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Abstract

The Aryl hydrocarbon receptor (Ahr) is the nuclear receptor mediating the toxicity of dioxins -widespread and persistent
pollutants whose toxic effects include tumor promotion, teratogenesis, wasting syndrome and chloracne. Elimination of Ahr
in mice eliminates dioxin toxicity but also produces adverse effects, some seemingly unrelated to dioxin. Thus the
relationship between the toxic and dioxin-independent functions of Ahr is not clear, which hampers understanding and
treatment of dioxin toxicity. Here we develop a Drosophila model to show that dioxin actually increases the in vivo dioxin-
independent activity of Ahr. This hyperactivation resembles the effects caused by an increase in the amount of its
dimerisation partner Ahr nuclear translocator (Arnt) and entails an increased transcriptional potency of Ahr, in addition to
the previously described effect on nuclear translocation. Thus the two apparently different functions of Ahr, dioxin-
mediated and dioxin-independent, are in fact two different levels (hyperactivated and basal, respectively) of a single
function.
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Introduction

The Aryl hydrocarbon receptor (Ahr) is the key component in

the metabolic response to the extremely widespread, toxic and

persistent pollutants dioxins [1,2,3,4]. Dioxins produce epidermal

and hepatic toxicity, teratogenesis, autoimmunity and carcinogen-

esis [5,6]. Ahr is a cytoplasmic bHLH-PAS transcription factor

that, upon binding of dioxin, translocates to the nucleus where it

forms a complex with the Aryl hydrocarbon receptor nuclear

translocator (Arnt), another bHLH-PAS protein [7], and binds to

an eight-nucleotide motif (Xenobiotic Response Element; XRE) to

control the expression of specific target genes [8,9] (Figure 1A).

Previous work with Ahr knock-out mice revealed the existence of

dioxin-independent functions of Ahr, including developmental

functions and ageing-related detoxification [1,2,3]. However, the

relationship between these two functions of Ahr, toxic and dioxin-

independent, remains unclear [5,10], in particular whether dioxin

toxicity entails loss or excess of the dioxin-independent Ahr

function, or a new independent function. We have tackled this

question, which is central to the treatment of the effects of dioxins,

using a Drosophila model for Ahr function and dioxin toxicity.

Drosophila, like other invertebrates, does not suffer dioxin toxicity

because its Ahr homologue does not bind dioxins [11,12], but

offers an extensive suite of genetic techniques. Hence, we have

introduced the mouse dioxin receptor in flies, and studied its

activity in vivo in the presence or absence of dioxin. A similar

strategy (‘humanising’ or introduction of human genes in animal

model systems) has allowed the study of the molecular and genetic

basis of other human medical conditions in Drosophila (i.e.

Alzheimer’s, Parkinson’s and Huntington’s diseases) [13].

Results and Discussion

Ahr is able to fulfil dioxin-independent functions in
Drosophila

Mouse Ahr and its Drosophila homologous protein, Spineless (Ss),

are highly similar in the bHLH and PAS A domains (Figure 1B).

The spineless (ss) gene has well-characterised dioxin-independent

functions during development [14,15]. For instance, ss expression

controls leg development by repressing the dachshund (dac) and Bar

genes [16,17] (Figure 2A, 3C). Ss protein locates to the nucleus

[18] (Figure 2B) and its presence promotes the nuclear localisation

of the fly homologue of Arnt, Tango (Tgo) which is otherwise

distributed evenly across the cell [19] (Figure 2B). Ss::Tgo

heterodimers target gene expression (both activation and repres-

sion) through the XRE motif both in vitro and during development

[16,19]. In Drosophila, the development of the legs and the eyes are

sensitive to the precise dosage of Ss and Tgo [14,15,19] (see

below), and thus provide an accurate read-out of ss-related activity

and function.

Ss is not able to bind dioxins [11] probably because its PAS-B

domain, which contains the dioxin binding domain [20], is highly

divergent from vertebrates (Figure 1B). For this reason, we

introduced mouse Ahr under an inducible promoter (UAS-Ahr or a
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tagged UAS-Ahr-GFP) in transgenic flies, and expressed it in the

domain of ss using the rnGal4 driver, which mimics ss expression

[17,21]. Once in flies, and in the absence of dioxin, Ahr is able to

fulfil the dioxin-independent functions of Ss. Thus Ahr: 1) rescues

almost completely the loss of the ss gene during development

(Figure 2A, 3E); 2) localises to the nucleus (Figure 2B); and 3) binds

Tgo and promotes its nuclear localisation (Figure 2B and C). We

conclude that the dioxin-independent activities of Ahr and Ss

are functionally equivalent, and mediated through binding to

Tgo/Arnt.

Fruit flies expressing the murine Ahr respond to dioxins
We next explored the effects of adding dioxin on the activity of

both Ss and Ahr, in order to discriminate whether dioxin induces

in vivo either a reduction or an increase in the activity of Ahr.

Exposure of wild-type flies to dioxin produces no effects

(Figure 3A), as expected from the inability of Ss to bind dioxin

[11,19]. However, an excess of ss function can be generated in the

absence of dioxin by ectopic overexpression of the UAS-ss

transgene with Gal4 drivers. This ectopic overexpression interferes

with normal development and produces leg deformities, tarsal

segment loss and roughened eyes (Figure 3A, 4A), and ectopic

repression of ss’s developmental targets Bar and dac [16,17]

(Figure 3B, C). Altogether these results show that the Ss protein

acts both endogenously and ectopically in a dioxin-independent

manner. In contrast, dioxin produces a marked increase on the

activity of Ahr. Ectopic overexpression of UAS-Ahr or UAS-Ahr-

GFP (both driven across the leg imaginal disc by dpp-Gal4)

produces no obvious effect on either fly morphology or expression

of Bar and dac (Figure 3A, B). However, when these flies

overexpressing UAS-Ahr are exposed to dioxin, the effects mimic

those obtained with UAS-ss: abnormal legs and eyes, and ectopic

repression of dac and Bar (Figure 3A–D, 4A–B). Moreover, the

presence of dioxin also allows more complete rescue of the loss of

ss by Ahr than in its absence (Figure 2A, 3A, 3E, Table S1), a

rescue now comparable to that exerted by the UAS-ss transgene

itself. Altogether our results suggest that in vivo dioxin produces a

hyperactivation of the Ahr protein. Thus, Ahr shows two levels of

activity in the context of the whole organism: 1) basal low activity

without dioxin, allowing only partial rescue of the endogenous ss

gene function, and 2) high activity in the presence of dioxin,

allowing Ahr to mimic the full effects of Ss, both endogenous and

ectopic.

Dioxin enhances the transcriptional potency of Ahr::Tgo
complexes

In vertebrates, binding of dioxin to Ahr triggers its translocation

from the cytoplasm to the nucleus, followed by binding to nuclear

Arnt and subsequently to XRE sequences [8] (Figure 1A).

However, in Drosophila, the nuclear localisation of Ahr and Ss

does not depend on dioxin (Figure 2B), probably due to differences

in the proteins that retain Ahr in the vertebrate cytoplasm [22,23].

Thus, our system suggests that nuclear translocation is not the only

limiting step in Ahr function and that the observed hyperactivation

of Ahr by dioxin must rely on another mechanism. In genetic

experiments, the function of Ss is very sensitive to the dosage of

Tgo. Removal of a copy of tgo enhances the loss of ss [19] and,

reciprocally, the phenotype caused by ectopic Ss in the eyes can be

suppressed almost completely by reducing the dosage of Tgo

(unpublished observations). Correspondingly, an increase of Tgo

Figure 1. Ahr mediates the cellular response to dioxin. (A) Current core model of Ahr signalling in vertebrates. (B) Sequence conservation
between Ahr and Ss. LBD, dioxin binding domain.
doi:10.1371/journal.pone.0015382.g001
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enhances the function of Ahr, in fact, increasing the dosage of Tgo

or Arnt mimics Ahr’s hyperactivation by dioxin. Thus, flies

overexpressing Ahr plus Tgo or Arnt display the same phenotypes

as those overexpressing either Ss, or Ahr plus dioxin (Figure 3A,

3E, 4). This result is particularly noteworthy since overexpression

of Tgo, Arnt or Ahr on their own produces no discernible

alteration of eye or leg development (Figure 3 and S1). The

similarity between the effects of dioxin and extra amounts of Tgo

or Arnt indicates that firstly, our observed hyperactivation of Ahr

by dioxin is bona fide, and secondly, that the endogenous amount

of Tgo protein is limiting and dioxin allows Ahr to use Tgo more

efficiently in the process involved. One possibility is that dioxin

Figure 2. Ahr fulfils ss functions in the absence of dioxin. (A) Drosophila leg phenotypes; the numbers of tarsal segments present is indicated.
From left to right: wild type, ss mutant, and ss mutant rescued by Ahr expression. (B) Larval salivary glands showing localisation of Ss-GFP and Ahr-
GFP (green), Tgo (red) and DAPI (blue). Conditions as above the panels in A. Tgo is nuclear in the presence of either Ss-GFP or Ahr-GFP but not in their
absence (middle panels). (C) Left, Ahr-GFP and Ss-GFP bind Tgo in in vivo co-immunoprecipitation assays. Ahr-GFP and Ss-GFP were precipitated
using anti-GFP, Tgo was detected with anti-Tgo antibody. Right, anti-GFP reveals the presence of Ahr-GFP and Ss-GFP.
doi:10.1371/journal.pone.0015382.g002
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increases or stabilises the Ahr::Tgo complexes, but we do not

observe an increase in binding between Ahr and Tgo or Arnt in

Co-immunoprecipitation experiments in the presence of dioxin

(Figure 5A, B). A second possibility is that dioxin increases the

potency of the Ahr::Tgo complexes, in particular their transcrip-

tional efficiency. To test this, we used a reporter gene containing

the XRE enhancer sequence from the Bar gene that Ss::Tgo

complexes bind to [16] (Figure 5D). Our results show that in the

absence of dioxin Ahr is not able to repress this reporter

(Figure 5E), despite forming complexes with Tgo as efficiently as

Ss (Figure 1C, 5A, 5C). On the contrary, and as expected,

transcriptional repression is observed in the presence of dioxin

(Figure 5E).

In summary, our results show that dioxin increases in vivo the

dioxin-independent activity of Ahr, and hence that dioxin toxicity

is best understood as an excess of function of Ahr. The two

postulated functions of Ahr (dioxin-dependent and dioxin-

independent) in fact seem to correspond to two different levels

of a single Ahr activity, basal and hyperactivated. This model

envisages that hyperactivated Ahr will not only regulate more

strongly the same genes as basal Ahr, but also that some genes

could only be bound and regulated by hyperactive Ahr or Ss

proteins [24]. In either case, in absence of dioxin, Ahr would not

be able to disrupt normal development or fully rescue ss2

phenotypes as Ss and hyperactive Ahr do. Furthermore, our

results also suggest that the dioxin-mediated toxicity of Ahr is not

solely due to inducing its nuclear translocation or to changes in

affinity for its dimerisation partners, but also entails an increase of

the transcriptional regulatory activity of Ahr (Figure 5F). More

generally, our results corroborate that reduction, but not

elimination, of endogenous Ahr and Arnt function may be the

best approach to treat dioxin toxicity, and introduce Drosophila as a

new system to study in vivo the genetic and molecular basis of such

toxicity.

Figure 3. Ahr activity is enhanced by dioxin or addition of Arnt or extra Tgo. (A) Leg phenotypes. Genotypes and presence of dioxin are
indicated above the panels. The number of tarsal segments present is indicated. Arrows point to proximal leg deformities. (B) Late third instar leg
imaginal discs showing Dac (green) and Bar (red) expression; genotypes as above. The normal (arrowheads) and ectopic (arrows) repression of Dac
and Bar is indicated. (C) Late third larval-instar leg imaginal discs showing Dac and Bar expression in a wild-type and ss mutant. (D) Wild-type Ss
expression in leg imaginal disc during third larval instar. Notice the correlation between ss expression and repression of Dac and Bar (arrowheads). (E)
Quantification of legs according to the number of tarsal segments displayed. From left to right: w; rn-Gal4 ssabr/sssta (ss mutant), w; UAS-ss/+; rn-Gal4
ssabr/sssta (ss rescue), w; UAS-Ahr/+; rn-Gal4 ssabr/sssta (Ahr rescue) and w; UAS-Ahr/+; rn-Gal4 ssabr/sssta fed with dioxin (Ahr+dioxin rescue). Notice that
presence of five tarsal segments (red column) indicates full rescue of the mutant phenotype. A minimum of 80 legs, from at least 20 flies, were
observed per sample (see Table S1).
doi:10.1371/journal.pone.0015382.g003
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Materials and Methods

Reagents and fly strains
UAS-Ahr, UAS-Ahr-GFP, UAS-ss, UAS-ss-GFP and UAS-Arnt

transgenic lines were generated by cloning the appropriate full

cDNAs [14,25] into a pUASt vector, followed by injection of

purified plasmid into embryos by Vanedis and recovery of w+ lines.

The ss-GFP cDNA was generated by cloning the GFP coding

sequence 39 and in frame with the ss coding sequence. rn-Gal4

[17,21], ss mutants [14], and UAS-tgo [19] have been previously

described. dpp-Gal4, hs-Gal4, GMR-Gal4 and AB1-Gal4 were

obtained from Bloomington Stock Center.

The dioxin 2,3,5,7-tetrachlorodibenzo-p-dioxin (TCDD) was

fed to parental flies and larval offspring, diluted in the food at a

final concentration of 200 ngr TCDD/gr food [26]. To minimize

exposure to dioxin-contaminated food and fly particles, cultures

were left for nine days after first eclosions, then filled with SH

medium (ethanol 100%:glycerol, 3:1; v/v), and the whole contents

sieved for fly corpses and pupae, from which legs were dissected.

Anti-Tgo and anti-Dac were obtained from the Developmental

Studies Hybridoma Bank (DSHB). Anti-Arnt, anti-GFP and anti-

b-galactosidase were from Affinity BioReagents, Roche and

Cappel, respectively. Anti-Bar and anti-Ss were provided by T.

Kojima [16] and Yuh-Nung Jan [18], respectively. Leg discs and

salivary glands were stained as described in the online methods.

Immunohistochemistry
Third instar larvae were collected and dissected in cold PBS and

fixed at RT for 10 min. in 4% paraformaldehyde. Larvae were

washed in PBTx (0.03% Triton X-100 in PBS) blocked in PBTA

(0.4% Bovine Albumin in PBTx). Samples were incubated

overnight at 4uC in the primary antibody and in the secondary

for 2hr at RT. Samples were mounted in Vectashield. Fluores-

cence pictures were taken in a Zeiss Axiovert confocal microscope

equipped with a LSM520 Meta.

Cuticle and eye preparations
Pharates and eclosed adults were kept in SH medium (ethanol

100%:glycerol, 3:1; v/v) and dissected in 70% ethanol. Samples

were incubated for 5 minutes at 60uC in NaOH 1M, and then

cooked in Hoyer’s medium (Hoyers: lactic acid, 1:1; v/v) for

20 min at 60uC. Finally the legs were mounted in Hoyer’s

medium. Adult cuticle preparations were observed under a

Leica DMRB optical microscope, and the pictures were

taken with one of the following softwares: Q-win or Simple

PCI 6.6.

Adult flies were dehydrated by washing for 10 min in 70%,

80%, 90%, and 100% ethanol, and finally washed twice for

10 min in hexamethyldisilazane. Then samples were allowed to

dry before coating them with a layer of gold/palladium alloy. Eyes

were scanned in a Leo420 Steroscan SEM.

Estimation of bristle size
SEM pictures taken at 10006 were analyzed by the imaging

program Image J. Sections of the 5006200 pixels from the dorsal

part of the eye were cropped. The resulting image was binarized

using an appropriate threshold of brightness to isolate the bristles

from the rest of the ommatidia. The background was removed by

eroding once. The effect of the erosion on bristle size was

corrected by dilating once. The size of each bristle was estimated

by the number of covered pixels. The output data below 80 pixels

or above 300 pixels were discarded to remove any artefacts caused

by the background (Figure S1B). These limits were determined

empirically. Between five and ten eyes were measured per sample.

Cloning
ss coding sequence was extracted from pGEX-2T-ssA1 (provided

by Dr. I. Duncan) by PCR (forward primer GAGAGATCTA-

GAATCCGCCCTAGCAATGAGCCA, and reverse primer

CCGGGAGCTGCATGTGTCAGAGG). An XbaI restriction

site was inserted upstream of ss in a tail in the forward primer.

ss was then sub-cloned in an XbaI restriction site in pBK-eGFP,

leaving the eGFP ORF in frame with the ss N-terminal side. eGFP-

ss was then cloned in the pUASt vector into the NotI and SpeI

restriction sites.

Ahr and Ahr-eGFP coding sequences were extracted from the

construct pEGFP-Ahr (provided by Dr. P. Fernandez-Salguero) and

cloned into XbaI in pUASt.

Arnt cDNA was extracted from pCMV-sport6-Arnt (obtained from

Gene Service), identified as clone AV-21A3. Arnt was cloned in

pUASt in the EcoRI and XhoI restriction sites.

Figure 4. Hyperactivated Ahr produces abnormal eye development. (A) SEM pictures of adult eyes taken at 5006 (top panels) and 100006
(bottom panels). Genotypes and treatment are indicated above. Notice that UAS-ss, UAS-Ahr+Tgo and UAS-Ahr+dioxin produce fused ommatidia (red
arrowheads) and enlarged bristles (red arrows). Compare with the wild-type morphology (Figure S1B) shown by UAS-Ahr, and the Wild-type exposed
to dioxin. These phenotypes resemble those caused by mutations in tumour-supressor genes [28]. (B) Eye bristle size average and standard errors.
The genotypes are: Oregon-R (wild-type), w; GMR-Gal4/+; UAS-ss/+ (UAS-Ss), w; GMR-Gal4/UAS-Ahr (UAS-Ahr), w; GMR-Gal4/UAS-Ahr UAS-tgo (UAS-Ahr
UAS-tgo) and w; GMR-Gal4/UAS-Ahr fed with dioxin (UAS-Ahr+dioxin).
doi:10.1371/journal.pone.0015382.g004

Drosophila as a New Model to Study Dioxin Toxicity

PLoS ONE | www.plosone.org 5 November 2010 | Volume 5 | Issue 11 | e15382



Co-immunoprecipitation assays
For in vivo assays larvae hs-Gal4 UAS-Ahr-GFP, hs-Gal4 UAS-ss-

GFP and hs-Gal4 UAS-GFP were heat shocked for 2 hours at 37uC
and lysated. Mouse anti-GFP bound to Protein-G Sepharose was

used to precipitate Ahr-GFP, Ss-GFP and GFP. Presence of Tgo

and GFP proteins was detected by Western-blotting. For in vitro

assays Ahr, Ss, Tgo and Arnt were expressed in rabbit reticulocyte

lysates (Promega) and labelled with 35S as required. Binding was

performed in HEPES 20 mM pH 7.9, NaCl 50 mM, 1% Np40.

Anti-Tgo and anti-Arnt bound to Protein-G Sepharose were used

Figure 5. Dioxin enhances Ahr transcriptional potency. (A) Binding between Ahr and Tgo in absence or presence of dioxin in in vitro
conditions. Ahr-35S is pulled-down with anti-Tgo conjugated beads. Concentrations of dioxin are indicated in nM. (B) Binding between Ahr and Arnt
in absence and presence of dioxin. (C) Binding between Ss and Tgo in the absence of dioxin. (D) Left, the Bar XRE enhancer sequences and its
conservation with the XRE from the mouse cytochrome P450 1a1 promoter and an in vitro probe that binds to Ahr::Arnt complexes [8] (the core XRE
motif is in red and non conserved bases are in grey); right, lacZ reporter expression (red) driven by this enhancer (XRE-lacZ) in a wild-type
background. (E) Repression of the XRE-lacZ reporter by Ss-GFP and Ahr-GFP in presence of dioxin, but not by Ahr-GFP alone. GFP is shown in green in
the bottom panels. (F) Revised model of Ahr signalling. Our results corroborate that Ahr activity exists in the absence of dioxin and show that dioxin
not only enhances the nuclear translocation of Ahr [29] but also enhances Ahr’s transcriptional activity.
doi:10.1371/journal.pone.0015382.g005
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to precipitate either Ahr-35S or Ss-35S. When described, dioxin

was added during the binding reaction and washes. The range of

concentrations was choosen following published data [27].

Presence of 35S-labelled proteins was detected with a Typhoon

TRIO scanner.

Supporting Information

Table S1 Quantification of leg phenotypes presented in
Fig. 3E. Genotypes: ss mutant (w; CyO/+; rn-Gal4 ssabr/sssta), ss

rescue (w; UAS-ss/+; rn-Gal4 ssabr/sssta), Ahr rescue (w; UAS-Ahr/+;

rn-Gal4 ssabr/sssta), and Ahr + dioxin rescue (w; UAS-ss/+; rn-Gal4

ssabr/sssta+200 ngr TCDD/gr. food). Total number of legs and

total number of flies (in brackets) are indicated. A number of legs is

lost during dissection or due to sticking to the food or the pupal

cases (see material and methods). Legs were classified according to

the number of tarsi present (from one to five). The number of ss

mutant flies is higher as they were obtained as internal control

segregates in every experiment.

Found at: doi:10.1371/journal.pone.0015382.s001 (DOC)

Figure S1 Ectopic expression of either Tgo or Arnt does
not affect leg development. (A) First thoracic leg of a male (top

panels) and expression of Dac (green) and Bar (red) in leg imaginal

disc during third instar (bottom panels). (B) SEM pictures of adult

eyes taken at 5006 (top row) and 10006 (bottom row). Genotypes

are indicated above panels. UAS-Tgo does not affect the wild-type

eye phenotype. The binarization and measurement process is

shown.

Found at: doi:10.1371/journal.pone.0015382.s002 (TIF)
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