with this, a

recent report suggested that Th17 cells induced diabetes only upon

conversion into IFN-c producers in vivo [37].

Do Th1 and Th17 T cell subsets differ in their effector

mechanisms? Distinct cytokine and chemokine expression by these

cell types likely contribute to the differential migration and effector

Figure 6. Cytotoxic potential of Th1 and Th17 cells towards astrocytes. 2D2 MOG-specific T cells were polarized in Th1 and Th17 conditions
and co-cultured in duplicates with activated astrocytes as described in methods. A. MHC class II expression on astrocytes was analysed by FACS. B.
GFP-labeled astrocytes were co-cultured with Th1 or Th17 cells in the presence of isotype control or anti-MHC class II antibodies. Cells were tracked
every 30 minutes by fluorescent time-lapse microscopy. Shown is the snap-shot fluorescent picture after 48 h co-culture. Magnification: 106. C.
Quantification of the fluorescent area (surviving cells) every 6 hours in the conditions shown in B. The values were normalized to that of control
(astrocytes only). D. IL-17 and IFN-c levels were measured in the supernatants at 48 h after the co-culture by ELISA. Data shown are representative of
minimum 3 experiments. *p,0.05; ns-not significant.
doi:10.1371/journal.pone.0015531.g006
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mechanisms at the target organ thus leading to different clinical

outcomes. It is known that Th1 cells induce the expression of

MHC class II or adhesion molecules on APCs by virtue of the

production of IFN-c, and thus facilitate the migration of T cells

into CNS [38–41], activate macrophages [42] and induce Tregs

[43]. On the other hand, Th17 cells producing IL-17A, IL-17F,

IL-21 and IL-22, attract neutrophils to the site of inflammation

[44], promote host defense [34] and regulate Tregs [45]. We

found another principal difference between Th1 and Th17 effector

T cells. Old work predating the identification of CD4+ T cell

subsets discovered that the encephalitogenic T cells lyse myelin

antigen presenting astrocytes [18,46–48]. Indeed, we show here

that our Th1 polarized cells lyse antigen presenting astrocytes and

the fibroblasts. We used neutralizing antibodies to test the

potential involvement of several lysis-related molecules (including

IFN-c MHC class II, granzyme B, caspases and FasL) in Th1-

mediated cytotoxicity. None of them, with the exception of

antibodies against MHC class II and IFN-c, substantially blocked

Th1 cell cytotoxicity. Whether this represents a yet unknown, cell-

to-cell contact mediated mechanism potentiated by IFN-c and

antigen presentation remains to be shown. In contrast, Th17 cells

failed to kill astrocytes and fibroblasts but acquired cytotoxic

potential after converting to IFN-c producing Th1 phenotype.

Our future studies will address whether cytotoxic damage to

astrocytes by Th1 autoimmune effector cells have a role in vivo. In

addition to their supportive role in the CNS, astrocytes are

activated in MS lesions and upregulate MHC class II to a certain

degree [49]. Astrocyte targeted autoimmunity could also have a

pathological consequence. Similar to neuromyelitis optica (NMO)

where specific autoantibodies kill aquaporin-4 expressing astro-

cytes, a cytotoxic attack of myelin presenting astrocytes could

contribute to the pathology in optic nerve and spinal cord of EAE

and MS lesions [50].

Materials and Methods

Mice
2D2 (TCRMOG)[17], TCRMOG 6 IgHMOG double transgenic

Optico-Spinal Encephalomyelitis (OSE) [15], Rag22/2, IL-

12p352/2, IL-12p402/2 and beta-actin GFP transgenic mice were

bred in the animal facilities of the Max Planck Institute of

Biochemistry and Neurobiology. All animals used in this study were

with C57BL/6 background. The protocol was approved by the

animal welfare committee of Government of Upper Bavaria

(Tierschutzkommission der Regierung von Oberbayern, Munich,

Germany) (License No: 55.2-1-54-2531-45/04). The animal proce-

dures were in strict accordance with the guidelines set down by the

animal welfare committee of the Government of Upper Bavaria.

In vitro CD4+ T cell differentiation
Th1 and Th17 polarized cells were obtained after optimization

of protocols described previously [51,52]. Briefly, 206106 OSE or

Figure 7. Effect of blockade of cytotoxic molecules on Th1 mediated astrocyte cytotoxicity. 2D2 MOG-specific Th1 cells were co-cultured
in duplicates for 48 hours with astrocytes in the presence or absence of the Th1 culture supernatant (A), anti-IFN-c antibody, anti-FasL antibody,
Granzyme B (GzmB) inhibitor and the pan-caspase inhibitor ZVAD (B). Cells were tracked every 30 minutes by fluorescent time-lapse microscopy.
Shown is the snap-shot fluorescent picture at the end of the culture period and is representative of minimum 2 experiments.
doi:10.1371/journal.pone.0015531.g007
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2D2 total erythrocyte-lysed spleen cells per well were cultured for

6 days in the presence of 20 mg/ml rMOG (MOG aa1-125) in 6

well-plates in complete RPMI-1640 with 10% FCS. For Th1 and

Th17 polarization, the following cytokines and antibodies were

further added in the culture. Th1: IL-12 (10 ng/ml), IL-18

(25 ng/ml) and anti-IL-4 (10 mg/ml); Th17: human TGF-b1

(5 ng/ml), IL-6 (20 ng/ml), IL-23 (10 ng/ml), anti-IL-4 (10 mg/

ml) and anti-IFN-c (10 mg/ml); Th2: IL-4 (50 ng/ml) and anti-

IFN-c (10 mg/ml;. All cytokines were purchased from Peprotech

except IL-23 (R&D Systems) and IL-18 (MBL). The neutralizing

antibodies were produced from hybridoma supernatants. Th1 cells

were supplemented with IL-2 (10 ng/ml, Peprotech) and Th17

cells with IL-23 (10 ng/ml) at day 3 of culture. 5–6 days later,

living cells were purified by Nycoprep (Axis-Shield) gradient and

CD4+ T cells were isolated by negative selection (R&D Systems)

according to manufacturer’s instructions. Purified CD4+ T cells

(approximately 56106 cells/well) were polarized for a second time

in the same conditions and in the presence of irradiated (30 Gy)

splenic antigen presenting cells for additional 3 days. Activated

living cells were purified by Nycoprep, yielding .99% pure CD4+

population.

T cell proliferation assay
MOG-specific CD4+ T cells previously differentiated in Th1

and Th17 polarizing conditions were re-stimulated in triplicates

(46104 T cells/well) in the presence of irradiated splenic cells

(26105 cells/well) and rMOG for 72 h. Antigen specific T cell

proliferation was measured by adding 1 mCi of [3H]-thymidine in

the last 18 h and incorporated radioactivity was measured in the

Beta counter.

Adoptive transfer EAE
Freshly activated MOG-specific CD4+ Th1 and Th17 cells were

suspended in PBS, counted and injected intravenously into

Rag22/2 recipient mice. Each animal received 5 to 106106 of

Th1, Th17 or mixed Th1 and Th17 cells (proportion of 1:2). In

one group of Th17 cells transfer, anti-IFN-c antibodies (500 mg/

mouse) were injected at 4 days interval. Animals were evaluated

every 1–2 days for clinical symptoms. The classical EAE scores

were given as below: score 0 – no disease; score 0,5 – reduced tail

tonus; score 1: limp tail; score 1,5 – limp tail and ataxia; score 2 –

limp tail, ataxia and hind limb weakness; score 2,5 – at least one

hind limb paralyzed/weakness; score 3 – both hind limbs

Figure 8. Cytotoxic potential of Th1 and Th17 cells towards FT7.1 cells. 2D2 MOG-specific T cells were polarized in Th1 and Th17 conditions
and co-cultured in duplicates with FT7.1 cells as described in methods. A. MHC class II expression on FT7.1 cells was analysed by FACS. B. GFP-labeled
FT7.1 cells were co-cultured with Th1 or Th17 cells in the presence of isotype control or anti-MHC class II antibodies. Cells were tracked every 30
minutes by fluorescent time-lapse microscopy. Shown is the snap-shot fluorescent picture after 48 h co-culture. Magnification: 106. C. Quantification
of the fluorescent area (surviving cells) every 6 hours in the conditions shown in B. The values were normalized to that of control (FT7.1 cells only). D.
IL-17 and IFN-c levels were measured in the supernatants at 48 h after the co-culture by ELISA. Data shown are representative of minimum 3
experiments. ns-not significant.
doi:10.1371/journal.pone.0015531.g008
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paralyzed/weakness; score 3,5 –complete paralysis of hind limbs;

score 4 – paralysis until hip; score 5 – moribund or dead. The non-

classical (atypical) EAE scores were given as follows: score 0 – no

disease; score 1 – head turned slightly (ataxia, no tail paralysis);

score 2 – head turned more pronounced; score 3 – inability to walk

on a straight line; score 4 – laying on side; score 4,5 – rolling

continuously unless supported; score 5 – moribund or dead.

Mononuclear cells isolation from CNS tissue
Sick mice were perfused transcardially with PBS. Spinal cord

and brain tissue were isolated and homogenized in RPMI-1640

medium. Brain and spinal cord suspensions were passed through a

40 mm nylon mesh (BD Biosciences) and centrifuged. Cells were

re-suspended in 30% percoll (GE Healthcare), overlaid on 70%

Percoll and centrifuged for 20 min at 1200 g at room temperature.

After centrifugation, the interface containing mononuclear cells

was removed, washed with RPMI and used for flow cytometry.

Flow cytometry
Single cell suspension of spleen and lymph nodes were prepared

by nylon mesh. CNS infiltrating mononuclear cells were isolated

by Percoll gradient. For intracellular cytokine staining, cells were

stimulated for 4 hours with PMA (50 ng/ml), ionomycin (0.5 mg/

ml) and brefeldin A (5 mg/ml) (Sigma Aldrich). Cells were first

stained extracellularly in FACS buffer with fluorochrome labeled

rat anti-mouse CD3e (145-2C11), CD4 (RM4-5), Va3.2 TCR

(RR3-16), Vb11 (RR3-15), CD25 (PC61) and CD62L (MEL-14)

antibodies (all from BD Pharmingen except CD62L, from

Immuno Tools). Stained cells were washed, then fixed and

permeabilized with 2% PFA and saponin buffer and finally stained

intracellularly with anti-IFN-c (XMG1.2) and anti-IL-17 (TC11-

18H10) (BD Pharmingen) and their respective isotype controls in

saponin buffer. Astrocytes and FT7.1 cells were stained with anti-

MHC class II (2G9). Samples were acquired on a FACSCalibur

(BD Biosciences) and data were analysed with CellQuest (BD

Bioscience) and Flow Jo version 7.2.5 (Tree Star) softwares.

Enzyme linked immunosorbent assay (ELISA)
Cytokine production was determined by ELISA using matching

antibody pairs for IFN-c (purified capture antibody clone AN-18,

biotinylated detection antibody clone XMG1.2, BD Pharmingen),

IL-17 (purified capture antibody clone eBio17CK15A5, biotiny-

lated detection antibody clone eBio17B7, eBioscience), IL-4

(purified capture antibody clone BVD4-1D11, biotinylated

detection antibody clone BVD6-24G2, BD Pharmingen), IL-5

(purified capture antibody clone TRFK5, biotinylated detection

antibody clone TRFK4, BD Pharmingen), IL-10 (R&D Systems)

and GM-CSF (Peprotech) according to the manufacturer’s

instructions. Culture supernatants were collected and frozen at

220uC until quantification.

Quantitative real-time PCR analysis
Total RNA was isolated with TRI Reagent extraction (Sigma-

Aldrich). 1–4 mg of RNA was treated with DNase I and then

reverse transcribed into cDNA using oligo-dT primers and

SuperScript II Reverse Transcriptase (Invitrogen), according to

manufacturer’s instructions. Primers and probes (Table S1)
(Metabion, Martinsried, Germany) were used for SYBR Green or

TaqMan PCR analysis. Where possible, the primer/probe

sequence combinations spanned contact sequences of subsequent

exons. For amplification, the Absolute QPCR mix was used

(ABgene). Each reaction was run in triplicate on an ABI 7900

machine (Applied Biosystems) and was normalized to housekeeping

gene GAPDH transcripts. Primary data was analyzed with Gene-

Amp SDS version 2.3 software (Applied Biosystems).

Histological analysis
Animals were perfused with cold PBS and then with 4%

paraformaldehyde in PBS, stored in the same fixative for 24 hours

at 4uC, washed twice with PBS, and finally kept at 4uC until used.

Brain and spinal cord tissue was dissected and in part embedded in

paraffin, or snap frozen in Tissue Tek OCT compound on dry ice

for immunohistochemistry. Adjacent serial sections were stained

with hematoxylin (H&E), luxol fast blue (LFB), or Bielschowsky

silver impregnation (Biel).

Astrocytes primary culture
Primary astrocyte cell cultures were obtained from 2-days-old

beta-actin GFP transgenic or wild type C57BL/6 mouse pups.

Briefly, brains were removed, placed in 15 mM of Hepes in Hanks

Balanced Salt Solution (HBSS) (Gibco) and meninges were

removed. Brains were homogenized in 15 mM of Hepes in HBSS

with 1 ml tip and a 27 G syringe and cells were dissociated with

incubation at 37uC for 10 minutes in 2 mg/ml of trypsin solution.

After washing, cells were suspended in supplemented DMEM

(Gibco), passed through a 70 mm cell strainer, and plated in a T75

flask. Cells were allowed to grow for 8 to 10 days and media was

changed every 3 days. Cells were shaken overnight at 90 rpm to

remove contaminating oligodendrocytes, microglia and neurons.

Adherent cells contain a majority of astrocytes whose purity was

increased with trypsinization and further passages. Experiments

were done with astrocytes with a minimum of 2–3 passages.

FT7.1 cell line culture
The fibroblast cell transfectants FT7.1, which overexpress the

mouse I-Ab MHC class II molecule on their surface, were cultured

in supplemented RPMI media plus the selective reagents:

mycophenolic acid (2.5 mg/100 ml), xanthine (25 mg/100 ml)

and hypoxanthine (2.5 mg/100 ml) (Sigma). For the use in time-

lapse fluorescent microscopy experiments, FT7.1 cells were

retrovirally transduced with GFP (pMSCVneo-IRES2-eGFP).

T cells and astrocytes or FT7.1 cells co-culture.
2 days before the co-culture, primary GFP-astrocytes were

trypsinised, irradiated with 30 Gy and plated 46104 cells per well

in 96-well plate. On the following day, adherent astrocytes were

stimulated with IFN-c and TNF-a, 10 ng/ml each (Pepro-

tech).GFP-FT7.1 cells were plated (2.56104 cells per well) in 96-

well plate. Freshly activated T cells were added to stimulated

astrocytes or FT7.1 cells in a ratio of 1:10, in the presence of

20 mg/ml MOG 35–55 peptide. The following blocking antibodies

and inhibitors were used: 10 mg/ml anti-MHC class II (2G9),

10 mg/ml anti-IFN-c (R4-6A2), 10 mg/ml anti-Fas-L, 10 mg/ml

isotype control IgG2a (all from BD Pharmingen), 25 mM

Granzyme B inhibitor II (Calbiochem) and 25 mM caspase

inhibitor Z-VAD (Calbiochem). Cytotoxicity was evaluated by

fluorescent time-lapse microscopy for 48 h using the MetaMorph

software (Molecular Devices). For quantification, area covered by

the fluorescent intact cells was calculated after background

correction for each image using ImageJ. The data were

normalized to that of control for each time point.

Statistics
Descriptive statistical analysis was performed using Prism

version 5 software (GraphPad). Differential EAE incidence was

analyzed by log-rank (Mantel-Cox) test by an in-built survival
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curve analysis. One- and two-way ANOVA and t test statistical

analysis were used in the other studies. p values less than 0.05 were

considered to be significant.

Supporting Information

Figure S1 Adoptive transfer EAE of polarized Th17 cells
in mice deficient of IL-12p35 or IL-12p40. A. In vitro

polarized Th17 cells were adoptively transferred to Rag22/2,

Rag22/2 6 IL-12p352/2 and Rag22/2 6 IL-12p402/2 mice as

described in methods. Recipient mice were scored for EAE

disease. Shown is the evaluation of percentage of EAE incidence in

the different recipient mice. *p,0.001 in Rag22/2 vs. other

conditions. n = 5 animals per group. B. CNS infiltrating cells were

isolated from sick mice of the above adoptive transfer and

characterized for IFN-c and IL-17 expression by intracellular

FACS staining. Data shown is gated in the CD4+ population.

(TIF)

Figure S2 Histological analysis of Th1 and Th17 cells
recipient mice. Spinal cord sections of Rag22/2 recipient mice

were characterized by histology and immunohistochemistry. H&E

– haematoxylin & eosin, LFB – Luxol Fast Blue, Biel –

Bielschowsky, CD3- for T cells, and MAC3 is a marker for

phagocytes. Magnification: 256. Representative figures are

shown. Th1: n = 6; Th17: n = 5; Th1+Th17: n = 3.

(TIF)

Video S1 Different EAE clinical phenotypes induced by
Th1 and Th17 cells. Shown is Th1 cells recipient mice with

classical EAE, score 3 - tail and both hind limbs paralyzed (left);

and Th17 cells recipient mice with atypical EAE, score 3.5 -

inability to walk on a straight line and laying on side (right).

(WMV)

Video S2 Th1 but not Th17 cells lyse astrocytes. GFP-

positive astrocytes were co-cultured with Th1 or Th17 cells for

48 h in the presence of isotype control antibody. Cells were

tracked every 30 minutes by fluorescent time-lapse microscopy.

(AVI)

Video S3 Th1 but not Th17 cells lyse astrocytes. GFP-

positive astrocytes were co-cultured with Th1 or Th17 cells for

48 h in the presence of MHC class II blocking antibody. Cells

were tracked every 30 minutes by fluorescent time-lapse

microscopy.

(AVI)

Video S4 Effect of blockade of cytotoxic molecules on
Th1 mediated astrocyte cytotoxicity. GFP-positive astro-

cytes were co-cultured with Th1 cells or Th1cell culture

supernatants for 48 h. Cells were tracked every 30 minutes by

fluorescent time-lapse microscopy.

(AVI)

Video S5 Effect of blockade of cytotoxic molecules on
Th1 mediated astrocyte cytotoxicity. GFP-positive astro-

cytes were co-cultured with Th1 cells with and without the

presence of anti-IFN-c antibody for 48 h. Cells were tracked every

30 minutes by fluorescent time-lapse microscopy.

(AVI)

Video S6 Effect of blockade of cytotoxic molecules on
Th1 mediated astrocyte cytotoxicity. GFP-positive astro-

cytes were co-cultured with Th1 cells in the presence of anti-FasL

antibody, Granzyme B (GzmB) inhibitor or the pan-caspase

inhibitor ZVAD for 48 h. Cells were tracked every 30 minutes by

fluorescent time-lapse microscopy.

(AVI)

Video S7 Cytotoxic potential of Th1 and Th17 cells
towards FT7.1 cells. MHC class II overexpressing GFP-

positive FT7.1 cells were co-cultured with Th1 or Th17 cells for

48 h in the presence of isotype control antibody. Cells were

tracked every 30 minutes by fluorescent time-lapse microscopy.

(AVI)

Video S8 Cytotoxic potential of Th1 and Th17 cells
towards FT7.1 cells. MHC class II overexpressing GFP-

positive FT7.1 cells were co-cultured with Th1 or Th17 cells for

48 h in the presence of MHC class II blocking antibody. Cells

were tracked every 30 minutes by fluorescent time-lapse

microscopy.

(AVI)

Table S1 Primers and probes used for real-time PCR.

(DOC)
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