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The Aryl hydrocarbon receptor (Ahr) is the nuclear receptor mediating the toxicity of dioxins -widespread and persistent
pollutants whose toxic effects include tumor promotion, teratogenesis, wasting syndrome and chloracne. Elimination of Ahr
in mice eliminates dioxin toxicity but also produces adverse effects, some seemingly unrelated to dioxin. Thus the
relationship between the toxic and dioxin-independent functions of Ahr is not clear, which hampers understanding and
treatment of dioxin toxicity. Here we develop a Drosophila model to show that dioxin actually increases the in vivo dioxin-
independent activity of Ahr. This hyperactivation resembles the effects caused by an increase in the amount of its
dimerisation partner Ahr nuclear translocator (Arnt) and entails an increased transcriptional potency of Ahr, in addition to
the previously described effect on nuclear translocation. Thus the two apparently different functions of Ahr, dioxin-
mediated and dioxin-independent, are in fact two different levels (hyperactivated and basal, respectively) of a single

Citation: Céspedes MA, Galindo MI, Couso JP (2010) Dioxin Toxicity /n Vivo Results from an Increase in the Dioxin-Independent Transcriptional Activity of the Aryl
Hydrocarbon Receptor. PLoS ONE 5(11): e15382. doi:10.1371/journal.pone.0015382

Received August 4, 2010; Accepted September 1, 2010; Published November 8, 2010

Copyright: © 2010 Céspedes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by a Wellcome Trust Senior fellowship to JPC (ref. 087516) and a University of Sussex GTA studentship to MAC. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

o Current address: The Institute of Biomedicine, Consejo Superior de Investigaciones Cientificas (CSIC), Valencia, Spain

Introduction

The Aryl hydrocarbon receptor (Ahr) is the key component in
the metabolic response to the extremely widespread, toxic and
persistent pollutants dioxins [1,2,3,4]. Dioxins produce epidermal
and hepatic toxicity, teratogenesis, autoimmunity and carcinogen-
esis [5,6]. Ahr is a cytoplasmic bHLH-PAS transcription factor
that, upon binding of dioxin, translocates to the nucleus where it
forms a complex with the Aryl hydrocarbon receptor nuclear
translocator (Arnt), another PHLH-PAS protein [7], and binds to
an eight-nucleotide motif (Xenobiotic Response Element; XRE) to
control the expression of specific target genes [8,9] (Figure 1A).
Previous work with A&r knock-out mice revealed the existence of
dioxin-independent functions of Ahr, including developmental
functions and ageing-related detoxification [1,2,3]. However, the
relationship between these two functions of Ahr, toxic and dioxin-
independent, remains unclear [5,10], in particular whether dioxin
toxicity entails loss or excess of the dioxin-independent Ahr
function, or a new independent function. We have tackled this
question, which is central to the treatment of the effects of dioxins,
using a Drosophila model for Ahr function and dioxin toxicity.
Drosophila, like other invertebrates, does not suffer dioxin toxicity
because its Ahr homologue does not bind dioxins [11,12], but
offers an extensive suite of genetic techniques. Hence, we have
introduced the mouse dioxin receptor in flies, and studied its
activity  vwo in the presence or absence of dioxin. A similar
strategy (‘humanising’ or introduction of human genes in animal
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model systems) has allowed the study of the molecular and genetic
basis of other human medical conditions in Drosophila (i.c.
Alzheimer’s, Parkinson’s and Huntington’s diseases) [13].

Results and Discussion

Ahr is able to fulfil dioxin-independent functions in
Drosophila

Mouse Ahr and its Drosophila homologous protein, Spineless (Ss),
are highly similar in the bHLH and PAS A domains (Figure 1B).
The spineless (ss) gene has well-characterised dioxin-independent
functions during development [14,15]. For instance, ss expression
controls leg development by repressing the dachshund (dac) and Bar
genes [16,17] (Figure 2A, 3C). Ss protein locates to the nucleus
[18] (Figure 2B) and its presence promotes the nuclear localisation
of the fly homologue of Arnt, Tango (T'go) which is otherwise
distributed evenly across the cell [19] (Figure 2B). Ss:'Tgo
heterodimers target gene expression (both activation and repres-
sion) through the XRE motif both i vitro and during development
[16,19]. In Drosophila, the development of the legs and the eyes are
sensitive to the precise dosage of Ss and Tgo [14,15,19] (see
below), and thus provide an accurate read-out of ss-related activity
and function.

Ss is not able to bind dioxins [11] probably because its PAS-B
domain, which contains the dioxin binding domain [20], is highly
divergent from vertebrates (Figure 1B). For this reason, we
introduced mouse A/ under an inducible promoter (UAS-A/r or a
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Figure 1. Ahr mediates the cellular response to dioxin. (A) Current core model of Ahr signalling in vertebrates. (B) Sequence conservation

between Ahr and Ss. LBD, dioxin binding domain.
doi:10.1371/journal.pone.0015382.g001

tagged UAS-Ahr-GFP) in transgenic flies, and expressed it in the
domain of ss using the mGal4 driver, which mimics ss expression
[17,21]. Once in flies, and in the absence of dioxin, Ahr is able to
fulfil the dioxin-independent functions of Ss. Thus Ahr: 1) rescues
almost completely the loss of the ss gene during development
(Figure 2A, 3E); 2) localises to the nucleus (Figure 2B); and 3) binds
Tgo and promotes its nuclear localisation (Figure 2B and C). We
conclude that the dioxin-independent activities of Ahr and Ss
are functionally equivalent, and mediated through binding to
Tgo/Arnt.

Fruit flies expressing the murine Ahr respond to dioxins

We next explored the effects of adding dioxin on the activity of
both Ss and Ahr, in order to discriminate whether dioxin induces
in viwo either a reduction or an increase in the activity of Ahr.
Exposure of wild-type flies to dioxin produces no effects
(Figure 3A), as expected from the inability of Ss to bind dioxin
[11,19]. However, an excess of ss function can be generated in the
absence of dioxin by ectopic overexpression of the UAS-ss
transgene with Gal4 drivers. This ectopic overexpression interferes
with normal development and produces leg deformities, tarsal
segment loss and roughened eyes (Figure 3A, 4A), and ectopic
repression of ss5’s developmental targets Bar and dac [16,17]
(Figure 3B, Q). Altogether these results show that the Ss protein
acts both endogenously and ectopically in a dioxin-independent
manner. In contrast, dioxin produces a marked increase on the
activity of Ahr. Ectopic overexpression of UAS-Ahr or UAS-Ahr-
GFP (both driven across the leg imaginal disc by dpp-Gald)
produces no obvious effect on either fly morphology or expression
of Bar and dac (Figure 3A, B). However, when these flies
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overexpressing UAS-Ahr are exposed to dioxin, the effects mimic
those obtained with UAS-ss: abnormal legs and eyes, and ectopic
repression of dac and Bar (Figure 3A-D, 4A-B). Moreover, the
presence of dioxin also allows more complete rescue of the loss of
ss by Ahr than in its absence (Figure 2A, 3A, 3E, Table Sl1), a
rescue now comparable to that exerted by the UAS-ss transgene
itself. Altogether our results suggest that i vive dioxin produces a
hyperactivation of the Ahr protein. Thus, Ahr shows two levels of
activity in the context of the whole organism: 1) basal low activity
without dioxin, allowing only partial rescue of the endogenous ss
gene function, and 2) high activity in the presence of dioxin,
allowing Ahr to mimic the full effects of Ss, both endogenous and
ectopic.

Dioxin enhances the transcriptional potency of Ahr:Tgo
complexes

In vertebrates, binding of dioxin to Ahr triggers its translocation
from the cytoplasm to the nucleus, followed by binding to nuclear
Arnt and subsequently to XRE sequences [8] (Figure 1A).
However, in Drosophila, the nuclear localisation of Ahr and Ss
does not depend on dioxin (Figure 2B), probably due to differences
in the proteins that retain Ahr in the vertebrate cytoplasm [22,23].
Thus, our system suggests that nuclear translocation is not the only
limiting step in Ahr function and that the observed hyperactivation
of Ahr by dioxin must rely on another mechanism. In genetic
experiments, the function of Ss is very sensitive to the dosage of
Tgo. Removal of a copy of #o enhances the loss of ss [19] and,
reciprocally, the phenotype caused by ectopic Ss in the eyes can be
suppressed almost completely by reducing the dosage of Tgo
(unpublished observations). Correspondingly, an increase of Tgo
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Figure 2. Ahrfulfils ssfunctions in the absence of dioxin. (A) Drosophila leg phenotypes; the numbers of tarsal segments present is indicated.
From left to right: wild type, ss mutant, and ss mutant rescued by Ahr expression. (B) Larval salivary glands showing localisation of Ss-GFP and Ahr-
GFP (green), Tgo (red) and DAPI (blue). Conditions as above the panels in A. Tgo is nuclear in the presence of either Ss-GFP or Ahr-GFP but not in their
absence (middle panels). (C) Left, Ahr-GFP and Ss-GFP bind Tgo in in vivo co-immunoprecipitation assays. Ahr-GFP and Ss-GFP were precipitated
using anti-GFP, Tgo was detected with anti-Tgo antibody. Right, anti-GFP reveals the presence of Ahr-GFP and Ss-GFP.

doi:10.1371/journal.pone.0015382.g002

enhances the function of Ahr, in fact, increasing the dosage of T'go
or Arnt mimics Ahr’s hyperactivation by dioxin. Thus, flies
overexpressing Ahr plus Tgo or Arnt display the same phenotypes
as those overexpressing either Ss, or Ahr plus dioxin (Figure 3A,
3E, 4). This result is particularly noteworthy since overexpression
of Tgo, Arnt or Ahr on their own produces no discernible
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alteration of eye or leg development (Figure 3 and Sl1). The
similarity between the effects of dioxin and extra amounts of Tgo
or Arnt indicates that firstly, our observed hyperactivation of Ahr
by dioxin is bona fide, and secondly, that the endogenous amount
of Tgo protein is limiting and dioxin allows Ahr to use Tgo more
efficiently in the process involved. One possibility is that dioxin
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Figure 3. Ahr activity is enhanced by dioxin or addition of Arnt or extra Tgo. (A) Leg phenotypes. Genotypes and presence of dioxin are
indicated above the panels. The number of tarsal segments present is indicated. Arrows point to proximal leg deformities. (B) Late third instar leg
imaginal discs showing Dac (green) and Bar (red) expression; genotypes as above. The normal (arrowheads) and ectopic (arrows) repression of Dac
and Bar is indicated. (C) Late third larval-instar leg imaginal discs showing Dac and Bar expression in a wild-type and ss mutant. (D) Wild-type Ss
expression in leg imaginal disc during third larval instar. Notice the correlation between ss expression and repression of Dac and Bar (arrowheads). (E)
Quantification of legs according to the number of tarsal segments displayed. From left to right: w; rn-Gal4 5597/55519 (ss mutant), w; UAS-ss/+; r-Gal4
ss9/ss%19 (ss rescue), w; UAS-Ahr/+; rn-Gal4 ss%/ss*® (Ahr rescue) and w; UAS-Ahr/+; rm-Gal4 ss®'/ss* fed with dioxin (Ahr+dioxin rescue). Notice that
presence of five tarsal segments (red column) indicates full rescue of the mutant phenotype. A minimum of 80 legs, from at least 20 flies, were

observed per sample (see Table S1).
doi:10.1371/journal.pone.0015382.g003

increases or stabilises the Ahr:‘'I'go complexes, but we do not
observe an increase in binding between Ahr and Tgo or Arnt in
Co-immunoprecipitation experiments in the presence of dioxin
(Figure 5A, B). A second possibility is that dioxin increases the
potency of the Ahr::'Tgo complexes, in particular their transcrip-
tional efficiency. To test this, we used a reporter gene containing
the XRE enhancer sequence from the Bar gene that Ss::‘'Tgo
complexes bind to [16] (Figure 5D). Our results show that in the
absence of dioxin Ahr is not able to repress this reporter
(Figure 5E), despite forming complexes with Tgo as efficiently as
Ss (Figure 1C, 5A, 5C). On the contrary, and as expected,
transcriptional repression is observed in the presence of dioxin
(Figure 5E).

In summary, our results show that dioxin increases i vivo the
dioxin-independent activity of Ahr, and hence that dioxin toxicity
is best understood as an excess of function of Ahr. The two
postulated functions of Ahr (dioxin-dependent and dioxin-
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independent) in fact seem to correspond to two different levels
of a single Ahr activity, basal and hyperactivated. This model
envisages that hyperactivated Ahr will not only regulate more
strongly the same genes as basal Ahr, but also that some genes
could only be bound and regulated by hyperactive Ahr or Ss
proteins [24]. In either case, in absence of dioxin, Ahr would not
be able to disrupt normal development or fully rescue ss
phenotypes as Ss and hyperactive Ahr do. Furthermore, our
results also suggest that the dioxin-mediated toxicity of Ahr is not
solely due to inducing its nuclear translocation or to changes in
affinity for its dimerisation partners, but also entails an increase of
the transcriptional regulatory activity of Ahr (Figure 5F). More
generally, our results corroborate that reduction, but not
elimination, of endogenous Ahr and Arnt function may be the
best approach to treat dioxin toxicity, and introduce Drosophila as a
new system to study  viwo the genetic and molecular basis of such
toxicity.
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doi:10.1371/journal.pone.0015382.9g004

Materials and Methods

Reagents and fly strains

UAS-Ahr, UAS-Ahr-GFP, UAS-ss, UAS-ss-GFP and UAS-Amt
transgenic lines were generated by cloning the appropriate full
cDNAs [14,25] into a pUASt vector, followed by injection of
purified plasmid into embryos by Vanedis and recovery of w" lines.
The ss-GFP ¢cDNA was generated by cloning the GFP coding
sequence 3’ and in frame with the ss coding sequence. m-Gal4
[17,21], ss mutants [14], and UAS-igo [19] have been previously
described. dpp-Gal4, hs-Gal4d, GMR-Gal4 and ABI-Gal{ were
obtained from Bloomington Stock Center.

The dioxin 2,3,5,7-tetrachlorodibenzo-p-dioxin (T'CDD) was
fed to parental flies and larval offspring, diluted in the food at a
final concentration of 200 ngr TCDD/gr food [26]. To minimize
exposure to dioxin-contaminated food and fly particles, cultures
were left for nine days after first eclosions, then filled with SH
medium (ethanol 100%:glycerol, 3:1; v/v), and the whole contents
sieved for fly corpses and pupae, from which legs were dissected.

Anti-Tgo and anti-Dac were obtained from the Developmental
Studies Hybridoma Bank (DSHB). Anti-Arnt, anti-GFP and anti-
B-galactosidase were from Affinity BioReagents, Roche and
Cappel, respectively. Anti-Bar and anti-Ss were provided by T.
Kojima [16] and Yuh-Nung Jan [18], respectively. Leg discs and
salivary glands were stained as described in the online methods.

Immunohistochemistry

Third instar larvae were collected and dissected in cold PBS and
fixed at RT for 10 min. in 4% paraformaldehyde. Larvae were
washed in PBTx (0.03% Triton X-100 in PBS) blocked in PBTA
(0.4% Bovine Albumin in PBTx). Samples were incubated
overnight at 4°C in the primary antibody and in the secondary
for 2hr at RT. Samples were mounted in Vectashield. Fluores-
cence pictures were taken in a Zeiss Axiovert confocal microscope
equipped with a LSM520 Meta.

Cuticle and eye preparations

Pharates and eclosed adults were kept in SH medium (ethanol
100%:glycerol, 3:1; v/v) and dissected in 70% ethanol. Samples
were incubated for 5 minutes at 60°C in NaOH 1M, and then
cooked in Hoyer’s medium (Hoyers: lactic acid, 1:1; v/v) for
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20 min at 60°C. Finally the legs were mounted in Hoyer’s
medium. Adult cuticle preparations were observed under a
Leica DMRB optical microscope, and the pictures were
taken with one of the following softwares: Q-win or Simple
PCI 6.6.

Adult flies were dehydrated by washing for 10 min in 70%,
80%, 90%, and 100% ethanol, and finally washed twice for
10 min in hexamethyldisilazane. Then samples were allowed to
dry before coating them with a layer of gold/palladium alloy. Eyes
were scanned in a Leo420 Steroscan SEM.

Estimation of bristle size

SEM pictures taken at 1000x were analyzed by the imaging
program Image J. Sections of the 500 %200 pixels from the dorsal
part of the eye were cropped. The resulting image was binarized
using an appropriate threshold of brightness to isolate the bristles
from the rest of the ommatidia. The background was removed by
eroding once. The effect of the erosion on bristle size was
corrected by dilating once. The size of each bristle was estimated
by the number of covered pixels. The output data below 80 pixels
or above 300 pixels were discarded to remove any artefacts caused
by the background (Figure S1B). These limits were determined
empirically. Between five and ten eyes were measured per sample.

Cloning

ss coding sequence was extracted from pGEX-2T-ssA1 (provided
by Dr. I. Duncan) by PCR (forward primer GAGAGATCTA-
GAATCCGCCCTAGCAATGAGCCA, and reverse primer
CCGGGAGCTGCATGTGTCAGAGG). An Xbal restriction
site was inserted upstream of ss in a tail in the forward primer.
ss was then sub-cloned in an Xbal restriction site in pBR-eGIP,
leaving the ¢GFP ORY in frame with the ss N-terminal side. eGFP-
ss was then cloned in the pUASt vector into the Notl and Spel
restriction sites.

Ahr and Ahr-eGFP coding sequences were extracted from the
construct pEGFP-Ahr (provided by Dr. P. Fernandez-Salguero) and
cloned into Xbal in pUASt.

Amt cDNA was extracted from pCMV-sport6-Arnt (obtained from
Gene Service), identified as clone AV-21A3. Arnt was cloned in
pUASt in the EcoRI and Xhol restriction sites.
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Co-immunoprecipitation assays and GFP proteins was detected by Western-blotting. For  vitro

For in viwo assays larvae fhis-Gal4 UAS-Ahr-GFP, hs-Gal4 UAS-ss- assays Ahr, Ss, T'go and Arnt were expressed in rabbit reticulocyte
GFP and hs-Gal4 UAS-GFP were heat shocked for 2 hours at 37°C lysates (Promega) and labelled with S as required. Binding was
and lysated. Mouse anti-GFP bound to Protein-G Sepharose was performed in HEPES 20 mM pH 7.9, NaCl 50 mM, 1% Np40.
used to precipitate Ahr-GIP, Ss-GFP and GFP. Presence of Tgo Anti-Tgo and anti-Arnt bound to Protein-G Sepharose were used
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to precipitate either Ahr->S or Ss-*>S. When described, dioxin
was added during the binding reaction and washes. The range of
concentrations was choosen following published data [27].
Presence of *S-labelled proteins was detected with a Typhoon
TRIO scanner.

Supporting Information

Table S1 Quantification of leg phenotypes presented in
Fig. 3E. Genotypes: ss mutant (w; CyO/+; m-Gald ss”/ss"?), ss
rescue (w; UAS-ss/+; m-Gald s /ss™), Ahr rescue (w; UAS-Ahr/+;
m-Gal4 s /s, and Ahr + dioxin rescue (w; UAS-ss/+; m-Gal4
55" /55"%+200 ngr TCDD/gr. food). Total number of legs and
total number of flies (in brackets) are indicated. A number of legs is
lost during dissection or due to sticking to the food or the pupal
cases (see material and methods). Legs were classified according to
the number of tarsi present (from one to five). The number of ss
mutant flies is higher as they were obtained as internal control
segregates in every experiment.

Found at: doi:10.1371/journal.pone.0015382.s001 (DOC)

Figure S1 Ectopic expression of either Tgo or Arnt does
not affect leg development. (A) First thoracic leg of a male (top
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Drosophila as a New Model to Study Dioxin Toxicity

panels) and expression of Dac (green) and Bar (red) in leg imaginal
disc during third instar (bottom panels). (B) SEM pictures of adult
eyes taken at 500 x (top row) and 1000 X (bottom row). Genotypes
are indicated above panels. UAS-Tgo does not affect the wild-type
eye phenotype. The binarization and measurement process is
shown.

Found at: doi:10.1371/journal.pone.0015382.s002 (TTF)

Acknowledgments

We thank Jose 1. Pueyo for unpublished results and comments to the
manuscript. Rose Phillips and Sarah Bishop for technical assistance, Pedro
Fernandez-Salguero, Tetsuya Kojima, Yuh-Nung Jan, Ian and Dianne
Duncan and Steve Crews for molecular reagents and Drosophila strains, and
Claudio Alonso and Rob Ray for comments to the manuscript.

Author Contributions

Conceived and designed the experiments: MAC MIG JPC. Performed the
experiments: MAC MIG JPC. Analyzed the data: MAC JPC. Contributed
reagents/materials/analysis tools: MAC MIG. Wrote the paper: MAC
JPC.

17. Pueyo JI, Couso JP (2008) The 11-aminoacid long Tarsal-less peptides trigger a
cell signal in Drosophila leg development. Developmental Biology 324: 192-201.

18. Kim MD, Jan LY, Jan YN (2006) The bHLH-PAS protein Spineless is necessary
for the diversification of dendrite morphology of Drosophila dendritic
arborization neurons. Genes Dev 20: 2806-2819.

19. Emmons RB, Duncan D, Estes PA, Kiefel P, Mosher JT, et al. (1999) The
spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal
and tarsal development in Drosophila. Development 126: 3937-3945.

20. Coumailleau P, Poellinger L, Gustafsson JA, Whitelaw ML (1995) Definition of a
minimal domain of the dioxin receptor that is associated with Hsp90 and
maintains wild type ligand binding affinity and specificity. J Biol Chem 270:
25291-25300.

21. St Pierre SE, Galindo MI, Couso JP, Thor S (2002) Control of Drosophila
imaginal disc development by rotund and roughened eye: differentialy expressed
transcripts of the same gene encoding functionally distinct zinc finger proteins.
Development 129: 1273-1281.

22. Bell DR, Poland A (2000) Binding of Aryl Hydrocarbon Receptor (AhR) to
AhR-interacting Protein. Journal of Biological Chemistry 275: 36407-36414.

23. Qin H, Zhai Z, Powell-Coffman JA (2006) The Caenorhabditis elegans AHR-1
transcription complex controls expression of soluble guanylate cyclase genes in
the URX neurons and regulates aggregation behavior. Developmental Biology
298: 606-615.

24. Tijet N, Boutros PC, Moffat ID, Okey AB, Tuomisto J, et al. (2006) Aryl
hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-indepen-
dent gene batteries. Mol Pharmacol 69: 140-153.

25. Santiago-Josefat B, Pozo-Guisado E, Mulero-Navarro S, Fernandez-
Salguero PM (2001) Proteasome inhibition induces nuclear translocation and
transcriptional activation of the dioxin receptor in mouse embryo primary
fibroblasts in the absence of xenobiotics. Mol Cell Biol 21: 1700-1709.

26. Fernandez-Salguero PM, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ
(1996) Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-
tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol Appl Pharmacol 140:
173-179.

27. Chan WK, Yao G, Gu YZ, Bradficld CA (1999) Cross-talk between the aryl
hydrocarbon receptor and hypoxia inducible factor signaling pathways -
Demonstration of competition and compensation. Journal of Biological
Chemistry 274: 12115-12123.

28. Martinez AM, Schuettengruber B, Sakr S, Janic A, Gonzalez C, et al. (2009)
Polyhomeotic has a tumor suppressor activity mediated by repression of Notch
signaling. Nature Genetics 41: 1076-U1047.

29. Ikuta T, Eguchi H, Tachibana T, Yoneda Y, Kawajiri K (1998) Nuclear
localization and export signals of the human aryl hydrocarbon receptor. J Biol
Chem 273: 2895-2904.

November 2010 | Volume 5 | Issue 11 | e15382



