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Abstract

Enterohaemorrhagic E. coli (EHEC) O157:H7 is a primary food-borne bacterial pathogen capable of causing life-threatening
human infections which poses a serious challenge to public health worldwide. Intimin, the bacterial outer-membrane
protein, plays a key role in the initiating process of EHEC infection. This activity is dependent upon translocation of the
intimin receptor (Tir), the intimin binding partner of the bacteria-encoded host cell surface protein. Intimin has attracted
considerable attention due to its potential function as an antibacterial drug target. Here, we report the crystal structure of
the Tir-binding domain of intimin (Int188) from E. coli O157:H7 at 2.8 Å resolution, together with a mutant (IntN916Y) at
2.6 Å. We also built the structural model of EHEC intimin-Tir complex and analyzed the key binding residues. It suggested
that the binding pattern of intimin and Tir between EHEC and Enteropathogenic E. coli (EPEC) adopt a similar mode and
they can complement with each other. Detailed structural comparison indicates that there are four major points of
structural variations between EHEC and EPEC intimins: one in Domain I (Ig-like domain), the other three located in Domain II
(C-type lectin-like domain). These variations result in different binding affinities. These findings provide structural insight
into the binding pattern of intimin to Tir and the molecular mechanism of EHEC O157: H7.
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Introduction

Escherichia coli (E. coli), is a facultative anaerobe which was

originally isolated from the human gastrointestinal tract[1]. Based

upon the potential for virulence, this kind of Gram-negative

bacteria, can be divided into two major groups: pathogenic E. coli

and avirulent E. coli[1,2]. Pathogenic E. coli has been recognized as

the zoonotic agents responsible for a wide spectrum of infectious

diseases (e.g., diarrhea, sepsis, and meningitis)[2,3,4,5]. Currently,

it is well accepted that the pathogenic E. coli can be classified into 5

members that consist of enterohemorrhagic E. coli (EHEC),

enteropathogenic E. coli (EPEC), enteroaggregative E. coli

(EAggEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E.

coli (ETEC)[1,6]. Among them, EHEC may be the leading

causative agent for sporadic cases and even epidemics of severe E.

coli infections, posing a great concern to public health worldwide

[7]. To our knowledge, two large scale EHEC outbreaks have

been recorded (one in Japan, 1996[8] and the other in China,

1999–2000[9]). Moreover, more than 70,000 human cases of

EHEC infection with characteristics of diarrhea occur in the

United States each year[10].

Among the pathogenic E. coli strains, EHEC O157:H7 has

been recognized as one of the most notorious pathogens

featuring the properties of an extremely common and virulent

serotype, and is responsible for a series of severe gastrointestinal

illnesses with life-threatening consequences in North America,

Europe, China, and Japan[7,8,9,10]. Considering its high

pathogenicity, EHEC O157:H7 has been listed as a potential

bio-weapon in many countries[11]. In order to understand and

control the severe infection of EHEC O157:H7, many research

groups have carried out comprehensive investigations at

multiple levels ranging from the epidemiology, molecular

bacteriology, to the protein interactions between the bacterium

and its host[12].

Like most mucosal pathogens, infection of EHEC O157:H7

follows a common cycle: colonization at the mucosal sites, evasion

of the host defense, proliferation and host damage[13]. Obviously,

there are many virulence factors (e.g., Shiga toxin[14] and

intimin[15]) or pathogenicity islands (PAIs) identified to be

involved in the general virulence of EHEC[16]. It is worth noting

that both the intimin and translocated intimin receptor (Tir) genes

located on a PAI of ,43 kb in length (also called locus of
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enterocyte effacement (LEE)) have been demonstrated to be

responsible for the generation of the A/E lesion[15].

Intimin, an out membrane protein expressed by EHEC and

EPEC, is required for intimate attachment to the host cell and

formation of the A/E lesions [17]. Tir is a bacterial protein which

injects into the host cell through the Type III secretion system

(T3SS) to function as a receptor specific to intimin[17,18]. The

binding of intimin to Tir mediates the adhesion between the

pathogen and its host cell[19]. Shortly after the successful binding,

the translocated Tir protein triggers additional signal transduction

and actin polarization in host cells, which are essential for lesion

formation[20,21,22].

Currently, intimin is classified into a large family of adhesin

proteins that are capable of evoking A/E lesions and are

generally divided into five types (a, b, c, d and e) on the basis

of their divergent C-terminus domains[23,24]. The intimin of

EHEC O157:H7 is of c-type (designated intimin-c), whereas that

of EPEC is intimin-a. In addition, Tir protein of EHEC

O157:H7 has also been found to be different from that of EPEC,

especially in its pattern of phosphorylation pattern after

infiltration of host cells [17]. This implies that the function and

structures of EHEC and EPEC intimins may vary to some

extent[17]. As we know to date, crystal structure of EPEC

Intimin-Tir complex, NMR and crystal structures of the EPEC

intimin binding domain alone have been determined [25,26].

These data gives insight into the molecular mechanism of EPEC

adhesion[26]. Moreover, relevant critical amino acids for binding

have also been elucidated[12,26].

Here, we determined the crystal structures of Tir-binding

domain of EHEC O157:H7 intimin at 2.8 Å, together with an Asn

to Tyr mutant at amino acid 916 (IntN916Y) at 2.6 Å. Complex

model of EHEC Intimin-Tir is built, and four key residues

involved in their binding are analyzed. Moreover, the differences

between the Tir-binding domain of EHEC intimin and that of

EPEC are further investigated. This suggests that the EHEC and

EPEC intimins can cross complement each other with different

binding affinities.

Results

Overall Structure of EHEC Int188
Crystals of EHEC Int188 and IntN916Y diffract X-rays at

2.8 Å and 2.6 Å, respectively. Both crystal structures were solved

by molecule replacement with the template of EPEC Int188 (PDB

code: 1F00). R-free values were separately refined to 29.6% and

26.8%. These two versions of intimin (Int188 and IntN916Y) were

crystallized in space group C2 and P212121, respectively. For the

native version, Int188 consists of four molecules in the asymmetric

unit while the IntN916Y is present in two molecules per

asymmetric unit.

Topological analysis suggest that Int188 is composed of sixteen

beta-sheets together with four alpha-helices (Figure 1A), which can

be supported by the crystal structure (Figure 1B). Both topological

and structural evidence indicate that Int188 can be obviously

categorized into two independent domains (Domain I& Domain

II) (Figure 1A, 1B). Further structural blast revealed that these two

Figure 1. Topological and structural characterization of EHEC Int188. A) A topological diagram[33] of EHEC Int188. EHEC Int188 consists of
two domain, domain I contains eleven anti-parallel beta-sheets (A, A9, A0, A09, B, B9 C, D, E, F and G) and ten coils, colored in magentas. Domain II is
comprised of two anti-parallel beta-sheets (A, B, C, D and E) and four alpha-helices (I, II, III and IV), marked in cyans. B) An overview of the crystal
structure of the EHEC Int188. The structure of EHEC Int188 consists of two domains, domain I (Ig-like domain) is shown in magenta while domain II
(C-type lectin-like domain) is shown in cyans.
doi:10.1371/journal.pone.0015285.g001

Figure 2. Amino acid sequence alignments of EHEC Int188 with related proteins. Amino acid multiple alignments of EHEC Int188 with its
related proteins from different pathogens (EPEC, Hafnia alvei, and Citrobacter freundii). The residues conserved in all proteins are highlighted in red.
Secondary structure elements of EHEC Int188 are shown above the sequence.
doi:10.1371/journal.pone.0015285.g002
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domains correspond to an Ig-like domain and a C-type lectin-like

domain (Figure 1B), respectively. The Ig-like domain at the N-

terminus of Int188 is composed of beta-sheet sandwiches which

contain eleven anti-parallel beta-sheets (A, A9, A0, A09, B, B9, C, D,

E, F and G) and ten coils. Beta-sheets A9 and A0 between strands A

and A90 extend a platform on top of Domain I that contacts

Domain II, helping to define the relative orientation of the two

domains. A C-type lectin-like domain was found to be located at

its C-terminus, comprised of two anti-parallel beta-sheets (B, C, D

and A, E) spaced by four alpha-helices (I, II, III and IV). C932 in

the C-terminal strand E forms a disulfide bond with the C858 in

helix I. Strand E and strand A in N-terminus of Domain II form

the principal strands of the first sheet. The second sheet

comprising strands B, C and D, is oriented roughly perpendicular

to the first one, such that strands B and E are proximal (Figure 1B).

Int188 and IntN916Y behave completely the same at the level of

higher structure (not shown).

Figure 3. Superposition of Int188 between EHEC and EPEC.
Superposition of EHEC Int188 and EPEC Int188 is shown in cartoon. EHEC
Int188 is indicated in warm pink, while EPEC Int188 is marked in limon.
doi:10.1371/journal.pone.0015285.g003

Figure 4. Structural modeling of EHEC intimin-Tir complex and superposition of intimin-Tir complex between EHEC and EPEC. A)
Superposition of intimin-Tir complex between EHEC and EPEC. The crystal structure of EPEC intimin-Tir complex is shown in limon. The EHEC intimin
and Tir are indicated in warm pink and purple-blue, respectively. B) Structural modeling of EHEC intimin-Tir complex. Intimin is shown as surface in
gray. Four important residues (S890, T909, N916 and N927) are marked in warm pink. Tir is shown in purple-blue ribbon. The region involved in the
intimin-Tir binding is enclosed in a black circle, in which the details of the key residues are marked in warm pink.
doi:10.1371/journal.pone.0015285.g004
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The binding pattern of intimin and Tir are similar
between EHEC and EPEC

Multiple alignments show that EHEC Int188 share the highest

sequence identity with three other proteins (EPEC, H. alvei, and C.

freundii) (Figure 2). BLAST analysis reveals that although EHEC

Int188 is of 48% sequence identity to that of EPEC, the secondary

structures of both proteins are similar in the topological

characterization (Figure 2). Furthermore, the superposition

demonstrated that Int188 tertiary structures of EHEC and EPEC

are highly similar, with an RMSD of 1.2 Å calculated with

program Dali [27] (PDB 1F00) (Figure 3). The Tir of EHEC and

EPEC share 71% sequence identity, and the critical residues

required for binding to intimin are relatively conserved.

Previous study indicated that EHEC and EPEC intimin can

cross-complement each other in vitro[17]. According to the

structure of EHEC intimin we solved here and the structure of

EPEC Intimin-Tir complex (1F02), we built the structural

modeling of an EHEC intimin-Tir complex, showing a similar

binding pattern between EHEC and EPEC (Figure 4A).

Recent study have demonstrated that four important residues

(S890, T909, N916 and N927) of EHEC intimin are essential for

Tir recognition[12]. Our structural modeling of the EHEC

intimin-Tir complex confirms this claim. It clearly indicates that

these four residues locate in the Tir binding pocket which is

formed by B, C, D b-sheets and the loop between D, E b-sheets

(Figure 4B).

Structural Comparisons of intimins between EHEC and
EPEC

We observed four points of variation based on comparing the

structures of intimins between EHEC and EPEC (Figure 5A). For

Domain I (Ig-like domain), the main chain of EHEC is quite

Figure 5. Differences of Int188 between EHEC and EPEC. A) Superposition of EHEC Int188 and EPEC Int188 is shown in ribbon. EHEC Int188 is
indicated in warm pink, while EPEC Int188 is marked in limon. Four different variations are highlighted with circles. One of them located in domain I is
in teal, the other three located in domain II are indicated in blue. B) Detailed structures of the two differences (2,3) of Int188 between EHEC and EPEC
in domain II. EHEC Int188 is indicated in warm pink, while EPEC Int188 is marked in limon.
doi:10.1371/journal.pone.0015285.g005

Crystal Structure of EHEC Intimin

PLoS ONE | www.plosone.org 5 December 2010 | Volume 5 | Issue 12 | e15285



similar to that of EPEC excluding the region between beta-sheet D

and E (Figure 5A). In EHEC, this region forms a regular beta-turn

structure consisting of amino acid residues ‘‘DASG’’, while in

EPEC there is an extra S residue at this position, which in turn

forms an abnormal loop with amino acid residues ‘‘DASSG’’

(Figure 5A). In Domain II (C-type lectin-like domain), there are

three obvious differences between the intimin of EHEC and

EPEC. First, the loop between alpha-helix I and alpha-helix II in

EHEC spans the region from 859K to 861L, but in EPEC there

are three more residues (G, G and K) at this position. Thus, this

loop in EPEC is longer than that in EHEC, which contains an

extra-loop adjacent to Tir-binding sites (Figure 5A). The second

difference in the confirmation of EHEC and EPEC is also found to

lie between the A beta-sheet and alpha-helix I. EPEC (residues

846–852) has two more residues than that of EHEC (residues 846–

850), in which conformational change directly affect the

neighboring main chain (residues 927–933) (Figure 5A). This

results in the difference of Tir binding site between EHEC and

EPEC. The third major difference in domain II between EHEC

and EPEC intimin is at the Tir binding site (Figure 5A, B). In the

side chain of EPEC, N932 (equivalent to N927 of EHEC) points to

the Tir binding pocket. In contrast, the EHEC N927 in the same

position is pointed away from the binding pocket. Additionally,

superposition reveals that the distance between the alpha-C atom

of this N932 residue in EPEC and the alpha-C atom of the N927

residue in EHEC is 4.75 Å (Figure 5B). Furthermore, structural

analysis shows that T909 and N916 in EHEC intimin are identical

to T914 and N921 in EPEC, while S890, N927 in EHEC intimin

is equivalent to T895 and R850 of EPEC intimin on steric

conformation (Figure 6). This suggests that EHEC and EPEC

intimin are interchangeable with each other but with different

affinities when they bind to Tir[17].

Discussion

In this study, we solved the structure of EHEC Int188 and its

mutant IntN916Y. And we built the structural modeling of an

EHEC intimin-Tir complex according to the structure of intimin-

Tir complex in EPEC. These data suggested that tertiary

structures between intimins of EHEC and EPEC are highly

similar, though the sequence identity is relatively low at the amino

acid level. The structural modeling indicates that EHEC intimin in

complex with its receptor, Tir, produced a similar binding pattern

to EPEC and four critical amino acid residues (S890, T909, N916

and N927) of EHEC intimin are considered to be essential for Tir

recognition. Specifically, two of them (T909, N916) are identical to

the corresponding residues in EPEC, while the other two residues

(S890, N927) are equivalent to residues (T895, R850) in EPEC on

steric conformation. This suggests that EHEC and EPEC intimin

are interchangeable with each other when they bind to their Tir.

We compared with the structure of intimins between EHEC

and EPEC. Four points of variation were observed. One is in

Domain I (Ig-like domain), the other three are found in Domain II.

These variations indicate that EHEC and EPEC intimins cross

complement each other with different binding affinities.

For the mutant, IntN916Y, the folding mode is completely the

same as the native version, which indicates that this amino acid

substitution fails to influence the alpha-C backbone in Int188.

In summary, this report shows the crystal structure of EHEC

intimin. The availability of structural information suggests a

comprehensive understanding of the interchangeable intimin

between EHEC and EPEC, and provides insight into the

structure-based design of small molecule drugs utilized to combat

against EHEC and EPEC infections.

Materials and Methods

Cloning, expression and purification
The Int188 DNA was amplified with bacterial genomic DNA

which was isolated from the EDL933 of EHEC O157:H7 strain as

a template by PCR. The primers (int-F: 59- GAA TTC CATATG

GCG ACT GAG GTC ACT-39, int-R: 59-CCG CTCGAG TTA

TTC TAC ACA AAC-39) were designed to amplify extra-domains

of eae (intimin-c). The amplified eae gene was digested with Nde I

and Xho I and cloned into pET-21a vector (Novagen). A mutant,

pET-21a-IntN916Y, was also inadvertently obtained in this

experiment. The recombinant plasmids were verified by DNA

sequencing.

Protein Expression and Purification
Both of these two recombinant proteins (Int188 and IntN916Y)

were expressed as inclusion bodies and they were then lysed using

a sonicator and centrifuged at 16,000 g. The pellet was washed

three times with a solution of 20 mM Tris-HCl, 100 mM NaCl,

1 mM EDTA, 1 mM DTT and 0.5% Triton-100. Refolding of

the purified inclusion bodies was carried out as described

earlier[28] with minor modifications[29] The refolded protein

was then purified using Resource Q anion exchange chromatog-

raphy followed by Superdex 75 size exclusion chromatography.

Crystallization and Structure Determination
Crystals of Int188 and IntN916Y were obtained by the hanging-

drop vapor diffusion method at 291K. Initial screening was

performed using crystal screen I and II (Hampton Research). A

1 ml droplet of protein solution (5, 10, and 15 mg/ml, respectively)

mixed with equal amount of reservoir solution was equilibrated

against 200 ml of reservoir solution. Crystals were first observed in

Figure 6. Superposition of four key residues in intimins
between EHEC and EPEC. The main chain of EHEC and EPEC
intimins are shown as ribbon in warm pink and limon, respectively.
S890, T909, N916 and N927 in EHEC intimin are indicated as stick in
warm pink, while T895, T914, N921 and R850 in EPEC intimin are
marked as stick in limon.
doi:10.1371/journal.pone.0015285.g006
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4 days with the No. 22 condition of Crystal Screen II (12%

PEG20,000, 0.1 M MES, pH 6.5). After several rounds of

optimization, one of the more promising crystallization conditions

was optimized (15% PEG20,000, 0.1 M MES, pH 6.5) at 277K.

Crystal diffraction data were collected in house on a Rigaku

MicroMax007 rotating-anode X-ray generator operated at 40 kV

and 20 mA (Cu Ka; l= 1.5418 Å) equipped with an R-AXIS

VII++ image-plate detector. The crystals were flash-frozen in

liquid nitrogen after addition of 15% (v/v) glycerol to the mother

liquor, mounted in nylon loops and flash-cooled in a cold nitrogen-

gas stream at 100 K using an Oxford Cryosystem with reservoir

solution as the cryoprotectant. Crystals of EHEC Int188 and

IntN916Y diffracted at 2.8 Å and 2.6 Å, respectively. Data were

processed and scaled with Crystalclear[30].

The crystal structures of Int188 and IntN916Y belong to the

space group C2 and P212121, respectively. The coordinates of

EPEC intimin (PDB 1F00) [26] were used to serve as an initial

model for IntN916Y using the program CNS[31]. The refinement

was performed using simulated annealing, energy minimization,

restrained individual B factor and the addition of water molecules in

the CNS program. The respective working Rworking and Rfree

dropped to 21.3% and 26.8% for all data from 50 to 2.6 Å.

Subsequently, the structure of Int188 was solved by molecular

replacement using the IntN916Y molecule as a search model. After

the same refinement steps, the working Rworking and Rfree dropped

to 25.3% and 29.6% for all data from 50 to 2.8 Å. The final

structures of Int188 and IntN916Y were checked for geometrical

correctness with PROCHECK[32] and analyzed and compared

with EPEC intimin-a (PDB 1F00) using programs from the CCP4

package[33] as well as the molecular graphics programs Coot[34].

The refinement statistics of structure are given in Table 1. The

atomic coordinates and the structure factors for both Int188 and

IntN916Y have been deposited in the Protein Data Bank, where

they have been assigned the identifiers 3NCW and 3NCX.
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