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Abstract

Background: Recently, a variant of ER-a, ER-a36 was identified and cloned. ER-a36 lacks intrinsic transcription activity and
mainly mediates non-genomic estrogen signaling. The purpose of this study was to investigate the function and the
underlying mechanisms of ER-a36 in growth regulation of endometrial Ishikawa cancer cells.

Methods: The cellular localization of ER-a36 and ER-a66 were determined by immunofluorescence in the Ishikawa cells.
Ishikawa endometrial cancer control cells transfected with an empty expression vector, Ishikawa cells with shRNA
knockdown of ER-a36 (Ishikawa/RNAiER36) and Ishikawa cells with shRNA knockdown of ER-a66 (Ishikawa/RNAiER66) were
treated with E2 and E2-conjugated to bovine serum albumin (E2-BSA, membrane impermeable) in the absence and
presence of different kinase inhibitors HBDDE, bisindolylmaleimide, rottlerin, H89 and U0126. The phosphorylation levels of
signaling molecules and cyclin D1/cdk4 expression were examined with Western blot analysis and cell growth was
monitored with the MTT assay.

Results: Immunofluorescence staining of Ishikawa cells demonstrated that ER-a36 was expressed mainly on the plasma
membrane and in the cytoplasm, while ER-a66 was predominantly localized in the cell nucleus. Both E2 and E2-BSA rapidly
activated PKCd not PKCa in Ishikawa cells, which could be abrogated by ER-a36 shRNA expression. E2-and E2-BSA-induced
ERK phosphorylation required ER-a36 and PKCd. However, only E2 was able to induce Camp-dependent protein kinase A
(PKA) phosphorylation. Furthermore, E2 enhances cyclin D1/cdk4 expression via ER-a36.

Conclusion: E2 activates the PKCd/ERK pathway and enhances cyclin D1/cdk4 expression via the membrane-initiated
signaling pathways mediated by ER-a36, suggesting a possible involvement of ER-a36 in E2-dependent growth-promoting
effects in endometrial cancer cells.
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Introduction

Endometrial cancer is one of the most common female pelvic

malignancies and is the fourth most common type of cancer in

North American and European women [1,2]. It is well-known that

the steroid hormone 17b-estradiol (E2) plays an important role in

the development of endometrial carcinoma [3,4]. In the classical

model, E2 regulates the expression of estrogen responsive genes by

binding to the estrogen receptor-a (ER) located in the cell

cytoplasm, and ligand-bound receptors then migrate to the

nucleus and regulate the transcription of target genes via binding

to the estrogen responsive elements (EREs) within the target gene

promoter [5,6]. However, accumulating evidence indicated that

ER-a also exists on the plasma membrane and participates in

rapid estrogen signaling or membrane-initiated estrogen signaling.

It has been reported that ER-a is modified by posttranslational

palmitoylation in the ligand-binding domain that may contribute

to its membrane localization [7]. Previously, we identified and

cloned a variant of ER-a with a molecular weight of 36 kDa that is

transcribed from previously unidentified promoter located in the

first intron of the original 66 kDa ER-a (ER-a66) gene [8]. ER-

a36 lacks both transcriptional activation domains of ER-a66 (AF-1

and AF-2), but it retains the DNA-binding domain and partial

ligand-binding domain. It possesses a unique 27 amino acid

domain that replaces the last 138 amino acids encoded by exons 7

and 8 of the ER-a66 gene.

PKC isoforms are involved in a variety of cellular functions,

including growth, differentiation, tumor promotion, aging, and
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apoptosis [9,10,11]. The PKC family consists of several subfam-

ilies; depending on differences in their structure and substrate

requirements 1) classical (a,bI,bII and c), all of which are activated

by calcium and diacylglycerol (DAG); 2) novel (d, e, g and h), all of

which require DAG but are calcium-insensitive; 3) atypical (f and

l/i), which are not responsive to either DAG or calcium [9,12,13].

It has been reported that E2 rapidly increases PKC activity via a

membrane pathway not involving both ER-a or ER-b [14]. Our

previous report demonstrated that 17b-estradiol induced the

activation the MAPK/ERK pathway and stimulated the cells

proliferation through the membrane-based ER-a36 [15]. We thus

hypothesized that ER-a36 may be also involved in the E2-induced

PKC activation.

In the present study, we studied the ER-a36 function in

endometrial cancer cells and found that ER-a36 mediates E2

induced the membrane-associated PKCd and the MAPK/ERK

pathways leading to modulation of growth and survival of

endometrial carcinoma cells.

Results

Differential expression of ER-a36 and ER-a66 in Ishikawa
cells

ER-a36 is a variant of ER-a generated by alternative promoter

usage and alternative splicing [8]. To examine ER-a36 localiza-

tion in Ishikawa cells, the indirect immunofluorescence assay was

performed with anti-ER-a36 specific antibody raised against the

20 amino acids at the C-terminal of ER-a36 that are unique to

ER-a36 [15]. Immunofluorescent staining revealed that ER-a36

was expressed on the plasma membrane and in the cytoplasm of

Ishikawa cells (Fig. 1A) while ER-a66 was predominantly localized

in the cell nucleus (Fig. 1B).

E2 and E2-BSA rapidly induces the activation of PKCd in
Ishikawa cells

We first examined PKC activation by E2 and E2-BSA in Ishikawa

cells. Cells treated with E2 (Fig. 2A) showed a rapidly response in the

phosphorylation of PKCd within 5 min of exposure, while the total

PKCd amount was without any change, indicating that E2 induced

PKCd phosphorylation. The membrane impermeable E2-BSA

(Fig. 2B) also elicited a similarly rapidly phosphorylation of PKCd,

which then declined gradually in approximately 60 min. These

results demonstrated that both E2 and E2-BSA were able to rapidly

activate PKCd in Ishikawa cells. Similar time course studies were

performed for E2-induced phosphorylation of PKCa in the Ishikawa

cells (Fig. 2C). The concentration-response studies for the PKCa
revealed that the E2 could not induce changes of PKCa
phosphorylation even at 1 uM (Fig. 2D).

E2, but not E2-BSA, induces PKA activation in Ishikawa cells
We then examine whether E2 and E2-BSA stimulate cAMP-

dependent protein kinase (PKA) activation in Ishikawa cells. As

shown in Fig. 2E, E2 treatment resulted in rapidly increase of

phosphorylation level of PKA within 3 min, and treatment of the

cells with Forkolin (20 mM) for 15 min (F) also induced PKA

phosphorylation. However, when cells were treated with E2-BSA

(Fig. 2F), no significant change in the phosphorylation of PKA was

observed, indicating that E2 induces PKA signaling not from the

plasma membrane.

ER-a36 but not ER-a66 mediates E2-BSA-stimulated PKCd
activation

To determine the involvement of ER-a36 in E2 activity

observed in Ishikawa cells, we decided to knockdown ER-a36

Figure 1. Subcellular localization of ER-a36 and ER-a66 in Ishikawa cells. A. Ishikawa cells cultured on coverslips were fixed and
immunofluorescently stained with the anti-ER-a36 specific antibody (green). The cells were also stained with Hoechst 33258 (blue) to show the cell
nuclei. B. ER-a66 expression detected by immunofluorescence in Ishikawa cells. The nucleus was stained by Hoechst 33258. Bar, 10 micrometers.
doi:10.1371/journal.pone.0015408.g001
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expression with the shRNA approach. We established a stable cell

line that expresses shRNA specifically against the unique 39UTR

of ER-a36 (Ishikawa/RNAiER36), and found that ER-a36

expression was dramatically down-regulated in the cells (Figs. 3A

& 3B). As shown in Fig. 3C, E2 and E2-BSA failed to induce

PKCd phosphorylation in Ishikawa/RNAiER36 cells. Next, we

knockdown ER-a66 expression with shRNA in Ishikawa cells

(Figs. 3D & 3E). Both E2 and E2-BSA induced phosphorylation of

PKCd in the Ishikawa cells with ER-a66 expression knocked-

down with shRNA (Fig. 3F).

To confirm the results, we used endometrial cancer Hec1A

cells, which have been reported are an ER-a66 negative cell line

[16], and Hec1A/RNAiER36, which have been described in our

previous report [17]. The knockdown of ER-a36 expression was

able to abrogate both E2 and E2-BSA induced (Fig. 3G) in Hec1A

cells, indicating the involvement of ER-a36 in E2 induced-PKCd
phosphorylation. Thus, our data strongly demonstrate that ER-

a36 not ER-a66 is involved in E2-induced PKCd activation in

endometrial cancer cells.

E2 activates ERK1/2 through the PKCd signaling pathway
Our previous data demonstrated that 17b-estradiol also induced

the activation of the MAPK/ERK and stimulate the cells

proliferation through the membrane-based ER-a36 [15]. Here

we tested whether ER-a36 also mediates E2-BSA induced ERK1/

2 activation in Ishikawa cells. As shown in Fig. 4A, E2-BSA

treatment induced the rapid phosphorylation of ERK1/2 in

Ishikawa cells while Ishikawa cells with ER-a36 expression

knocked down with the shRNA failed to response to either E2

or E2-BSA indicating the involvement of ER-a36 in estrogen

stimulated ERK1/2 activation (Fig. 4B). We then investigated

whether E2-induced activation of ERK1/2 in Ishikawa cells

requires activation of PKC or PKA. Ishikawa cells were treated

with E2 in the presence or absence of the nonspecific PKC

inhibitor bisindolylmaleimide (Bis), a PKCd specific inhibitor

rottlerin (Rot), a PKCa specific inhibitor HBDDE. Treatment of

Bis and rottlerin strongly inhibited E2-induced ERK1/2 activa-

tion, indicating the involvement of PKCd in E2-induced ERK1/2

activation (Fig. 4C). However, both HBDDE and H89 (Fig. 4D)

had no effect on E2-induced ERK1/2 activation. Our results thus

indicated that the ER-a36-mediated activation of PKCd is

required for activation of the ERK1/2 pathway.

ER-a36 is involved in regulation of cyclin D1 protein
expression in Ishikawa cells

Cyclin D1 together with its binding partners cyclin dependent

kinase 4 and 6 (cdk4 and cdk6) forms activation complexes that

promote cell cycle progression and can function as a transcription

coregulater. Overexpression of cyclin D1 is involved in endome-

trial carcinogenesis [18]. The E2-induced proliferation was

associated with the up-regulation of cyclin D1 [19,20,21]. We

measured the expression levels of cyclin D1 and cdk4 in Ishikawa

cells treated with E2. As shown in Fig. 5A, treatment with E2

induced cyclin D1 and cdk4 expression in Ishikawa/V cells but not

in Ishikawa/RNAiER36 cells, which could be effectively abrogat-

ed by the PKCd inhibitor rottlerin and MEK inhibitor U0126

(Fig. 5B). Taken together, these results indicate that ER-a36

mediates E2-induced activation of the PKCd/ERK pathway and

cyclin D1 expression.

Cell proliferation
To further investigate the role of ER-a36-mediated estrogen

signaling in cell proliferation of endometrial cancer cells,

Ishikawa/V and Ishikawa/RNAiER36 cells were treated with

E2-BSA and cell growth was measured by the MTT assay. MTT

assay shown that E2-BSA stimulated growth of Ishikawa/V cells

while had no effect on growth of Ishikawa/RNAiER36 cells

(Figs. 6A & B). Bisindolylmaleimide (a general PKC inhibitor),

rottlerin (a PKCd specific inhibitor) or U0126 (a MEK specific

inhibitor) were able to inhibit E2-BSA-induced cell proliferation.

However, HBDDE (a PKCa specific inhibitor) and H89 (a PKA

specific inhibitor) failed to inhibit E2-BSA-induced cell prolifer-

ation. These results again suggest that E2-BSA-induced cell

proliferation is predominantly mediated through the ER-a36/

PKCd/ERK pathway in endometrial cancer cells.

Discussion

Estrogen receptors are members of the nuclear receptor

superfamily and function as ligand-dependent transcription factors

in the nucleus to mediate estrogen signaling. However, accumu-

lating evidence indicated the existence of rapid signaling responses

to E2 that are independent of transcriptional effects [22,23].

Previously, a novel variant of ER-a, ER-a36, was identified,

cloned and characterized [8]. ER-a36 is expressed in established

ER-positive and ER-negative breast cancer cells and specimens

from breast cancer patients that lacks expression of ER-a66 [24],

suggesting that ER-a36 expression is regulated differently from

ER-a66. In this study, confocal microscopy results show that ER-

a36 is expressed on the plasma membrane and in the cytoplasm of

Ishikawa cells. In contrast, ER-a66 is predominantly localized in

the cell nucleus.

Previous studies have shown that ER-a36 mediates membrane-

initiated effects of estrogen signaling by activation of the mitogen

activated protein kinase (MAPK) signaling pathway, and stimu-

lates cell growth [15]. ER-a36 also mediates activation of the

MAPK/ERK signaling induced by antiestrogens, such as

tamoxifen and ICI 182,780[15,25]. In addition, ER-a36 mediates

membrane-initiated testosterone signaling by activation of the

ERK and AKT signaling pathway [17]. Recently, investigators

have recognized rapid non-genomic effects of estrogen on several

cellular processes, such as activation of PKC, PKA, calcium

channel, and AKT to stimulate physiological effects [26,27,28],

but the mechanisms are not well understood and have not been

extensively studied [29,30,31]. PKC family consists of a number of

serine-threonine kinases that are divided into three groups based

on their activating factors. PKC activators act as tumor promoters.

Figure 2. Effects of E2 and E2-BSA on the activation of PKCd, PKCa and PKA in Ishikawa cells. A and B. Serum starved Ishikawa cell was
treated with 10 nM E2 or 10 nM E2-BSA for the indicated time points. Protein extracts were prepared and used for Western blot analysis to measure
levels of PKCd phosphorylation. Protein levels of total PKCd were also examined as controls. Each bar represents mean value 6 SEM (n = 3). *, P,0.05
compared to untreated cells. C. Serum starved Ishikawa cell was treated with 10 nm E2 for the indicated time points and cells were lysed for western
blot analysis to measure levels of PKCa phosphorylation. Protein levels of total PKCa were measured as controls. D, Serum starved Ishikawa cell was
treated with 0, 0.1,1, 10, 100 and 1,000 nM E2 for 20 min. Protein extract was prepared for Western blot analysis to measure levels of PKCa
phosphorylation and total PKCa. E and F, Serum starved Ishikawa cells were treated with 10 nM E2 or 10 nM E2-BSA for indicated time points, 20 mM
Forskolin (F) was added for 15 min as a positive control, after which the cells were lysed and tested in the PepTag PKA assay. Samples were separated
on an agarose gel. The lower band represents phosphorylated peptide, and the upper band represents the remaining unphosphorylated peptide.
doi:10.1371/journal.pone.0015408.g002

Roles of ER-a36 in Endometrial Cancer

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e15408



Roles of ER-a36 in Endometrial Cancer

PLoS ONE | www.plosone.org 5 November 2010 | Volume 5 | Issue 11 | e15408



Although early studies of the effect of PKCd on cell proliferation

suggested that PKCd suppresses proliferation [32,33,34]. Howev-

er, several reports have demonstrated that PKCd could act as a

positive regulator of cell proliferation [35,36,37,38]. Here, we

found that both E2 and E2-BSA stimulated the activation of

PKCd signaling pathway in Ishikawa cells, and knockdown of ER-

a36 expression with the shRNA abrogated E2-induced PKCd
phosphorylation. These indicated that ER-a36 mediates mem-

brane-initiated PKCd pathway induced by E2. In general,

increased PKCa activity is associated with increased motility

and proliferation of cancer cells [39,40,41]. In addition, PKCa has

been shown to inhibit or facilitate apoptosis of cancer cells [42,43].

We found that E2 was unable to induce phosphorylation of PKCa
in Ishikawa cells, suggesting that E2-induced endometrial cancer

growth through signaling pathways other than PKCa.

cAMP is a second messenger that plays a role in intracellular

signal transduction of various stimuli. A major function of cAMP

in eukaryotes is activation of cAMP-dependent protein kinase

(PKA). In the present study, we found that E2 can rapidly activate

PKA within 3 min. However, PKA could not be activated by E2-

BSA that is unable to traverse the plasma membrane, suggesting

that E2 activate PKA not through the membrane-based ER-a36 in

Ishikawa cells.

The MAPK family consists of ERK, JNK and P38. ERK plays

an essential role in cell growth. Increasing evidence has shown that

non-genomic activation of the ERK1/2 by estrogen in both breast

and endometrial cancer cells [44,45,46]. Previous studies have

shown that the ERK1/2 can be efficiently activated by protein

kinase C [47,48]. Here, we found that ER-a36 mediates E2-

induced activation of the MAPK/ERK pathway via PKCd in

Ishikawa cells.

Cyclin D1 is a key regulator of cell cycle progression through

the G1 phase that, upon its induction, binds and regulates cyclin-

dependent kinases (cdks) 4 or 6. The cyclin D1/cdk complexes are

capable of phosphorylation substrates essential to promote cell

cycle [21,49,50]. Cyclin D1 plays an important role in the

pathogenesis of endometrial hyperplasia [18,51,52]. Previous

studies have demonstrated that PKCd and MAPK/ERK

pathways up-regulate cyclin D1 protein expression [19,51,53].

Here, we demonstrated that E2 induced cyclin D1 expression

through ER-a36-mediated activation of the PKCd/ERK signaling

pathway.

In summary, our results indicate that extra-nuclear ER-a36

mediates the non-genomic estrogen signaling pathways in

Ishikawa cells and suggest ER-a36 is a novel and important

player in endometrial carcinogenesis.

Materials and Methods

Materials and Reagents
All chemicals and reagents were purchased from Sigma unless

otherwise indicated. Anti-phospho-PKCa (ser657) antibody was

purchased from Upstate (Temecula, CA). Antibodies for PKCa,

phospho-PKCd (Thr505), PKCd, phospho-ERK1/2 (Thr202/

Tyr204) and ERK1/2 were purchased from Cell Signaling

(Beverly, MA). Antibodies against ER-a66, cyclin D1, cdk4 and

b-actin were purchased from Santa Cruz Biotechnology (Santa

Cruz, CA). The ER-a36 specific antibody against the 20 unique

amino acid at the C-terminal of ER-a36, ER-a36 interference

plasmid and control plasmids were described before [8,15].

Hoechst 33258, MTT, U0126, HBDDE, Rottlerin, Bisindolylma-

leimide and Forskolin were purchased from Calbiochem (La Jolla,

CA). PepTag Assay kit for Non-Radioactive Detection of cAMP-

Dependent Protein Kinase was obtained from Promega (Madison,

WI).

Cell Culture and Cell Lines
The human endometrial cancer cell line Ishikawa was obtained

from Dr. Li-Hui Wei (Peking University People’s Hospital, Beijing)

and cultured in Dulbecco’s modified Eagle’s medium (Gibco-BRL,

USA) with 10% fetal calf serum (Hyclone, UT), 5 ug/ml insulin,

and maintained at 37uC in a humidified atmosphere of 5% CO2.

We established stable Ishikawa cell line transfected with an ER-

a36 shRNA expression vector (Ishikawa/RNAiER36), an ER-a66

shRNA expression vector (Ishikawa/RNAiER66) and the empty

expression vector (Ishikawa/V). Briefly, the shRNA expression

vector pRNAT-U6.1/Neo plasmid containing the shRNA against

the 39UTRs of ER-a36 and ER-a66, respectively and the empty

expression vector were transfected into Ishikawa cells with

Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to the

manufacturer’s instruction. Forty-eight hours after transfection,

cells were re-plated and selected with 500 ug/ml of G418 for two

weeks. The medium was changed every three days until colonies

appeared. Clones were pooled and expanded for further analysis.

Confocal Microscopy
The cellular localization of ER-a36 and ER-a66 were

determined by the indirect immunofluorescence assay. Ishikawa

cells cultured on sterile glass coverslips were fixed with 4%

paraformaldehyde in PBS for 10 min. After permeabilized with

0.4% Triton X-100 for 10 min at room temperature, cells were

blocked in 4% BSA-supplemented PBS for 1 hour and incubated

overnight at 4uC with anti-ER-a36-specific antibody or anti-ER-

a66 antibody. After three washes in PBS, the cells were labeled

with FITC-conjugated secondary antibody. Hoechst 33258 was

subsequently added for nuclear staining. Microscopic analysis was

performed using a confocal laser-scanning microscope (Zeiss LSM

710 META, Germany).

Western Blot Analysis
Western blotting was performed as described previously [17].

Cells maintained in phenol-red-free DMEM (Gibcol-BRL, USA)

with 2.5% dextran charcoal-stripped fetal calf serum (Biochrom

AG, Germany) for 48–72 h were switched to medium without

Figure 3. ER-a36 mediates E2-stimulated PKCd activation. A and B. ER-a36 expression in Ishikawa/V and Ishikawa/RNAiER36 cells. Each bar
represents mean value 6 SEM (n = 3). *, P,0.05 compared to Ishikawa/V cells. C. Ishikawa/V and Ishikawa/RNAiER36 cells were treated with 10 nm E2
or 10 nm E2-BSA for 10 min, and PKCd phosphorylation was analyzed by Western blot. Total levels of PKCd were measured as controls, and each bar
repents mean value 6 SEM (n = 3). *, P,0.05 compared to untreated cells. #, P,0.05 compared to E2- or E2-BSA- treated Ishikawa/V cells. D and E.
ER-a66 expression in Ishikawa/V and Ishikawa/RNAiER66 cells. Each bar represents mean value 6 SEM (n = 3). *, P,0.05 compared to Ishikawa/V cells.
F. Ishikawa/V and Ishikawa/RNAiER66 cells were treated with 10 nM E2 or 10 nM E2-BSA for 10 min, and then PKCd phosphorylation was assessed
with Western blot. Total PKCd was measured as controls. Each bar represents mean value 6 SEM (n = 3). *, P,0.05 compared to untreated cells. G,
Hec1A/V and Hec1A/RNAiER36 cells were treated with 10 nM E2 or 10 nM E2-BSA for 10 min, and PKCd phosphorylation was analyzed by Western
blot. Total PKCd was measured as controls. Each bar represents mean value 6 SEM (n = 3).*, P,0.05 compared to untreated cells. #, P,0.05
compared to E2- or E2-BSA-treated Hec-1A/V cells.
doi:10.1371/journal.pone.0015408.g003
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Figure 4. E2 activates the ERK1/2 through the PKCd signaling pathway. A. Serum starved Ishikawa cells were treated with E2-BSA for
indicated time points and cell lysates were immunoblotted with antibody against phosphorylated ERK1/2. Levels of phosphorylation were normalized
with the total ERK1/2 protein, and each bar represents means value 6 SEM (n = 3). *, P,0.05 compared to untreated cells. B. Ishikawa/V and Ishikawa/
RNAiER36 cells were treated with 10 nM E2 or 10 nM E2-BSA for 10 min, and ERK1/2 phosphorylation was analyzed with Western blot. Expression was
normalized to total ERK1/2, and each bar represents mean value 6 SEM (n = 3).*, P,0.05 compared to untreated cells. #, P,0.05 compared to E2- or
E2-BSA-treated Ishikawa/V cells. C. Serum starved Ishikawa cells were treated with 10 nM E2 or together with 5 mM of PKCd specific inhibitor rottlerin,
5 mM of pan-PKC inhibitor bisindolylmaleimide or 40 mM of PKCa specific inhibitor HBDDE. ERK1/2 phosphorylation was analyzed with Western blot.
Expression was normalized to total ERK1/2, and each bar represents mean value 6 SEM (n = 3). *, P,0.05 compared to untreated cells. #, P,0.05
compared to E2-treated Ishikawa cells. D. Serum starved Ishikawa cells were treated with 10 nM E2 or together with 5 mM of PKA specific inhibitor
H89 or 10 mM of MEK inhibitor U0126, and ERK1/2 phosphorylation was analyzed by Western blot. Expression was normalized to total ERK1/2, and
each bar represents mean value 6 SEM (n = 3). *, P,0.05 compared to untreated cells. #, P,0.05 compared to E2-treated Ishikawa cells.
doi:10.1371/journal.pone.0015408.g004
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Figure 5.ER-a36 mediates E2-stimulated cyclin D1 expression. A. Western blot analysis of cyclin D1 and cdk4 expression in Ishikawa/V and
Ishikawa/RNAiER36 cells treated with 10 nM E2 for 6 h and 12 h. Levels of cyclin D1 and cdk4 expression were normalized to the levels of b-actin, and
each bar represents mean value 6 SEM (n = 3). *, P,0.05 compared to untreated cells. #, P,0.05 compared to E2-treated Ishikawa/V cells. B. Ishikawa
cells were treated for 12 h with E2 or together with 5 mM of PKCd inhibitor rottlerin or 10 mM MEK inhibitor U0126. Levels of cyclin D1 and cdk4
expression were normalized to the levels of b-actin, and each bar represents mean value 6 SEM (n = 3). *, P,0.05 compared to untreated cells.
#, P,0.05 compared to E2-treated Ishikawa cells.
doi:10.1371/journal.pone.0015408.g005
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12 h before treatment with the agents indicated. The cells were

collected in ice-cold PBS, and the cell extracts were prepared in

RIPA buffer with proteinase inhibitor cocktail from Sigma

(St.Louis, MO). The protein concentrations of the cell lysates

were determined and boiled with gel-loading buffer for 10 min at

100uC. Samples containing 30 ug of total protein were electro-

phoresed on 10% SDS-polyacrylamide gels and transferred to

PVDF membrane (Millipore, Temecula, CA). The membranes

were probed with appropriate primary antibodies and visualized

with the corresponding secondary antibodies and the enhanced

chemiluminescence detection system (Amersham, Piscataway, NJ).

RT-PCR
Total RNA was extracted by TRIzol reagent (Invitrogen,

Carlsbad, CA). Total RNA (2 ug) was used for production of the

first strand cDNA by a reverse transcriptase mixture (Takara,

Dalian, P.R.China). The PCR primer sets were listed as the

following: ER-a36: forward primer: 59-CAAGTGGTTTCCT-

CGTGTCTAAAGC-39; reverse primer 59-GTT GAGTGT-

TGGTTGCCAGG-39. ER-a66: forward primer: 59-CACTCAA-

CAGCGT GTCTCCGA-39; reverse primer: 59-CCAATCTT-

TCTCTGCCACCCTG-39. GAPDH (control): forward primer:

59-ACGGATTTGGTCGTATTGGG-39; reverse primer: 59-TG-

ATTTTGGAGGGATCTCGC-39. PCR fragments were visual-

ized on a 2% agarose gel stained with ethidium bromide.

PKA Measurement
Cell lysates were assayed immediately after lyses using the

PepTag Assay kit Promega, Madison, WI) to assess the activities of

cAMP-dependent protein kinases according to the manufacturer’s

instructions. Briefly, lysates were prepared from treated cells and

incubated with a fluorescently labeled PKA peptide substrate.

Phosphorylation of the peptide by activated PKA resulted in a

change in its electrophoretic mobility that reflects the relative PKA

activity. The agarose gels were subjected to electrophoresis at

110 V for 20 min and visualized under UV light. The upper band

is non-phosphorylated substrate peptide, the lower most band is

substrate phosphorylated by PKA.

Figure 6. ER-a36 mediates E2 stimulated cell proliferation. A. Ishikawa/V and Ishikawa/RNAiER36 cells were treated with 10 nM E2-BSA for
24 h, 48 h, 72 h and 96 h. MTT assay was performed as described in the materials and methods. Results of three independent experiments were
averaged and mean value 6 SEM are shown. *, P,0.05 compared to E2-BSA treated Ishikawa/V cells respectively. B. Ishikawa cells were treated with
10 nM E2-BSA alone or together with 5 mM rottlerin, a PKCd specific inhibitor, or 5 mM bisindolylmaleimide, a pan-PKC inhibitor, or HBDDE, a PKCa
specific inhibitor, or 5 mM H89, a PKA specific inhibitor for 72 h, and MTT assays were then performed. Results of three independent experiments
were averaged and mean value 6 SEM are shown. *, P,0.05 compared to control cells.
doi:10.1371/journal.pone.0015408.g006
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MTT Assay
Cell proliferation was analyzed using the 3-(4, 5-dimethylthia-

zol-2-yl)-2, 5- diphenyltrazolium bromide (MTT) assay. Briefly,

cells were seeded in a 96-well dish to a final concentration of

16104 cells/well and incubated in DMEM medium containing

10% FCS for 24 h. Cells were then cultured in phenol red-free

medium containing 2.5% charcoal-stripped FCS (Biochrom AG,

Berlin, Germany) with the indicated treatments. Medium was

removed and fresh medium was added to each well along with

20 ul of MTT solution (5 mg/ml). After 4 h incubation, 150 ul of

DMSO were added to each well. The plates were read at

wavelength of 490 nm using a microplate reader (Bioteck Power-

waveTM, USA). Eight duplicate wells were used for each

treatment, and experiments were repeated three times.

Statistical analysis
Statistical analysis was performed with the paired-samples t-test,

or ANOVA followed by the Student-Newman-Keuls testing to

determine differences in means. A level of P,0.05 was considered

statistically significant. All statistical tests were three-sided.
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