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Evolution of Allosteric Citrate Binding Sites on 6-
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Abstract

As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex
control is exerted on 6-phosphofructo-1-kinase (PFK1) level; this control overrules the regulatory role of other allosteric
enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In
eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal
region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the
processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and
effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms,
and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A)
as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in
the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying
these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing
medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at
the citrate-binding site (D591V) of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that
the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These
results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely

characterized by slow proliferation.
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Introduction

The ATP-dependent enzyme 6-phosphofructo-1-kinase (PFKI,
EC 2.7.1.11) catalyzes one of the three irreversible steps of
glycolysis, a process that is central to primary metabolism. It
catalyzes the Mg-ATP-dependent phosphorylation of fructose-6-
phosphate (F6P), resulting in its conversion to fructose 1,6-
bisphosphate (F1,6P) and the release of Mg-ADP as a byproduct
[1]. The enzyme is present in bacteria, fungi and animals, whereas
in plants another type of 6-phosphofructo-1-kinase (EC 2.7.1.90) is
predominant, which uses pyrophosphate as a phosphoryl donor
[2]. PFK1 is the site of the most complex control over the
glycolytic flux, and allosteric regulation is one of the strategies used
to control catalysis.

Sequence analyses of prokaryotic and eukaryotic ATP-depen-
dent PFK1 enzymes suggest that they diverged via duplication and
tandem fusion of a prokaryotic ancestor gene [3].Eukaryotic
PFKl1s are therefore more than twice the size of prokaryotic
PFK1s and are under regulatory control by a wider array of
effectors than the simpler bacterial enzymes. A total of six organic
ligand binding sites are found in eukaryotic enzymes: the catalytic
ATP and F6P binding sites, activator-binding sites for adenine
nucleotides and fructose-2,6-bisphosphate (F2,6P) and inhibitor—
binding sites for ATP and citrate [3,4]. However, the strict
conservation between the active site residues in the N-terminal half
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of the eukaryotic enzyme and those of bacterial PFK1s suggests
that the only active site in the eukaryotic enzyme is located in the
N-terminus [3]. On the other hand, the allosteric ligand binding
sites that developed because of mutations in the C-terminal region
enable fine-tuning of the regulatory enzyme in response to
elevated levels of specific downstream metabolites.

One of these allosteric modulators is citrate. Studies on allosteric
citrate binding site in rabbit muscle PFKI1 concluded that it
developed from the phosphoenolpyruvate (PEP)/ADP binding site
of the prokaryotic PFK1s. Amino acid residues involved in the
citrate binding are therefore found both on the N- and C-terminal
part of the molecule and were determined by single point
mutations [5,6] or by chemical modification [7]. So far, crystal
structures of the ATP-dependent PFKI1s from two prokaryotic
microorganisms have been determined; £. col [8] and L. bulgaricus
[9]. Only one structure of PFK1 from a eukaryote (7rypanosoma
brucer) was described [10], however this protozoan enzyme has not
been subjected to gene duplication/fusion event that is character-
istic for other eukaryots. Unfortunately, until now the mammalian
PFKs have proved recalcitrant to crystallization and subsequent
X-ray analysis. Therefore, only models for mammalian PFKs were
constructed. From a proposed model for the evolution of the
ligand biding sites prepared by Gunasekera and Kemp [6], the
binding site for citrate that is located between the N- and C-
terminal region, might form a gap between both parts of the
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enzyme. However, there is no information about the actual
mechanism of interaction between the specific residues and citrate,
nor about the number of citrate molecules needed for inhibition.

Citrate seems to play a major role in downregulation of PFK1
and therefore glycolytic flux. In fact, citric acid build-up is a sign of
anaplerotic conditions in the cells, which are characterized by
elevated levels of tricarboxylic acid (TCA) cycle intermediates and
by the need to slow down glycolysis. It is generally known that
citrate does not affect bacterial PFK1; however, some inhibition by
citrate can be found in PFK1 enzymes from eukaryotic microbial
species. In the filamentous fungus Aspergillus niger, enzyme activity
was inhibited by 50% by doses of citrate ranging from 4 to 6 mM
[11,12]. When the effect of citrate on the activities of PFK1
isoforms expressed in nervous and muscular tissues from various
species was studied, strong inhibition by citrate was found for
vertebrate species, with weaker inhibition seen in insects [13].
More detailed studies on rat PFK1 isoforms revealed that the
enzymes’ activities were halved at 0.08, 0.13 and 0.18 mM of
citrate for platelet (PFK-P), muscle (PFK-M) and liver (PFK-L)
enzymes, respectively [14]. That glycolysis is highly controlled at
the PFK1 step was also confirmed by calculations of enzymatic
flux capacities (V ,,y) and maximum physiological flux rates (v) in
animal muscle. Whereas flux capacities far exceed physiological
velocities in low-flux muscles, in high-flux muscles a close match
between flux capacities and flux rates is observed. However,
PFK1, in contrast to hexokinase and glycogen phosphorylase, does
not function at a velocity close to V.. In exercising muscle,
suggesting a complex role for this key glycolytic enzyme. Again,
this effect seems to be more evident in vertebrates than in insects
[15]. It is therefore tempting to speculate that during the evolution
of metazoans more strict control over glycolytic flux might have
been required. Such control may have emerged through the
selection of specific mutations enabling more strict control of
PFK1 activities by one of its downstream products, the TCA cycle
intermediate citric acid.

In the present paper, we present evidence showing that single
amino acid residues at the specific citrate binding sites can
determine the sensitivity of the enzyme toward this TCA cycle
metabolite. During the evolution of metazoans, the selection of
these mutations resulted in stronger inhibition of PFK1 by citrate,
suggesting the importance of strict control over glycolytic flux in
mammalian cells.

Material and Methods

DNA manipulations

DNA manipulations were essentially done as described by
Sambrook and Russel [16]. PCR reactions were performed with
Platinum® Pfx DNA polymerase (Invitrogen, Carlsbad, CA) using
the reaction solution recommended by the manufacturer. DNA
was sequenced by Eurofins MWG Operon (Ebersberg, Germany).

Human muscle type 6-phosphofructo-1-kinase cDNA (Clone ID
2964710) was purchased from Geneservice Ltd. (www.Geneser-
vice.co.uk). The native human pfki-M gene was amplified by PCR
using 5'-AATTATGGATCCATGACCCATGAAGAGCACC-3’
as a forward primer and 5'-AATTATTCTAGATTAGACGGC-
CGCTTCCCC-3" as a reverse primer. At the same time,
restriction sites were introduced at the 5" (BamHI) and 3’ (Xbal)
ends that enabled cloning into the pALTER-Ex] plasmid
(Promega, Southampton, UK) under the control of the fac
promoter. Mutations (K557R, D591V, K617A, D591V/K617A,
K557R/D591V/K617A) were generated in the native human pfk-
M inserted into pALTER-Ex1 by the use of QuikChange® 1T XL
Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). For the
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introduction of the K557R, D591V and K617A mutations the
following forward mutagenic primers were used: 5'-CCTGTG-
ACCGCATCAGGCAGTCAGCAGCTGG-3', 5'-GGACTGG-
CAGCTGGGGCCGTCGCTGCCTACATTTTTGAG-3" and
5'-GAACATCTGGTGCAAAAGATGGCCACAACTGTGAAA-
AGGGGCTTG-3'; for reverse primers, the complementary reverse
oligonucleotides were used. All primers were synthesized by Eurofins
MWG Operon (Ebersberg, Germany). Finally, the correct nucleotide
sequences of the native gene and all mutated genes were verified.

Expression and purification of recombinant enzymes

Plasmids were initially propagated in the . coli strain JM109
(Promega, Southampton, UK) by growing the bacteria in LB
medium with tetracycline (10 pL./mL). Native and mutant forms
of human pfA-M gene were subsequently expressed in the pfk
double-knockout F. coli strain RL257 (F-, [araD139]g,,, laclp-
4000(1ac1?, el4-, pfkB205(del-ins):FRT, fhD5301, A(fruK-
yeiR)725(fruA25), relAl, rpsL150(strR), rbsR22, pfkA203(del-
ins):FRT, A(fimB-fimE)632(::IS1), deoCl) [17]. E. coli RL257
transformants were grown in 1 liter of LB medium with
tetracycline on a rotary shaker at 37°C until an ODgyo of 0.5
was reached. Isopropylthiogalactoside (IPT'G) was added to a final
concentration of 1 mM, and the incubation continued for 16 h at
30°C.. The cells were harvested by centrifugation at 5,000 g for
10 min, washed with 50 mL of'ice-cold extraction buffer (100 mM
sodium phosphate buffer (pH 7.8), 0.15 M glycerol, 1 mM DTE,
ImM PMSF, 1 mM EDTA). The precipitate was frozen under
liquid nitrogen and stored at —80°C until needed.

Frozen bacterial cells were disrupted in a Mikro-Dismembrator
(Sartorius AG, Gottingen, Germany). Cell free homogenate was
extracted with 10 mL of cold 100 mM sodium phosphate buffer
(pH 7.8) containing 0.15 M glycerol, 1 mM DTE, ImM PMSF,
I mM EDTA and 10 pL/mL of protease inhibitor cocktail
(Sigma-Aldrich, Steinheim, Germany). The same buffer was used
throughout the whole isolation procedure. Dissolved proteins in
the supernatant formed after centrifugation at 16,000x g for
20 min at 4°C and were precipitated with ammonium sulfate, and
a fraction of between 45 and 75% of saturation was taken for
further purification. After dissolving precipitated proteins and
desalting the sample on a Sephadex ™ G-25 column (GE Health
Care, Piscataway, NJ), the proteins were loaded onto an affinity
column containing 1 mL of aminophenyl-ATP-Sepharose (Jena
Bioscience, Jena, Germany) that had been previously equilibrated
with extraction buffer. After the sample was applied to the column,
unbound proteins were removed by extensive washing. The PFK-
M enzyme was eluted from the column with 1.5 mL of buffer
containing 6 mM F6P and 1 mM ADP. Eluted enzyme was
dialyzed overnight against a buffer containing 20% (v/v) glycerol
and stored at 4°C.

Testing transformants for growth in glucose-containing
medium

Transformed E. coli R1.257 cells were grown overnight in 10 mL
of LB medium with tetracycline (10 uL./mL) at 37°C. One hundred
milliliters of M63 minimal medium with glucose (10% w/v),
tetracycline (10 pL/mL) and 0.8 mM IPTG was inoculated with an
adequate volume of the overnight . coli culture. During subsequent
growth at 30°C, aliquots of the culture were removed at the
indicated times, and the optical density was measured at 600 nm.

Enzyme assays

PFK1 activity was measured spectrophotometrically at 340 nm
(Lambda25 UV/VIS spectrophotometer, Perkin Elmer) essentially
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as reported previously [18] using a coupled reaction system.
Unless otherwise stated, the assay mixture contained, in a final
volume of 1 mL: 50 mM HEPES buffer (pH 7.8), 1 mM DTE,
100 mM KCl, 5 mM MgCly, 0.2 mM NADH, 0.025-2 mM F6P,
0.9 U/mL aldolase (Sigma-Aldrich, Steinheim, Germany), 15 U/
mL triosephosphate isomerase and 15 U/mL glycerol-3-phos-
phate dehydrogenase (Sigma-Aldrich, Steinheim, Germany).
Before use, the auxiliary enzymes were dialyzed overnight at
4°C against 50 mM HEPES buffer (pH 7.8) containing 1 mM
DTE, with one change of buffer after 8 h. Different concentrations
of citrate were added to the assay mixture just before the reaction
was started by the addition of ATP to a final concentration of
0.5 mM. Concentration of the enzyme used in the kinetic assays
was 0,2 ug/mL. All presented kinetic data are averages obtained
from a minimum of three replicate measurements. Total protein
concentrations of the samples were determined using a Bio-Rad
protein assay (Bio-Rad, Hercules, CA) with bovine y-globulin as a
standard [19].

Immunoblotting

Aliquots of supernatants prepared from cell-free homogenates of
E. coli transformants were applied to a Sepharose 12 column
connected to a FPLC system (Pharmacia, Uppsala, Sweden).
Appropriate fractions were collected after chromatography.
Calibration curves for the determination of protein molecular
masses in individual fractions were obtained using both high
(HMW) and low molecular weight (LMW) gel filtration calibration
kits (Pharmacia, Uppsala, Sweden). Fractions of dissolved proteins
collected after chromatography were separated using SDS-PAGE
with 10% polyacrylamide gels and 0.1% sodium dodecyl sulphate
and transferred onto nitrocellulose membranes. The membranes
were blocked with I-Block (Tropix Inc., Bedford, MA), washed
and incubated with 1:1000 dilutions of purified primary
antibodies. Polyclonal rabbit antibodies were raised against an
epitope specific for human PFK-M (CKDFREREGRLRAA;
GenScript Corporation, www.genscript.com). The membranes
were then rinsed with 1:2000 dilutions of goat anti-rabbit-HRP
secondary antibodies (Abcam, Cambridge, UK). The blots were
developed with ECL detection reagents (Amersham, GE Health-
care) and the membrane exposed to BioMax ~ XAR film
(Eastman Kodak, Rochester, NY). The film was developed using
an Ilford PQ Universal paper developer (Harman Technology
Ltd., Mobberley, UK).

Results

Citrate binding sites in various organisms

Analyses of citrate binding sites on the PFK1 enzymes of various
eukaryotic organisms revealed that identical amino acid residues
were found at the N-terminus in all examined species (Fig. 1A);
however, more variance was observed among the binding sites at
the C-terminus. Position 557 in the human PFK-M and
corresponding positions in the enzymes from other organisms
was typically occupied by lysine (K) or arginine (R) residues
(Fig. 1B-D). Position 600 in fungal enzymes, that corresponded to
position 591 in human PFK-M was typically ocupied by non-
ionizable amino acid residues with either polar or hydrophobic
properties (Fig. 1B), but in lower animals the ionizable acidic
residue aspartic acid was normally present (Fig. 1C). At the last
position, corresponding to position 617 of human PFK-M,
hydrophobic residues were predominant in lower eukaryotes
(Fig. 1B), but either acidic residues such as aspartic acid (D) or else
the hydrophobic amino acid alanine (A) were found in
invertebrates (Iig. 1C). On the other hand, lysine (K) was only
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present in vertebrates (Fig. 1D). These data suggest that specific C-
terminal residues alone may determine the sensitivity of the
enzyme to inhibition by citrate. Strict conservation of individual
components of citrate binding sites throughout vertebrate species,
where PFK1 enzymes are reported to be highly sensitive to citrate
inhibition, implies that this specific pattern of residues must have
been selected for during the evolution of higher animals. To verify
this hypothesis, specific residues in the human PFK-M were
replaced with the corresponding residues from the fungal 4. niger
PFKI1. Properties of the single mutants K557R, D591V and
K617A, a double mutant, D591V/K617A, and a triple mutant,
K557R/D591V/K617A, were evaluated.

E. coli strain RL257, which lacks its own pfk genes, was used for
transformation of the native PFK-M ¢cDNA and mutated genes.
Although no PFK1 activity of the mutated PFK1 enzymes D591V,
D591V/K617A and K557R/D591V/K617A could be detected
in cell homogenates of E. coli transformants grown on LB medium,
the expression of inserted genes was confirmed by western blotting

(Fig. 2A).

Kinetic properties of the native and mutant forms of
human PFK-M

The activities of isolated native human PFK-M and two
mutants (K557R and K617A) were measured at increasing
concentrations of F6P in the presence of 5 mM Mg®" and
0.5 mM ATP at pH 7.8. All enzymes showed maximum activities
in the range of 110-200 units/mg of protein, and these activities
were reached at 1 mM F6P. The K, values of the native enzyme
and both mutants were roughly identical and were all around
0.1 mM (Fig. 3A). These results show that these mutations had no
effect on the basic kinetics of the PFK-M enzyme.

Citrate inhibition of the native and mutant forms of
human PFK-M. To assess the inhibitory effect of citrate on the
various PFK-M isoforms, citrate in the form of its tri-potassium
salt was added to the measuring system. Increasing concentrations
of citrate led to the gradual inhibition of the native enzyme;
however, the inhibitory effect was diminished at higher
concentrations of F6P. While the 1C5( for citrate was 0.2 mM in
the presence of 0.4 mM of substrate, 0.6 mM of citrate was
needed to reduce the enzyme’s activity by half at 1 mM F6P.
When F6P concentrations in the system were greater than
1.5 mM, the enzyme showed sensitivity to citrate only at
concentrations below 1 mM, whereas higher concentrations of
the inhibitor had no additional negative effect on the enzyme’s
activity (Fig. 3B). The K; value for citrate acting on the native
human enzyme was calculated to be 0.05 mM. As presented in
Figure 3C, the K557R and K617A amino acid substitutions
markedly decreased the inhibitory effect of citrate. The K557R
mutant was shown to be more sensitive to citrate inhibition than
the K617A mutant; they exhibited K; values of 0.3 mM and
0.5 mM, respectively. As for the native enzyme, a decreased
inhibitory role of citrate was observed at increasing substrate
concentrations for both mutants (Fig. 3D).

Growth of E. coli transformants encoding the native
human PFK-M enzyme and two mutated PFK-M enzymes
in glucose-containing media

All transformants were also tested for growth on glucose. An E.
coli R1257 strain transformed with pALTER-Ex1 plasmid without
any insertions was used as a negative control. It is worth noting
that the parental £. coli strain RL257 (with no active PFK enzyme)
was unable to grow on minimal medium with glucose. The
transformants were tested for growth on M63 minimal medium
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Figure 1. Multiple sequence alignment of amino acid residues at the N and C-termini of PFK1 proteins that form allosteric citrate
binding sites. A. Amino acid residues (grey background) of citrate binding sites in the N-terminal region of PFK1 isoforms from the following species:
ECO24, Escherichia coli; ASPNG Aspergillus niger; CAEEL Caenorhabditis elegans; DROME, Drosophila melanogaster; HUMAN, Homo sapiens. B. Amino acid
residues (grey background) of citrate binding sites in the C-terminal region of PFK1 isoforms from the following fungi: ASPNG, Aspergillus niger; ASPFU,
Aspergillus flavus; Yeast, Saccharomyces cerevisiae; PICPA, Pichia pastoris; SCHPO, Schizosaccharomyces pombe. C. Amino acid residues (grey background)
of citrate binding sites in the C-terminal region of PFK1 isoforms from the following invertebrates: SCHMA, Schistosoma mansoni; HAECO, Haemonchus
contortus; CAEEL, Caenorhabditis elegans; DROME, Drosophila melanogaster. D. Amino acid residues (grey background) of citrate binding sites in the C-
terminal region of PFK1 isoforms from the following species: XENLA, Xenopus laevis; CHICK, Gallus gallus; PIG Sus scrofa; CANFA, Canis familiaris; HUMAN,
(Homo sapiens). The components of allosteric citrate site were originally identified in the mouse PFK-C enzyme (Accession number QOWUA3) [6], which
has 69,58% of identical; 13,18% strongly similar and 6,46% weakly similar residues to the human PFK-M (Accession number P08237); however, there is a
minor shift in numbering of amino acid residues between the enzymes. The mouse PFK-C enzyme has an extension of 8 amino acid residues at the N-
terminal end of the enzyme and an insertion at position 349. Therefore, the corresponding ligand binding sites in the N-terminal part of human PFK-M
differ by 8 amino acid residues and in the C-terminal region by 9 residues with respect to the mouse PFK-C. The numbering system for amino acids used
in the entire paper, therefore reflects the positions on the human PFK-M. The alignments were generated using CLUSTAL W [34].
doi:10.1371/journal.pone.0015447.9001

including 10% (w/v) of glucose. As expected, transformants
encoding the mutants D591V, D591V/K617A and K557R/
D591V/K617A showed no growth over the observed time period.

Previously, no PFK-M activity in these transformants grown on
complex medium was detected. Surprisingly, no growth was
observed with the transformant encoding the native human PFK-

A. “o—-——-“

D591V D591V KS57R
K617A D591V

K617A
B. T native PFK-M
r — — — D591V mutant

480 350 250 180 130 95 Molecular masses (kDa)

Figure 2. Western blot analyses of £. coli transformants. A. Western blots of inactive mutant forms of human PFK-M synthesized in E. coli
transformants grown in LB medium. B. Western blots of specific fractions collected after gel filtration of homogenate prepared from E. coli
transformants encoding wild type human PFK-M (above) and its inactive mutant D591V (below). Molecular weights of the proteins in individual
fractions as determined using the calibration curve are shown in the bottom line.

doi:10.1371/journal.pone.0015447.9002
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Figure 3. Kinetic measurements of recombinant human PFK-M and mutant forms of PFK-M. A. Fructose-6-phosphate (F6P)
saturation curves for the native human and mutant forms of PFK-M. Measurements were carried out at pH 7.8 in a buffer containing 5 mM
Mg?* and 0.5 mM ATP. Activities are expressed as a ratio of enzyme activity (v) at a specific substrate concentration to the activity detected at
saturating F6P concentration (V). Data are presented as means * standard deviation. B. Citrate inhibition of the native human PFK-M
measured at different fructose-6-phosphate (F6P) concentrations. The assay was performed at pH 7.8 in a buffer containing 5 mM Mg>* and
0.5 mM ATP. Data are presented as means * standard deviation. C. Citrate inhibition of the native and mutant forms of human PFK-M. All
measurements were conducted at 0.4 mM F6P. The assay was carried out at pH 7.8 in the presence of 5 mM Mg?* and 0.5 mM ATP. Activities are
expressed as a ratio of activity detected in the presence of citrate to activity measured without citrate in the system. Data are presented as means *=
standard deviation. D. ICso values for citrate inhibition of the native and mutant forms of human PFK-M measured at increasing
concentrations of F6P. The assay was carried out at pH 7.8 in the presence of 5 mM Mg?* and 0.5 mM ATP. Data were obtained by determining
the citrate concentration that caused inhibition of the wild type and mutated forms of PFK-M by 50%. Mean values of at least three independent

measurements are reported.
doi:10.1371/journal.pone.0015447.g003

M, whereas a modest growth reaching an ODgo value of 0.26
after 25 h was detected with the K557R mutant. The only
transformant that showed a significant growth rate (with an
approximate doubling time of 3 h) was the one encoding the
K617A mutant (Fig. 4).

Since no PFK1 activities and no growth of the transformants
carrying the proteins with D591V substitution was observed, we
speculated that this mutation inactivated human PFK-M and that
the other two mutations, K557R and KG617A, might not
compensate for the loss of PFKI activity. Since the D591V
mutation might prevent the consolidation of monomers into an
active tetrameric structure, the quaternary structures of the
enzymes were assessed by running cell free homogenate through
a size-exclusion column and detecting PFK-M monomers by
western blot in different eluted fractions. Tests were performed on
the native human PFK-M and the D391V mutant. For the
homogenate of the native PFK-M transformant, the strongest
western blot signals were recorded in fractions 10.5 and 11 mL,
which corresponded to proteins of molecular masses of around
350 kDa. In contrast, the strongest western blot bands in the
homogenate of the D591V transformant were detected in fractions
11.5 and 12 mL, where proteins with molecular masses of
170 kDa were predominant (Fig. 2B). The reported molecular
mass of a single human PFK-M monomer is 85,183 Da [20].
These data suggested that the substitution of the aspartic acid (D)
residue at position 591 with valine (V) enabled binding of two
monomers into a dimer but prevented the formation of an active
tetrameric PFK-M structure. It should be reminded that the
mutations on human PFK-M enzyme were carried out by
replacing corresponding residues from the fungal 4. miger PFK1.
Since the 4. niger enzyme was active despite of valine present at
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Figure 4. Growth of E. coli RL 257 transformants encoding
human native and mutant PFK-M forms. Growth was recorded in a
minimal medium with glucose as the sole carbon source at 30°C. Data
are presented as means * standard deviation.
doi:10.1371/journal.pone.0015447.g004
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position 591, arginine at position 557 and alanine at position 617,
other regions in the C-terminal part must be involved in the
formation of a quaternary structure of the holoenzyme.

Discussion

The catabolic reactions in cells encompassing glycolysis,
tricarboxylic acid cycle and oxidative phosphorylation are often
termed ‘“‘primary metabolism”. Although an important feature of
catabolism is the generation of chemically conserved energy in the
form of ATP, numerous intermediates of primary metabolism act
as precursors for the formation of cellular building blocks that
enable cell growth and division. Whereas in the microbial world
the overall growth rate is normally controlled by the availability of
nutrients from the environment, in metazoans nutrient levels in
the vascular system do not vary much. In order to control the
proliferation of somatic animal cells, more strict regulation of
primary metabolism must have been developed during evolution.
An important point of control over the metabolic flux of primary
metabolism seems to be the enzyme PFKI.

Analyses of the allosteric citrate binding sites and kinetic
characteristics of eukaryotic PFK1 enzymes revealed that stronger
inhibition by citrate has been selected for during the development
of metazoans. The most powerful regulatory effect of citrate as a
feedback inhibitor was recorded in Vertebrata, whose PFKI1
1soforms have conserved amino acid residues forming the citrate
allosteric sites at both the N and C-terminal regions. Amino acid
motifs responsible for citrate binding at the C-terminus are
characterized by two basic residues and one acidic residue that
apparently enable strong allosteric effects of the ligand on the
protein. In contrast, in fungi, where less stringent control over
glycolytic flux is required, only one component of allosteric site in
the C-terminal part is of this basic-ionizable type while the other
two are predominantly non-ionizable (some are even hydropho-
bic). Similarly, in lower animals (invertebrates) basic residues such
as lysine and arginine are found at one position, while the next two
components are characterized predominantly by the presence of
ionizable-acidic residues.

Interestingly, a single substitution of valine (V) for aspartic acid
(D) at position 591 resulted in loss of activity. As revealed by gel
filtration, monomers containing this mutation were unable to form
tetrameric structures and remained dimeric. Although amino acid
residues enabling association of monomers into a dimer have been
suggested [21], further studies of the residues at position 591 and
in the surrounding area might reveal grouping of dimers into
active tetrameric structures.

The mechanism of citrate interaction with individual compo-
nents of citrate allosteric site on PFKI enzymes has not been
studied yet on a submolecular level. However, the importance of
specific amino acid residues at allosteric citrate interaction site in
mammalian PFK-M was demonstrated by replacing a basic
residue at position 617 with a hydrophobic one. This single
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substitution diminished the enzyme’s sensitivity to citrate.
Moreover, it enabled the recombinant enzyme to participate
actively in bacterial metabolism, which was reflected by the
growth of transformants in a glucose-containing medium. It is
important to realize that the native human PFK-M enzyme didn’t
enable growth of E. coli RL257 on glucose, although its activity was
detected in a cell free homogenate. This might be due to the high
sensitivity of mammalian PFK-M enzymes to citrate inhibition.
The estimated intracellular citrate concentration during the
exponential growth phase on glucose was reported to be
approximately 0.9 pmol/g cell dry weight in E. coli [22], which
equals approximately 400 uM if the cellular volume is assumed to
be 2.3 mL/g of dry weight [23]. The possible role of intracellular
citrate concentration on growth of transformants carrying human
PFK-M enzymes was further shown by both PFK-M mutants.
K557R mutant carrying PFK-M enzyme with IC5q value of
0,3 mM enabled slow growth of transformant, while K617A
mutant with PFK-M enzyme less sensitive to citrate inhibition
(IC50=10,5 mM) grew faster.

A correlation between PFK1 activity and cell proliferation rate
has been observed also in cancer cells. By inhibiting Fructose-2,6-
bisphosphate formation, a potent activator of eukaryotic PFK1
enzymes, markedly attenuated proliferation of several tumorigenic
cell lines was observed [24].

Data regarding accurate cytosolic citrate concentrations in
eukaryotes would be very informative. Relative high concentra-
tions were reported for fungal cells; in Aspergillus niger the citrate
concentration was between 2 mM and 30 mM [25] and in
Saccharomyces cerevisiae it was between 2.4 mM [26] and 3.5 mM
[27]. In normal human tissues, the measured citrate levels were in
the range of 200-450 pM [28]. However, these values do not take
into consideration the compartmentalization of citrate into
mitochondria and cytosol. It is worth noting that citrate is formed
in the mitochondrial matrix, while PFKI1 is strictly cytosolic.
However, a portion of the mitochondrial citrate is regularly
transferred into the cytosol and used for lipid acid synthesis after
being converted to acetyl-CoA by ATP-citrate lyase [29].

Weaker inhibition of PFK1 by citrate was observed at higher
concentrations of F6P. This effect appears to be of moderate
physiological relevance, since intracellular concentrations of F6P
are relatively low. The intracellular concentration of F6P is
reported to be 0.2 mM in A. niger [18], 0.23 mM in S. cerevisiae [27]
and 0.08-0.17 mM in mammalian skeletal muscle [30].
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Feedback inhibition of PFK1 and concomitant regulation of
metabolic flux through the glycolytic pathway obviously fails in
mammalian tumor cells. In malignant tissues, citrate concentra-
tions that are significantly higher than normal (reaching values
of 200-2000 uM) have been reported [27]. Dysregulation of
glycolysis, also known as the Warburg effect, is characteristic of
cancer cells [31]. There have been several reports of PFKI
1soforms with atypical kinetic characteristics in tumors. A PFK1
isoform  with reduced sensitivity to citrate inhibition
(Ki=0.75 mM citrate) and increased sensitivity to activation by
F2,6P was described in human glioma cells (as compared to the
enzyme from normal brain tissue (K;=0.1 mM citrate); [32]. A
PFK1 enzyme with similar kinetic characteristics was observed in
the fast growing rodent hepatoma cell line AS-30D; this form of
PFK1 showed complete insensitivity toward its allosteric inhibitors
citrate and ATP in the presence of physiological concentrations of
F2,6P. On the other hand, the enzyme was highly activated by its
activators NH,*, AMP and F2,6P [33]. However, the nature of
PFK1 isoforms exhibiting changes in enzyme kinetics has not been
studied in detail.

In conclusion, these results indicate that amino acid residues of
allosteric binding site for citrate at the C-terminus of PFKI
enzymes determine the strength of inhibition by citrate. By
substituting a specific amino acid residue, the level of inhibition of
the enzyme can be modulated. Analyses of the variations in
allosteric binding sites among different eukaryotic organisms
revealed that stronger inhibition of PFK1 enzymes by citrate has
developed during evolution, enabling better control over glucose
consumption in the slowly growing somatic cells of higher
metazoans. On the other hand, no downregulation of PFKI
isoforms by feedback inhibition has been described in cancer
tissues, which are characterized by rapid cell growth and
proliferation.
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